人教版高中数学必修三(教案)3.2.古典概型
人教版高中数学数学必修三3.2+古典概型第一课时+教案

第二学期高一教案主备人:使用人:时间:2018年3 月15日课堂检测:1.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是( ) A .4030 B .4012 C .3012 D .以上都不对 2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是 A .51 B .41 C .54 D . 101 3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
4.抛掷2颗质地均匀的骰子,求点数和为8的概率。
精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
示范教案(3.2.1--古典概型)

示范教案(3.2.1--古典概型)3.2 古典概型3.2.1 古典概型整体设计教学分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P (A )=总的基本事件个数包含的基本事件个数A 的使用条件——古典概型,体现了化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.课时安排1课时教学过程导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件. (2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?为此我们学习古典概型,教师板书课题.思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情形之一时,事件B就发生,于是P(B)=5213=41.为此我们学习古典概型. 推进新课新知探究提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机1.事件,出现的概率是相等的,都是6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P (“正面朝上”)=P (“反面朝上”) 由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.因此P (“正面朝上”)=P (“反面朝上”)=21. 即P (“出现正面朝上”)=基本事件的总数数所包含的基本事件的个出现正面朝上""21 . 试验二中,出现各个点的概率相等,即P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”).反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1.所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=61. 进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=61+61+61=63=21.即P (“出现偶数点”)=基本事件的总数数所包含的基本事件的个出现偶数点""63 . 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:P (A )=基本事件的总数数所包含的基本事件的个A . 在使用古典概型的概率公式时,应该注意: ①要判断该概率模型是不是古典概型;②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.应用示例思路1例1 从字母a,b,c,d 中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A 包含的基本事件有1×3=3个,故P(A)=91273=. (2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B 包含的基本事件有2×3=6个,故P(B)=92276=.答:3个矩形颜色都相同的概率为91;3个矩形颜色都不同的概率为92.例 2 单选题是标准化考试中常用的题型,一般是从A,B,C,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?活动:学生阅读题目,搜集信息,交流讨论,教师引导,解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型.如果学生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定学生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D 的可能性是相等的.从而由古典概型的概率计算公式得:P (“答对”)=41"" 基本事件的总数数所包含的基本事件的个答对=0.25.点评:古典概型解题步骤:(1)阅读题目,搜集信息;(2)判断是否是等可能事件,并用字母表示事件;(3)求出基本事件总数n和事件A所包含的结果数m;m求出概率并下结论.(4)用公式P(A)=n变式训练1.两枚均匀硬币,求出现两个正面的概率.解:样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.1.n=4,m=1,P=42.一次投掷两颗骰子,求出现的点数之和为奇数的概率.解法一:设表示“出现点数之和为奇数”,用(i,j)记“第一颗骰子出现i点,第二颗骰子出现j点”,i,j=1,2,…6.显然出现的36个基本事件组成等概样本空间,其中A包含1. 的基本事件个数为k=3×3+3×3=18,故P(A)=2解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),则它们也组成等概率样本空间.基本事件总数n=4,A 包含的基本事件个数k=2,故P(A)=21. 解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},也组成等概率样本空间,基本事件总数n=2,A 所含基本事件数为1,故P(A)=21. 注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=31,错的原因就是它不是等概率的.例如P (两个奇)=41,而P (一奇一偶)=21.本例又告诉我们,同一问题可取不同的样本空间解答. 例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=91364 . 例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码构成.1.所以P(“试一次密码就能取到钱”)=100001的事件是小概率事件,通常我们发生概率为10000认为这样的事件在一次试验中是几乎不可能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x 和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A 表示“抽出的2听饮料中有不合格产品”,A 1表示“仅第一次抽出的是不合格产品”,A 2表示“仅第二次抽出的是不合格产品”,A 12表示“两次抽出的都是不合格产品”,则A 1,A 2和A 12是互不相容的事件,且A=A 1∪A 2∪A 12,从而P(A)=P(A 1)+P(A 2)+P(A 12). 因为A 1中的基本事件的个数为8,A 2中的基本事件的个数为8,A 12中的基本事件的个数为2,全部基本事件的总数为30,所以P(A)=302308308++=0.6. 思路2例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,(1)共有多少个基本事件?(2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件. 解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4, 5).因此,共有10个基本事件.(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件3.A),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A 的结果有12种,因为抛两次得到的36种结果是等可能出现的,所以所求的概率为P(A)=3612=31. 答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和是3的倍数的概率为31. 说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品用A 表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)],事件A 由4个基本事件组成,因而,P (A )=64=32.思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 2),(b 1,b 1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],4.事件B包含4个基本事件,因而,P(B)=9点评:(1)在连续两次取出过程中,(a1,b1)与(b1,a1)不是同一个基本事件,因为先后顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样. 解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)=33108=0.512.(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336,所以P(B)=720336≈0.467. 解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x,y,z ),(x,z,y ),(y,x,z ),(y,z,x ),(z,x,y ),(z,y,x )是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P(B)=12056≈0.467.点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.知能训练本节练习1、2、3.拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.解:在1 000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,∴(1)有一面涂有色彩的概率为384=0.384;P1=100096=0.096;(2)有两面涂有色彩的概率为P2=10008=0.008. (3)有三面涂有色彩的概率为P3=1000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式P(A)=基本事件的总数数所包含的基本事件的个A.3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.作业习题3.2 A组1、2、3、4.设计感想本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题、解决问题的能力.在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑.由此,整个教学设计可以在教师的期盼中实施.。
人教版高中数学必修三3.2古典概型教案(7)

<<古典概型>>教案一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式.三、学法与教学用具:与学生共同探讨,应用数学解决现实问题.四、教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A . 3、例题分析:课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点) 所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。
例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
3.2.1古典概型(教学设计)

321古典概型(教学设计)宁夏彭阳县第一中学 张有花(一)教材地位、作用《古典概型》是高中数学人教 A 版必修3第三章概率3.2的内容,教学安排是2课时, 本节是第一课时。
是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教 学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量 的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有 利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承 前启后的作用,所以在概率论中占有相当重要的地位。
(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。
他们 具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完 备,反映在解题中就是思维不慎密,过程不完整。
教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个 教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。
通过对 问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算 公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2) 每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典 概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归 纳总结出古典概型的教材分析A 包含的基本事件个数 总的基本事件个数概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.三、教学重点与难点1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
高中数学教案古典概型

高中数学教案古典概型
教学目标:
1. 了解古典概型的概念和基本原理。
2. 能够应用古典概型解决实际问题。
3. 培养学生的逻辑思维和数学分析能力。
教学重点和难点:
1. 熟练掌握古典概型的计算方法。
2. 能够灵活应用古典概型解决不同类型的问题。
教学内容:
1. 古典概型的概念和性质。
2. 古典概型的计算方法。
3. 古典概型在实际问题中的应用。
教学过程:
一、导入(5分钟)
教师通过举例引入古典概型的概念,并激发学生对此的兴趣。
二、讲解(10分钟)
1. 讲解古典概型的定义和基本原理。
2. 介绍古典概型的计算方法。
三、练习(15分钟)
教师布置几道古典概型的练习题,让学生独立思考和解答。
四、拓展(10分钟)
让学生结合实际问题进行古典概型的应用,培养学生的问题解决能力。
五、总结(5分钟)
总结本节课所学内容,强化学生对古典概型的理解和掌握。
六、作业(5分钟)
布置相关的作业,巩固学生对古典概型的应用能力。
板书设计:
古典概型
1. 定义和性质
2. 计算方法
3. 应用实例
教学反思:
通过本节课的教学,学生能够掌握古典概型的基本概念和计算方法,能够灵活应用古典概型解决实际问题。
通过不断练习和实践,可以进一步提高学生的数学分析能力和解决问题的能力。
人教版高中数学必修3《古典概型》教案

人教版高中数学必修3《古典概型》教案古典概型一、教材分析教材的地位和作用:本节课是高中数学必修3第三章概率的第二节,古典概型的第一课时。
本节课在教材中起着承前启后的作用。
古典概型的引入避免了大量的重复试验,而且得到的概率是精确值。
古典概型是一种最基本的概率模型,在概率论中占有相当重要的地位。
学好古典概型为后续学习几何概型奠定了知识和方法基础,同时有助于理解概率的概念,有利于计算一些事件的概率,并解释生活中的一些概率问题。
二、学情分析认知分析:本节课是在学生学习了统计、随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下学习的新知识。
学生已经了解了概率的基本性质,知道了互斥事件与对立事件的概率加法公式能力分析:我校学生基础比较薄弱,自学能力较差,对抽象的知识理解较困难。
作为高二的学生他们具备一定的观察、类比、分析、归纳能力,但对知识的理解和方法的掌握上存在一些问题。
情感分析:问卷调查显示,多数学生对概率的学习有一定的兴趣,但对抽象的定义和公式存在惧怕心理。
并且学生习惯了小组合作学习。
三、教学目标新课程强调获得知识的过程比知识本身更有价值。
新课标重视过程教学、情感教学。
根据新课程标准,结合学生心理发展的需求,制定以下三维教学目标:知识与技能目标:正确理解两个概念:基本事件与古典概型,掌握古典概型的概率计算公式。
过程与方法目标:创设情境,设计一些具有实际生活背景的问题,引导学生积极思考。
进一步发展学生的观察、类比、分析、归纳能力,让学生体会从特殊到一般的数学方法情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的兴趣和热情;感受数学的应用价值,并尝试用数学的视野去关注生活中的数学问题。
四、教学重难点及突破难点的关键教学重点:理解古典概型及其概率计算公式教学难点:如何正确运用古典概型的概率计算公式关键:通过实例,特别是举一些破坏古典概型两个特征的例子,以突破古典概型识别的难点。
高中数学(32古典概型)教案 新人教A版必修3 教案

古典概型一、教学内容解析1.本节课时高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的.这节课的学习任务所包括的知识类型主要有:事实性知识:基本事件及古典概型的特点;概念性知识:基本事件及古典概型的概念,古典概型概率计算公式;元认知知识:根据古典概型的研究分析,解释和预测生活中的古典概率模型问题.2.古典概型在概率的学习中承上启下,不仅有利于进一步理解概率的有关概念,而且有助于几何概型的学习,也可以为以后概率的学习奠定基础.3.古典概型是一种特殊的数学模型,能培养学生建模的思想,同时其与生活联系密切,便于解释生活中的一些问题,增加学生学习数学的兴趣.二、教学目标设置1.知识与技能理解基本事件、等可能事件等概念;正确理解古典概型的特点;会用列举法求解简单的古典概型问题;掌握古典概型的概率计算公式.2.过程与方法通过对现实生活中具体的概率问题的探究,感受应用数学解决问题的方式,体会数学知识与现实世界的联系,培养学生的逻辑推理能力;通过模拟试验,感知应用数学解决问题的方法,自觉养成多动手、勤动脑的良好习惯.3.情感、态度与价值观在教师指导、学生参与的过程中培养学生的自主学习能力;同时,使其获得数学源于生活服务于生活的体验,培养学生应用数学的意识.三、学生学情分析我校是湖南省著名的示范性中学,学生学习基础较好.从课前的微视频自学反馈中,了解到学生在以下3个方面仍需加强.1.学生已经学习了概率的加法,能够比较熟练的应用互斥事件的概率运算法则进行计算.2.通过预习,学生能够初步了解基本事件及古典概型的概念,但对其深入的理解和应用还需加强.3.学生对古典概型及其概率计算公式含义的认识上并不能直击本质,因此在教学过程中,将采用自主探究、小组讨论等环节强调其本质含义,突破难点.四、教学策略分析1.有效开发、合理利用教材资源.以教材中两个试验的其中之一作为实验探究,将第二个试验进行适当改编,引导学生认识基本事件及其两大特点和古典概型的定义及特征.让学生自己动手体会在试验、合作中得到的新知,同时通过归纳总结对知识有更为深刻的理解和认识.2.学生已经学习了概率的相关基础知识,通过试验后,对古典概型也有了较初步的印象.为加深学生对古典概型两个特征的认识和理解,在例题中加强对有限性和等可能性的区分和辨别,使学生深刻领会”有限”和”等可能”的含义.五、教学过程(一)复习回顾引入课题分析掷硬币试验和抛掷骰子试验的试验结果,引出基本事件的定义及特点:一次试验中可能出现的每一个结果称为基本事件.(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.引导学生进一步分析以上两个试验中基本事件的共同点,发现两个试验中的基本事件只有有限个,并得到关于“古典概型中每个基本事件出现的可能性相等”的猜想.【设计意图】课堂开始阶段,引导学生由之前课堂中曾完成过的掷硬币试验进行分析,让学生在熟悉的情景下、了解的知识中温故知新,得到基本事件的定义和特点.同时鼓励学生大胆猜想古典概型中基本事件的等可能性,培养学生的发散思维和研究精神.(二)试验探究概念形成实验目的:验证古典概型中基本事件的等可能性.实验内容:抛掷一颗骰子,统计实验中向上点数出现的次数.实验用具:质地均匀的骰子1个、空量杯一个、数据统计表1份.实验步骤:(1)3位同学为1个小组,3个小组为1个大组进行实验.(2)每小组中,第一位同学负责抛掷骰子,每次实验将骰子置于同一高度在(量杯口处)向下掷,待骰子静止后,观察实验结果;第二位同学负责记录实验结果;第三位同学负责监督实验过程,并检验统计数据.(3)小组实验结束后,将数据汇总至所在大组的实验数据统计表中.由学生展示每小组的统计结果,进行比较分析,然后师生合作将每小组的实验数据累加,并综合继续分析.最后运用EXCEL软件模拟掷骰子试验,得到1000次、10000次及100000次的试验结果,说明在大量的试验下,掷骰子试验中的六个基本事件出现的频率基本相等,也就验证了对于“古典概型中每个基本事件出现的可能性相等”的猜想.从而,通过掷一颗骰子的试验得到古典概型的概念:(1)试验中所有可能出现的基本事件的个数只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.【设计意图】以抛掷骰子的数学实验作为切入点,在学生动手实践、动脑思考、数据分析的学习活动中,验证”每个基本事件出现的可能性相等”的猜想,并抽象出古典概型的概念.在实验过程中,突出了本节课的重点,培养了学生合作探究的能力,并进一步加深了学生对古典概型中基本事件的认识.1.下列概型是否为古典概型?(1)在长度为3厘米的线段AB上随机取一点C,求点A到点C的距离小于1的概率.你认为这是古典概型吗?为什么?分析:不是.具有等可能性,不具有有限性.(2)一颗质地均匀的骰子,在其一个面上标记1点,两个面上标记2点,三个面上标记3点,现掷这颗骰子,试验结果有:”出现1点”、”出现2点”、”出现3点”.你认为这是古典概型吗?为什么?分析:不是.具有有限性,不具有等可能性.2.你能举出生活中的古典概型例子吗?学生例举生活实例.【设计意图】通过2个问题,加深学生对有限性及等可能性的认识.让学生自己举例,即可加深学生对古典概型特征的理解,又可以将数学练习生活,提升学生的学习兴趣.通过学生对生活中实例的分析,进一步提出问题:既然生活中有如此多的古典概型,那么我们能否找到其概率计算的通法呢?再次回到刚刚的试验中,你能否求出“出现偶数点”这个随机事件的概率呢?学生以小组为单位进行讨论,引导学生应用古典概型特点及互斥事件概率加法公式得到问题答案,并归纳总结出古典概型的概率计算公式:()AP A包含的基本事件个数基本事件总数【设计意图】由学生小组讨论,得到事件“出现偶数点”的概率,进而归纳出古典概型的概率计算公式.在学习新知识的同时培养学生的沟通交流能力,也加深了学生对概率公式的理解.(三)例题精讲感悟本质例1 从一个装有4颗巧克力(形状大小均相同)的布袋中随机取出2颗巧克力.(1)若4颗巧克力中,红色、黄色、蓝色、绿色各1颗,写出所有的基本事件.(2)若4颗巧克力中,红色、黄色各2颗,写出所有的基本事件.(3)在(2)的条件下,计算取出的2颗均为黄色的概率.在第(1)问的解题过程中引入树状图法进行列举,使学生熟悉掌握列举的重要方法之一——树状图法.学生在对比(1)完成(2)时,往往容易忽视古典概型的两个特点,预计学生在求解时可能会有以下两种情况:①将黄色巧克力标号为1、2,红色巧克力标号为3、4,试验结果共6种:②不对巧克力进行编号,试验结果包含(黄,黄)(红,红)(红,黄)3种.针对学生出现的典型错误,引导学生独立思考、合作交流,并提出问题:上述两种计数方法是否符合古典概型的特点?你能解释其中的原因吗?待学生充分讨论后,由学生代表发言,引导学生认识到在第二种情况下得到的事件不是等可能发生,不具备古典概型的特点,故不能用古典概型的概率计算公式进行计算.【设计意图】例1是基于教科书中第125页例1创新改编而成,将原例题中的a b c d,,,四个字母换为不同颜色的巧克力,以“抽取巧克力”试验作为背景,让学生在轻松的氛围中通过观察分析掌握古典概型的两个特点.这样既培养了学生观察、分析问题和解决问题的能力,又有效地突破了本节课的教学难点.练习题:同时掷两枚硬币,出现”1个正面朝上、1个反面朝上”的概率是多少?由学生独立完成练习【设计意图】例题1中的(2)(3)问是本节课的难点,这里设计一道与之类似的习题,使学生在多次练习的过程中,突破这一难点.例2 同时掷两个骰子,求:(1)向上的点数均为3的概率.(2)向上的点数和为5的概率.(3)向上的点数和为偶数的概率.由学生自主解答,小组交流,学生代表向全班进行展示,同时在学生展示中,进一步强调古典概型的两个重要特点,并针对学生解答过程中可能出现的问题适当加以引导,【设计意图】为了固化古典概型的概念及其概率计算公式,我将教科书中例3的设问作了变式与创新,使学生能够熟练地运用列表法列出所有的基本事件,掌握古典概型的概率计算公式,加深对古典概型概念的理解.进一步突出本节课的教学重点.(四)回顾总结提炼要点这节课我们学习了哪些知识和方法?【设计意图】学生总结反思,进一步强调本节课内容的重点和难点和方法,培养学生提炼、总结、概括的能力.(五)课后拓展探究提升1、课后练习教科书130页,第2题、第 3题.2、思考提升下面有三个游戏规则,袋子中分别装有球,从袋中无放回的取球,分别计算甲获胜的概率,则游戏是公平的是()游戏1 游戏2 游戏31个红球和1个白球2个红球和2个白球3个红球和1个白球取1个球取1个球,再取1个球取1个球,再取1个球取出的球是红球,则甲胜取出的两个球同色,则甲胜取出的两个球同色,则甲胜取出的球是白球,则乙胜取出的两个球不同色,则乙胜取出的两个球不同色,则乙胜A.游戏1 B.游戏1和3 C.游戏2 D.游戏2和33、实践应用近年来,国家越来越重视商品的质量问题,经常组织质检部门对其进行抽样检测.请你收集相关的新闻材料、数据或进行实际的市场调查,从古典概型角度针对检测产品的数量和检测出不合格产品的概率进行分析研究,说明质量抽检的科学性或提出你的建议.【设计意图】在作业的布置中,注意将双基训练与能力发展相结合.创新性地设计探究问题,有意识地将数学与生活结合,使学生能够学以致用,既巩固了基本知识,同时又提升了学生运用知识分析问题和解决问题的能力.。
古典概型教案

3.2.1古典概型教案一、课型:新授课课时:1课时二、教学内容分析《古典概型》是高中数学人教B版必修3第三章概率3.2第一课时的内容,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。
古典概型是一种最基本的数学模型,也是一种特殊的概率模型,与我们的生活息息相关。
它的引入有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,可以激发学生的学习兴趣。
同时也是后面学习其他概率的基础,起到承前启后的作用,所以在概率论中占有相当重要的地位。
三、教学目标(一)知识与技能目标1.理解古典概型及其概率计算公式;2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率(二)过程与方法目标1.通过模拟试验让学生理解古典概型的特征,观察类比各个试验,归纳总结古典概型的概率计算公式,体验由特殊到一般的化归思想;2.掌握列举法,学会运用分类讨论的思想解决概率的计算问题。
(三)情感态度与价值观目标1.通过各种有趣的、贴近学生生活的素材,激发学生学习数学的兴趣;2.培养学生用随机的观点来理性的理解世界,鼓励学生通过观察类比提高发现问题、分析问题、解决问题的能力;3.通过合作探究试验,使学生感受与他人合作的重要性和实事求是的科学态度。
四、教学教学重难点(一)重点1.理解古典概型的概念;2.利用古典概型概率公式求解随机事件的概率。
(这样确定教学重点是因为本节课的地位和作用以及新课程标准的具体要求)(二)难点1.判断一个随机试验是否为古典概型;2.古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
(根据本节课的内容,即尚未学习的排列组合,以及学生的心理特点和认知水平,制定了教学难点。
)五、学情分析(一)学生情况分析1.认知分析学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式2.能力分析学生基础相对比较薄弱,基础知识、基本技能不扎实,知识点漏洞较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时古典概型
教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.
教学难点:古典概型是等可能事件概率.
教学过程:
一、复习准备:
. 回忆基本概念:必然事件,不可能事件,随机事件(事件).
()必然事件:必然事件是每次试验都一定出现的事件.
不可能事件:任何一次试验都不可能出现的事件称为不可能事件.
()随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.
二、讲授新课:
1.教学:基本事件(要正确区分事件和基本事件)
定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.
基本事件的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
例:字母中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.
. 教学:古典概型的定义
古典概型有两个特征:
()试验中所有可能出现的基本事件只有有限个;
()各基本事件的出现是等可能的,即它们发生的概率相同.
我们称具有这两个特征的概率称为古典概率模型()简称古典概型
注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.
例:掷两枚均匀硬币,求出现两个正面的概率.
取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.
这里四个基本事件是等可能发生的,故属古典概型.
, ,
对于古典概型,任何事件的概率为:
例:(关键:这个问题什么情况下可以看成古典概型的)
例:(要引导学生验证是否满足古典概型的两个条件)
. 小结:古典概型的两个特点:有限性和等可能性
三、巩固练习:
. 练习:在件产品中,有件是合格的,件是次品,从中任意抽件进行检验,计算:()两件都是次品的概率;()件中恰好有一件是合格品的概率;()至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)
2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)
3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.
作业:①教材第题,②教材.第题
第二课时(整数值)随机数( )的产生
教学要求:让学生学会用计算机产生随机数.
教学重点:初步体会古典概型的意义.
教学难点:设计和运用模拟方法近似计算概率.
教学过程:
一、复习准备:
回忆古典概型的两个特征:有限性和等可能性.
二、讲授新课:
. 教学:例题
例:假设储蓄卡的密码由位数组成,每个数字可以是,,,……,十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?
例:某种饮料每箱装配听,如果其中有听不合格,问质检人员从中随机抽出听,检测出不合格产品的几率有多大?
. 教学:随机数的产生(教师
带着学生用计算器操作)
①如何用计算器产生随机
数:
随机函数:()产生从整数到整数的取整数值的随机数.
②如何用计算机产生随机数:在执行函数或者查看的随机数表.
例,天气预报说,在今后的三天中,每一天下雨的概率均为。
这三天中恰有两天下雨的概率大概是多少?
分析:试验的结果可能有限个,但结果的出现不是等可能的,所以不能用古典概型的公式,只能用模拟实验来做模拟.
. 小结:古典概型,如何用计算机产生随机数.
三、巩固练习:
. 练习:教材.第题,第题,
某食品公司为新产品问世拟举办年国庆促销活动,方法是买一份糖果摸一次彩,摸彩的器具是黄、白两色乒乓球,这些乒乓球的大小与质地完全相同。
另有一只棱长约为厘米密封良好且不透光的长方体木箱(木箱上方可容一只手伸人).该公司拟按中奖率设大奖,其余则为小奖,大奖奖品的价值为元,小奖奖品的价值为元.请你按公司的要求设计一个摸彩方案.
解析:本题并不要求计算中奖概率,而是在给定的中奖率条件下设计摸奖的方案,因此本题是个开放性问题,可以有多种构思,可谓“一果多因”.
. 作业:①教材组第题,②教材组第题。