ch6 集成运放
ch6_11_鉴频器原理与电路(4) [兼容模式]
![ch6_11_鉴频器原理与电路(4) [兼容模式]](https://img.taocdn.com/s3/m/854fc847e55c3b3567ec102de2bd960590c6d97c.png)
通信电子线路鉴频器原理与电路
(4)
——讲述了脉冲计数鉴频器及本
章小结
利用计数过零脉冲数目的方法实现鉴频。
放大限幅
c 微分
d
削波e脉冲发生器
五. 脉冲计数式鉴频器:方框图和波形图如图:
•经处理后得到幅度相同的矩形脉冲,如图(f)
•对给定的单一频率,这些脉冲具有恒定的平均值,其平均值与FM波的频率成正比。
•输入调频波时,平均幅度随频率的变化规律(调制信号)而线性变化。
•滤波器去掉无用成分就可得到原调制信号。
•优点:
解调失真小;便于集成。
缺点:
•工作频率较低(受限于脉冲发生器的分辨率)。
•若能生成的最小脉冲为τmin,则f max=(f c+∆f f)<1/τmin
本章小结
1.角度调制/解调的基本原理和调角波的性质。
2.调频方法及实现电路。
3.各种调制方式的比较。
4.鉴频器指标、原理电路及其优缺点:
•单端斜率鉴频器:电路简单,线性范围窄;
•平衡斜率鉴频器:线性范围宽,B大,失真小,难调对称;•相位鉴频器:简单、线性好,灵敏度↑,B小;
•比例鉴频器:可省去限幅器,但灵敏度↓;
•符合鉴频器:S/N高、易集成,线性范围窄,灵敏度↓;•脉冲计数器:失真小,易集成,工作f↓。
运放分类 工艺

运放分类工艺
运放按照工艺的分类可以分为以下几种:
1. 单管运放(Single-Ended Amplifier):只有一个输入信号与一个输出信号的运放,常见的有共射放大器和共源放大器等。
2. 双差分运放(Fully-Differential Amplifier):有两个输入信号与两个输出信号的运放,常用于高性能模拟信号处理器件中。
3. 运算放大器(Operational Amplifier):用于数学运算、信号放大和滤波等应用。
4. 功率放大器(Power Amplifier):能够根据输入信号放大电流或电压的运放,常用于音频和功率放大应用中。
5. 低噪声放大器(Low-Noise Amplifier):能够在高增益下提供低噪声的运放,常用于射频和通信系统中。
6. 高速放大器(High-Speed Amplifier):能够在高频率下提供高增益的运放,常用于高速数据传输和信号处理中。
7. 超低功耗放大器(Ultra-Low Power Amplifier):能够在低功耗下提供放大功能的运放,常用于电池供电的便携设备中。
除了以上分类,运放还可以按照工作原理、结构设计和制造工艺等细分。
不同的分类适用于不同的应用场景和需求。
考研模电一轮复习(思维导图)

模电Ch1 常用半导体器件基础概念6二极管PN结...PN结和二极管区别2IV特性4主要参数1瞬态响应3IV特性等效电路16微变等效电路7稳压二极管14其他二极管2BJT双极型三极管(Bipolar Junction Transistor,简称BJT)双极: 在工作时有电子和空穴两种载流子参与导电过程注意集电极的结面积较大:为什么要大?为什么是电流控制器件因为β化简成了一个系数,IC和IB成比例4晶体管内部载流子的运动6共射电流放大系数7共射特性曲线输入特性曲线输入特性曲线开启电压Von硅三极管的Von为0.5~0.7V,锗三极管的Von为0.2~0.3V。
指数关系当Uc增大时,曲线将右移输出特性曲线UBE<UEBQ,B-E反偏,B-C反偏开启电压UonB-E正,B-C反偏B-E正,B-C正注意横线由IB控制,而EFT是电压Vgs具体公式是什么?没有吗?这里Ib和纵轴Ic是线性关系,比例为β改变β的方法在半导体器件有讲硅三极管开始进入饱和区的Vce值约为0.6~0.7V例题主要参数17温度对晶体管的影响10FET单极型器件:只靠多数载流子导电结型FET52绝缘栅FET(MOSFET)50主要参数27FET和BJT的比较7集成电路中的元件Ch2 基本放大电路放大电路性能指标28BJT共射放大电路基本共射放大电路6直接耦合共射放大电路8阻容耦合共射放大电路4PNP共射放大电路放大电路分析...静态工作点的稳定温度34BJT放大电路三种基本接法50EFT放大电路55复合管52Ch3 集成运算放大电路使用原因26结构87电压传输特性7零点漂移15主要性能指标1运放类型7集成运放结构拆分11运放等效电路(低频)6运放保护措施7常用结构输入级常使用共集共基来提高输入电阻,提高带宽为什么提高带宽?利用有源负载提高放大倍数,使单端输出电路的差模放大倍数近似等于双端输出电路的差模放大倍数?例题4Ch4 放大电路的频率响应基本高低通模型7晶体管的高频等效模型晶体管的混合π模型简化的混合π模型13β和α随频率的变化10FET的高频等效模型7单管放大电路的频率响应电容考虑情况3单管共射放大电路46单管共源放大电路6频率响应的改善减小fL加大耦合电容及其回路电阻,以增大回路时间常数或各级之间采用直接耦合(不用耦合电容也就没有高通)增大fH减小C'π/C'gs, 而C'π≈Cπ+(gm*RL)Cu,所以可以通过减小gmRL的方法提高fH->注意:fH的提高与|A|的增大是相互矛盾的。
CH6 高频功率放大器

尖顶余弦脉冲的分解系数还可以根据的数值查表求出各分解系数的值。 尖顶余弦脉冲的分解系数还可以根据的数值查表求出各分解系数的值。 还可以根据的数值查表求出各分解系数的值
αn (θc ) =
Icmn 2 sinnθc cosθc − ncosnθc sinθc = ⋅ iCmax π n(n2 −1)(1− cosθc )
3)波形图分析vCE i 波形图分析
i
c
C
A
v BEmax= −VBB+Vbm
动态特性曲线、 动态特性曲线、工作路
iCmax
Icm
−θC θC
E E
B wt
截距
Icm cosθc
VCES
V0
VCC
vCE
v CE = VCC − vc
•Q
−θC
≈ VCC − I cm1 ( Z P ) w cos wt = VCC − Vcm cos wt
v
0
iC = g cr vCE
截止区 vCE
gc (vBE − VBZ ) iC = 0
vBE > VBZ vBE < VBZ
选取vBE为参变量是因为晶体管的输入电 压是正弦或是余弦, 压是正弦或是余弦,由于管子输入特性 的 非线性,所得的输入电流i 非线性,所得的输入电流 B就不是正弦或 余弦了,为了避免输入特性的非线性, 余弦了,为了避免输入特性的非线性,常 作参量测出输出特性。 以vBE作参量测出输出特性。 cxl1688@ 《高频电路》 第6章 高频电路》 章
1)波形图分析iC )波形图分析
截止区
ic
饱和区 过压区
ic
放大区 欠压区
iCmax
Icm
凌鸥创芯 LKS32MC08X 电机控制处理器数据手册说明书

南京凌鸥创芯电子有限公司LKS32MC08X Datasheet© 2020, 版权归凌鸥创芯所有机密文件,未经许可不得扩散1概述1.1功能简述LKS32MC08X系列MCU是32位内核的面向电机控制应用的专用处理器,集成了常用电机控制系统所需要的所有模块。
⚫性能➢96MHz 32位Cortex-M0内核➢集成自主指令集电机控制专用DSP➢超低功耗休眠模式,低功耗休眠电流10uA➢工业级工作温度范围➢超强抗静电和群脉冲能力⚫工作范围➢ 2.2V~5.5V电源供电,内部集成1个LDO,为数字部分电路供电➢工作温度: -40~105℃,LKS32MC085工作温度: -40~125℃⚫时钟➢内置4MHz高精度RC时钟,-40~105℃范围内精度在±1%之内➢内置低速32KHz 低速时钟,供低功耗模式使用➢可外挂4MHz外部晶振➢内部PLL可提供最高96MHz时钟⚫外设模块➢两路UART➢一路SPI,支持主从模式➢一路IIC,支持主从模式➢一路CAN(部分型号不带CAN)➢2个通用16位Timer,支持捕捉和边沿对齐PWM功能➢2个通用32位Timer,支持捕捉和边沿对齐PWM功能;支持正交编码输入,CW/CCW输入,脉冲+符号输入➢电机控制专用PWM模块,支持8路PWM输出,独立死区控制➢Hall信号专用接口,支持测速、去抖功能➢硬件看门狗➢最多4组16bit GPIO。
P0.0/P0.1/P1.0/P1.1 4个GPIO可以作为系统的唤醒源。
P0.15 ~ P0.0 共16个GPIO可以用作外部中断源输入。
⚫模拟模块➢集成1路12bit SAR ADC,同步双采样,3Msps采样及转换速率,最多支持13通道➢集成4路运算放大器,可设置为差分PGA模式➢集成两路比较器,可设置滞回模式➢集成12bit DAC 数模转换器➢内置±2℃温度传感器➢内置1.2V 0.5%精度电压基准源➢内置1路低功耗LDO和电源监测电路➢集成高精度、低温飘高频RC时钟➢集成晶体起振电路1.2性能优势➢高可靠性、高集成度、最终产品体积小、节约BOM成本;➢内部集成4路高速运放和两路比较器,可满足单电阻/双电阻/三电阻电流采样拓扑架构的不同需求;➢内部高速运放集成高压保护电路,可以允许高电压共模信号直接输入芯片,可以用最简单的电路拓扑实现MOSFET电阻直接电流采样模式;➢应用专利技术使ADC和高速运放达到最佳配合,可处理更宽的电流动态范围,同时兼顾高速小电流和低速大电流的采样精度;➢整体控制电路简洁高效,抗干扰能力强,稳定可靠;➢单电源2.2V~5.5V供电,确保了系统供电的通用性;适用于有感BLDC/无感BLDC/有感FOC/无感FOC及步进电机、永磁同步、异步电机等控制系统。
菜鸟进阶必看 主流音频运放芯片分析

菜鸟进阶必看! 主流音频运放芯片分析运算放大器(简称“运放”)是运用得非常广泛的一种线性集成电路,而且种类繁多,在运用方面不但可对微弱信号进行放大,还可做为反相、电压跟随器,可对电信号做加减法运算,所以被称为运算放大器。
不但其他地方应用广泛,在音响方面也使用得最多。
例如前级放大、缓冲,耳机放大器除了有部分使用分立元件,电子管外,绝大部分使用的还是集成运算放大器。
而有时候还会用到稳压电路上,制作高精度的稳压滤波电路。
各种运放由于其内部结构的不同,产生的失真成分也不同,所以音色特点也有一定的区别。
本来我们追求的是高保真,运放应该是失真最低,能真实还原音乐,没有个性的最好。
但是由于要配合其他音响部件如数码音源、后级功放管等,如果偏干、偏冷则可搭配音色细腻温暖型的运放,而太过阴柔、偏软的则可搭配音色较冷艳、亮丽的运放,做到与整机配合,取长补短的最佳效果。
所以说,并不是选择越贵的运放得到的效果就一定越好,搭配很重要,达到听感上最好才算达到目的。
如果是应用在低电压的模拟滤波电路中,还要选择对低电压工作性能良好的运放种类。
市面上的运放种类不下五六百种,GBW带宽在5M以上的也有三百多种,最高的已达300MHZ,转换速率在5V/us以上的也不下几百种,最高达3000V/us。
低档运放JRC4558,这种运放是低档机器使用得最多的。
现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。
不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。
对于一些电脑有源音箱来说,它的应付能力还是绰绰有余的。
5532,如果有谁还没有听说过它名字的话,那就还未称得上是音响爱好者。
这个当年有运放皇之称的NE5532,与LM833、LF353、CA3240一起是老牌四大名运放,不过现在只有5532应用得最多。
个人总结——常见集成运放型号大全

常见集成运放型号大全LF351 BI-FET单运算放大器NSLF353 BI-FET双运算放大器NSLF356 BI-FET单运算放大器NSLF357 BI-FET单运算放大器NSCA3130高输入阻抗运算放大器IntersilCA3140 高输入阻抗运算放大器CD4573 四可编程运算放大器MC14573ICL7650斩波稳零放大器LF347(NS[DATA]) 带宽四运算放大器KA347LF398 采样保持放大器NS[DATA]LF411 BI-FET单运算放大器NS[DATA]LF412 BI-FET双运放大器NS[DATA]LM318 高速运算放大器NS[DATA]LM324四运算放大器NS[DATA]HA17324,/LM324(TI)LM348四运算放大器NLM358NS[DATA] 通用型双运算放大器HA17358/LM358P(TI)LM380 音频功率放大器NS[DATA]LM386-1 NS[DATA] 音频放大器NJM386D,UTC386LM386-3 音频放大器NS[DATA]LM386-4 音频放大器NS[DATA]LM3886 音频大功率放大器NS[DATA]LM3900 四运算放大器LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA]LM1458 双运算放大器NS[DATA]LM148 四运算放大器NS[DATA]LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA]LM2902 四运算放大器NS[DATA]/TI[DATA]LM2904 双运放大器NS[DATA]/TI[DATA]LM301 运算放大器NS[DATA]LM308 运算放大器NS[DATA]LM308H 运算放大器(金属封装)NS[DATA]LM725 高精度运算放大器NS[DATA]LM733 带宽运算放大器LM741 NS[DATA] 通用型运算放大器HA17741TBA820M 小功率音频放大器ST[DATA]TL061 BI-FET单运算放大器TI[DATA]TL062 BI-FET双运算放大器TI[DATA]TL064 BI-FET四运算放大器TI[DATA]TL072 BI-FET双运算放大器TI[DATA]TL074 BI-FET四运算放大器TI[DATA]TL081 BI-FET单运算放大器TI[DATA]TL082 BI-FET双运算放大器TI[DATA]TL084 BI-FET四运算放大器TI[DATA]MC34119 小功率音频放大器NE592 视频放大器OP07-CP精密运算放大器TI[DATA]OP07-DP 精密运算放大器TI[NE5532 高速低噪声双运算放大器TI 双运放NE5534 高速低噪声单运算放大器TI 单运放OPA602 高速高精度运放(无OPA2602)OPA604单OPA2604双低噪声运放OPA132单OPA2132双OPA4132四高速低噪运放OPA227 OPA2227 OPA4227 OPA228 OPA2228 OPA4228 高精度低噪声运放AD844:60MHz、2000V/us单芯片运算放大器高带宽、非常快速的大信号响应特性常用的压控放大器:AD603 VCA810 VCA820AD603:低噪声电压控制增益运放90MHz带宽VCA810:35MHz高增益可调节范围宽带压控放大器25mV/dB(-40dB~40dB)VCA820:150MHz增益可调运放(-20~+20dB)已经申得的样片:TLV5616- 12 位3us DAC 串行输入可编程设置时间/功耗,电压O/P 范围= 2x 基准电压TLV5616CDTLC2543- 12 位66kSPS ADC 串行输出,可编程MSB/LSB 优先,可编程断电/输出数据长度,11 通道TLC2543CDBOPA690- 具有禁用功能的宽带电压反馈运算放大器OPA690IDVCA810- 高增益可调节范围宽带压控放大器VCA810IDOPA2604- 双路FET 输入、低失真运算放大器OPA2604APTLC2543 - 12 位66kSPS ADC 串行输出,可编程MSB/LSB 优先,可编程断电/输出数据长度,11 通道TLC2543CNTLV5616 - 12 位3us DAC 串行输入可编程设置时间/功耗,电压O/P 范围= 2x 基准电压TLV5616CPVCA810 - 高增益可调节范围宽带压控放大器VCA810IDTLV5638 - 12 位、1 或3.5us DAC,具有串行输入、双路DAC、可编程内部参考和稳定时间、功耗TLV5638CDAD526精确程控放大器ADI公司,AD603,低噪声、90 MHz可变增益放大器.,ADI公司,AD605双通道、低噪声、单电源可变增益放大器,ADI公司,AD620低漂移、低功耗仪表放大器,增益设置范围1~10000 ADI公司, AD783,采样保持电路,ADI公司,AD811高性能视频运算放大器(电流反馈型宽带运放),ADI公司,AD818高速低噪声电压反馈型运放,ADI公司,AD8011 300 MHz、1 mA 电流反馈放大器,ADI公司,AD8056双路、低成本、300 MHz电压反馈型放大器ADI公司,AD8564,四路7 ns单电源高速比较器,ADI公司,AC524/AC525 5~500 MHz级联放大器,teledyne 公司,BUF634,250mA高速缓冲器,TI公司,/cnCA3140单运算直流放大器,Intersil Corporation,HFA1100 850MHz、低失真电流反馈放大器,Intersil Corporation,INA118精密低功耗仪表放大器,TI公司,/cnLF356 JFET输入运算放大器,National Semiconductor Corpora,LM311具有选通信号的差动比较器,National Semiconductor Corpora, LF356,JFET输入运算放大器,National Semiconductor Corpora,LM393电压比较器,National Semiconductor Corpora,LM7171高速电压反馈运算放大器,National Semiconductor Corpora, LM358/LM158/LM258/LM2904双运算放大器,National Semiconductor Corpora,LM2902,LM324/LM324A,LM224/ LM224A四运算放大器,National Semiconductor Corpora,LT1210 1.1A,35MHz电流反馈放大器,linear公司,/product/LT12 MAX4256,UCSP封装、单电源、低噪声、低失真、满摆幅运算放大器,Maxim公司,MAX912, MAX913单/双路、超高速、低功耗、精密的TTL比较器,Maxim公司,MAX477 ,300MHz、高速运算放大器,Maxim公司,MAX427/ MAX437低噪声、高精度运算放大器,Maxim公司MAX900高速、低功耗、电压比较器,Maxim公司NE5532双路低噪声高速音频运算放大器,TI公司,/cnNE5534低噪声高速音频运算放大器,TI公司,/cnOP27低噪声、精密运算放大器ADI公司,OP37低噪声、精密运算放大器ADI公司,OPA637,精密、高速、低漂移、高增益放大器,TI公司,/cn OPA637,精密、高速、低漂移高增益放大器,TI公司,/cn OPA642高速低噪声电压反馈型运放,TI公司,/cnOPA690,宽带50MHz、电压反馈运算放大器,TI公司,/cnOPA690 高速、电压反馈型运放(大于等于50MHz),TI公司,/cn PGA202KP,数字可编程仪表放大器,TI公司,/cnTHS3091单路高压低失真电流反馈运算放大器,TI公司,/cnTHS3092高压低失真电流反馈运算放大器,TI公司,/cnTL084,JFET 输入运算放大器,TI公司,/cnµA741标准线性放大器,TI公司,/cn。
Ch6半导体光电子器件

6Semiconductor Detectors6. Semiconductor DetectorsA large variety of semiconductor materials, structures and devices are used as photodetectors in optical receivers.The most important for communications are:pn p i n and Schottk Barrier Photodiodes•pn, p-i-n and Schottky Barrier Photodiodes•Avalanche Photodiodes•Metal-Semiconductor-Metal(MSM)PhotodiodesMetal Semiconductor Metal (MSM) Photodiodes•PhotoconductorsEqually important optical devices, but structurally completely q y p p,y p y different and not used for optical communications include:•Charge-Coupled Devices (CCDs)•CMOS Imagers•Photocathodes•Solar CellsSolar CellsOptical Absorption Optical AbsorptionOptical Absorption in Semiconductorsp p g gThe photon flux passing throughan absorbing medium isSince the carrier collectionregions are ≤1 µm, theabsorption coefficient needs tob101hi hi hbe ~104cm-1to achieve highefficiency, which only occurs fordirect bandgap materials neardi t b d t i lthe bandgap. Basically wantidentical thermal and photonidentical thermal and photonenergies for generation.Photocurrent-The Mechanism Optical absorption creates extra pairs of electrons and holesqin excess of the thermal equilibrium concentration. If this is in the depletion region, then under the built-in field, or adding to that with reverse bias, the carriers are swept out by the electric field to give a reverse current of one electron for every generated electron-hole pair. Because electrons and holes have opposite charge, they move in opposite directions and there is only one particle passing any given point, so there is current of only one electronic charge, not two.This drift of charge increases the nominal reverse current of the diode in the short circuit condition or pushes the diode into th di d i th h t i it diti h th di d i t forward bias if in the open circuit condition. The latter is the operating region for photovoltaic or solar cell operation. operating region for photovoltaic or solar cell operationOptical Responsivity andQuantum EfficiencyQuantum EfficiencyThe optical response of a photodetector is characterized byeither quantum efficiency η, or responsivity, RQuantum efficiency can be external,ηext or internal, ηint. External is theor internal External is thenumber of electrons of current perpincident photon.Internal is the number of electrons ofcurrent per absorbed photonResponsivity, R, is the photocurrent peri i i h hunit incident power (amps per watt)At 1.24µm, η = 100% corresponds to R = 1A/WPhotogeneration and Photocurrent in pn Diodesi Di dp-i-n PhotodiodepThe primary disadvantage of the pn homojunction is that with moderate doping concentrations in the conductingi h d d i i i h d i regions for low resistance, the resulting depletion regionis quite thin (e.g., 0.1-.2µm). This causes two problems:i it thi(012)Thi t bl1) low efficiency since relatively little absorption occurs in a thin depletion region (d ~ 2 ) andthin depletion region(d2α)and2) relatively high depletion capacitance, which decreases device speed (RC time constant).device speed(RC time constant)A general rule is that only carriers generated within the depletion region are efficiently and rapidly collected as photocurrent. The goal is to create a diode with a widep gdepletion regionPhotogeneration and Photocurrent in p-i-n Diodesi Di dSchottky PhotodiodeAnalogous to a p-n junction,only the built-in field is createdby surface Fermi level pinning.Photo generated electrons are Photo generated electrons areaccelerated toward to themetal-semiconductor junctionj by the built-in field and transferinto the metal, creating ahphotocurrent.Th l ilib i d l t t ti t t ti l Thermal equilibrium and electrostatics create a potential barrier, φbp for holes in p-type material or φbn for electrons in n type material With low doping analogous M i n or M i p material. With low doping, analogous M-i-n or M-i-pdiodes can be realized.Differences BetweenSchottky and pn DiodesS h k d Di dSchottky barriers behave straightforwardly as photodetectors Schottky barriers behave straightforwardly as photodetectors Photons absorbed in the depletion region near metal produce a p,j p jdrift photocurrent due to the surface field, just as in pn junction. However, the current is not controlled by recombination times and the diode cannot be used as a light emitter.No biasing configuration of a Schottky diode produces substantial N bi i fi i f S h k di d d b i l overlapping populations of electrons and holes in same place because there is no injection of carriers from the metal into the because there is no injection of carriers from the metal into the semiconductor, hence no minority carrier injection into the semiconductor.Any hole collection from the semiconductor into metal "recombines" very rapidly by non-radiative electron-electron scattering within the electron gas, hence no usable minority carrieri i hi h l h bl i i i density (holes) in metal.Diode Depletion Capacitancep pDiode capacitance determines the speed of response of optoelectronic devices e.g. RC time constantIt also determines the sensitivity of detectors since a smaller capacitance gives larger voltage swing for same number of photogenerated electronsThe diode depletion region is analogous to a dielectric, thusTh di d d l i i i l di l i hthe capacitance is viewed as a dielectric parallel plate capacitor with depletion region width w d, depletion capacitance capacitor with depletion region width depletion capacitance is, C j13, C j 1.15 x 10 F/cm 0.1fF/µm for w d 1 µm, and,for~1µm,and,ε~13,~1.15x10-82=0.1fF/µm2rFrequency Limitations Frequency LimitationsThe diode frequency response is limited by two factors: The diode frequency response is limited by two factors: 1) RC charging time, which for a 50 W load is ~100 GHz for a 50 µm diameter diode.GHz for a50µm diameter diode2) Transit time, t = w d/v sat which is ~ 10-11sec or 100 GHz for a 1 µm depletion width diode.GH f1d l i id h di dActual diode parameters are seldom the frequency limitation, but parasitics associated with bonding and interconnects. Integration with the amplifier is key to high frequency receiver performance.Avalanche PhotodiodesAt low voltages, the maximum quantum efficiency in a diodeis a current of one electron per absorbed photon (100%).However, with increasing reversebias voltage and at a higher electricfield, it becomes possible for anelectron (or hole) to be acceleratedelectron(or hole)to be acceleratedso that its kinetic energy exceedsg p gythe bandgap energy and it cancreate an additional electron-holepair through impact ionization--theinverse of Auger recombinationi f A bi i(both are 3 particle processes). Sucha process must exist from detaileda process must exist from detailedbalance in thermodynamics.() Avalanche Photodiodes (2)It is possible to collect more than one electron of photocurrent per absorbed photon with very high bias across the depletion per absorbed photon with very high bias across the depletion region--each photoelectron (hole) generates additional electrons (and holes) when the electron energy exceeds the electrons(and holes)when the electron energy exceeds the bandgap energy in an exponential growing process called avalanche gain or multiplication. avalanche"gain"or"multiplication"Impact ionization CoefficientsWe describe the impact ionization process through impact ionization coefficients (or rates), αn and αpp g pThese represent the strength of the processes for electrons and holes, respectively.1/αn will correspond to the average distance for which an will correspond to the average distance for which an electron is accelerated before it creates an electron-hole pair by impact ionization, and similarly for 1/p for holesb impact ioni ation and similarl for1/αfor holesp() Impact ionization Coefficients (2)αn and αp are proportional to exp (-C/E), where C is a constant for a particular material and carrier type, and E is the electric for a particular material and carrier type and E is the electric field. For electric fields ~ 3 x 105V/ cm, for example, theµdistance between ionization events is ~ 1 µm in GaAs, which means relatively thick avalanche regions arerequired to achieve evenmoderate avalanched t l hgains, e.g., ~3-4microns. This results inmicrons This results inquite high bias voltages,~ 100 V, not a desiredrange for CMOSsystems architecturesand slower deviced l d iresponse (~20 GHz).Multiplication Noise and Gain Bandwidth ProductImpact ionizationby a single carrier(electrons) G = 8in this case, andτt = w/ve-sat+ w/v h-satI t i i ti b Impact ionization by both electrons and holes1<G<but holes 1< G < ∞ but w/v e-sat< τt< ∞p p Avalanche photodiode problemsProblems -"excess noise" and non-uniform avalanche multiplication occur when both carriers can initiate impact ionization events occur when both carriers can initiate impact ionization events Three consequences1) We have much larger variability in the avalanche gain (literally anything from 1 to ∞), causing an additional source of variability in the resulting detected signal because the gain process is now a sum of (a) an average of M successive electron impact ionizations, plus of(a)an average of M successive electron impact ionizations plus (b) (an average of) M+1 electron impact ionizations and 1 hole impact ionization (the initial electron creates a hole that creates an electron that starts the process all over again), plus ... .l t th t t t th ll i)l2) Overall response is slowed down because electrons generate holes, which generate electrons, which generate holes, etc.,g,g,3) We can have a "run-away" process where the avalanche gain becomes infinite, with electrons impact ionizing to give holes that impact ionize to give electrons that impact ionize to give holes, and impact ionize to give electrons that impact ionize to give holes and so on.Solutions to Avalanche Photodiode ProblemsThese problems become worse as αn and αp, become closer to one another, which is unfortunately the case for most III-V materials. The ratio between αn and αp is large ONLY in silicon, but silicon does not absorb beyond 1.1µm. One solution is to make optical absorption and avalanche gain regions out of different materialsImpact-Ionization Impact-Ionization Engineered APDshotodiode Noise AvalancheMetal-semiconductor-metal (MSM) photodiodeForm two Schottky diodes close to one another on the same Form two Schottky diodes close to one another on the same (doped) semiconductor surface. Bias the resulting structure with some d.c.voltage and one of the diodes becomes reversegbiased, forming a depletion region that will tend to sweep out photocarriers. The other diode becomes forward biased, allowing the collected photocurrent to flow out just as if we had ll i h ll d h fl j if h d formed an Ohmic contactDesirable to keep theDesirable to keep thedistance between thetwo metal electrodessmall to achieve highspeed, which leads tothe choice of anth h i finterdigitated structureMetal-semiconductor-metal (MSM) photodiode (2)MSMs have several attractive featuresy p g yp q,• only one doping type semiconductor is required,• only one kind of semiconductor is required• fabrication of interdigitated MSM photodetectors is quite •fabrication of interdigitated MSM photodetectors is quite simple and compatible with integrated circuit processing, which allows processes with fine (e.g., 1µm wide) lines required for ll ith fi(1id)li i d f dense interdigitation and high speed• devices can also have very low capacitance for high speedCCD(charge coupled device) CCD (charge coupled device) Common form of photodetector arraysand readout method employed in mostand reado t method emplo ed in mostsmall camcorder TV cameras.Concept is reminiscent of theConcept is reminiscent of theSchottky photodiode, exceptthere is the additional presenceof the high-bandgap oxide as acurrent blocking insulator.Band edges for the CCD cell (a)Band edges for the CCD cell(a)with initial bias but no photoinjectedcharge, (b) with bias,after photogenerated electrons have moved in the depletion region towards the positive electrode, (c) the thermal equilibrium situation that would exist with bias after any excess charge densities had leaked awayg()Charge coupled device (2)Pockets of charge moved serially out of the structure by "bucketbrigade" method like the example three-phase clocking methodThis can be donewith 2-phaseith2hclocking if there isan asymmetry inan asymmetry inthe oxide thicknessunder the gatesCMOS image sensorsgAdvanced CMOS technology has led to an effort to utilize it directly for image sensors (Moore’s Law in action)directly for image sensors(Moore’s Law in action)If it can be done without modifying the CMOS process, it leads to low cost image sensors. These can also be combined withlow cost image sensors These can also be combined with silicon digital (and analog) electronic signal processingCMOS image sensors generally employ silicon photodiodes or CMOS image sensors generally employ silicon photodiodes or variants in which the charge is created directly in a polysilicon gtransistor gateThe photogenerated charge is read out by sequentially turningon switches to read out the charge or voltage on each photodetector in turn rather than by the "bucket brigade" analog shift register of the CCD.In general, less expensive, but lower resolution.PhotoconductorsA piece of semiconductor material with two Ohmic contacts, and a voltage is applied between them. The semiconductor is mostlt i li d b t th Th i d t i t likely doped and thus conducting, hence there is some current flowing even without light shining on the material(a dark current) flowing even without light shining on the material (a dark current) If we shine light on the material,electron-hole pairs will beelectron-hole pairs will begenerated and the carrierconcentration is increased inconcentration is increased inthe material, thus theyconductivity of the materialincreases, giving larger currentPhotoconductors (2)Photoconductors differ from the photodiodes in several important ways y1) Current is carried both by minority and majority carriers in the photoconductor2) Current continues flowing in the photoconductor until all the excess electrons and holes recombine, but the majority carriers do not recombine at the electrodes. For every electron in ndoped material that leaves the structure by passing into thecontact region, another electron is injected at the other contact to maintain charge neutralityMinority carriers (holes in this example) do recombine when they Mi it i(h l i thi l)d bi h th reach the electrode. Thus the time to turn off photoconduction is governed by either by minority carrier lifetime inside the material governed by either by minority carrier lifetime inside the material or transit time of the minority carriers to the electrodesg Photoconductive gainIf the majority carrier transit time is long compared to the effective minority carrier lifetime (transit or bulk, whichever is )y y y p shorter), then an electron may effectively make many passes through the material before recombining.,p yAs a result, it is possible to have many electrons of current flow through the structure for one absorbed photon, i.e., quantum efficiency greater than one, a phenomenon known asy g,pphotoconductive gainPhotoconductors (3)Less desirable features1) Can be relatively slow; unless they are made very small, transittimes can be longtimes can be long2) Use of photoconductive gain occurs also at the expense ofspeed s ce e jo y c e us s esse y g pc es speed since the majority carrier must transit essentially g timesthrough the structure for a photoconductive gain of g pc.3) Dark current can contribute significantly to noise and it isdifficult to detect a small photocurrent in the presence of a largerdark current.Can make a photoconductor fast by arranging for a very short Can make a photoconductor fast by arranging for a very short minority carrier lifetime in the material, but then, the responsivityy p gcan be low because only a corresponding fraction of an electron’sworth of current flows through the circuit.Very fast photoconductors can be made by “killing” the lifetimeand this is used to make very fast "switches" triggered by short(femtosec) laser pulses。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源共模 注意: 实际情况是,电路参数不可能完全对称,输出电 交流接地 压很小,Auc很低.温漂和干扰信号可看成共模信号,所 以Auc越小越好
双端输出的共模抑制比
由前面学习可以看到,差分放大电路能够放大差 模信号,抑制共模信号.通常用共模抑制比来表示对共 模信号的抑制能力,其值越大,抑制能力越强,定义为:
第六章 集成运算放大器
作业
• • • • 判断题: 1,5,8,10; 选择题:1~6,8,9; 分析计算题: 2,9,11,14; 补充题:计算图6.5.3三角波形门限电压,周 期。
运算放大器(operational amplifier)简称为运 放,是一种高增益直流放大器,最初因用在模拟计 算机中进行各种数学运算而得名,如果将整个运算 放大器制成在一个小硅片上,就成为集成运算放大 器(integrated operational amplifier),简称集成 运放,或运放 由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用(如电子技术、计算机技术、自动控制技术、 测量技术等)。可完成放大、振荡、调制、解调及 模拟信号的各种运算和脉冲信号的产生等。
回答: 输出与输入同相,没有负号
双端输出的共模电压放大倍数
交流通路:
电压放大倍数: 电源共模 交流接地
由于电路对称,其输出 电压uoc=uoc1=uic,有△ic1=△ic2, 因ui1=ui2 -uoc2=0,所以 △iE1=△iE2,所以△iE=2△iE1, △uRe=2△IERE,对每管而言,相 当于射极接上2Re的电阻
(5)共模抑制比CMRR: 共模抑制比是指集成运放开环运用时,差模电 压放大倍数与共模电压放大倍数之比。CMRR值越 大,抗共模干扰能力越强,一般集成运放的CMRR 都可达到80dB,高质量的集成运放可达l00dB以上。
CMMR 20 lg
其中:
V0 Avc Vic
A0 Avc
Vic Vi Vi 2
③电源保护 是为了防止正、负电 源接反,可用二极管 进行保护。
三. 集成运放的主要性能指标
1. 输入失调电压Uis: 对于理想集成运放,当输入电压为零时, 输出电压应该为零。但由于制造工艺等原因, 实际的集成运放在输入电压为零时,输出电压 常不为零。为了使输出电压为零,需在输入端 加一适当的直流补偿电压,这个输入电压叫做 输入失调电压Uis,其值等于输入电压为零时, 输出的电压折算到输入端的电压值。Uis一般为 毫伏级,它的大小反映了差动输入级的对称程 度,失调电压越大,集成运放的对称性越差。
运放的特点 • 集成运放是一种直接耦合的多级放大器,放 大倍数高达104以上,具有以下特性:
– 可放大交流信号,也可以放大直流信号 – 稳定的闭环增益 – 极少的外围元器件,耗电少 – 差动输入,有两个输入端,可有效抑制温度漂 移 – 具有优异的性能和低廉的价格,应用广泛。
差分放大电路
在集成电路中,由于不易制作大阻值的电阻和大容量的电容, 所以都采用直接耦合方式,但其静态工作点互相影响,会产生 零点漂移现象,为有效克服此现象,可采用:基本差分放大器
放大电路的差模电压放大倍数与 共模电压放大倍数之比的绝对值,即
用分贝数表示为:
例: Aud=-200, Auc=0.1 则 双输出的基本差分放 大电路,在理想情况下, 其KCMR可认为无穷大
KCMR=20lg(-200)/0.1=66dB
单端输出的共模电压放大倍数和共模抑制比
交流通路:
共模电压放大倍数:
其中:
RL’=RC//RL
当b 远大于1时,可简化为 共模输入电阻: 共模抑制比:集成运放 Nhomakorabea基本组成
集成运放的符号
习惯符号
国际标准符号
集成运放有两个输入端和 一个输出端。反相输入 端标“-”号,同相输入 端标“+”号。输出电压 与反相输入电压相位相 反,与同相输入电压相 位相同。此外还有两个 端分别接正、负电源, 有些集成运放还有调零 端和相位补偿端。在电 路中不画出。
差分放大电路是由对 称的两个基本放大电路, 通过射极公共电阻耦合构 成的。对称的含义是两个 三极管的特性一致,电路 参数对应相等。当ui1=ui2 时,v01=uc1-uc2=0;
静态分析:
静态时,ui1=ui2=0,由于 电路完全对称,有 UBE1=UBE2=UBE=0.7V
+ uo -
当b 远大于1时
运放还有很多其他指标:如转换速率 是指放大器在闭环状态下,输入放大信号 时,放大器输出电压对时间的最大变化速 率。运放的静态功耗是指没有输入信号时 的功耗,通常约为数十毫瓦,有些低耗运 放,静态功耗可低到0.1mW以下,这个指 标对于便携式或植入式医学仪器是很重要 的。运放的最大共模输入电压是指运放共 模抑制比明显恶化时的共模输入电压值, 通常约为几伏到十几伏。运放的电源电压, 一般从几伏到几十伏。
• 零点漂移可描述为:输入电压为零,输出电压偏离 零值的变化。它又被简称为:零漂 • 零点漂移是怎样形成的: 运算放大器均是采用直 接耦合的方式,直接耦合式放大电路的各级的Q点 是相互影响的,由于各级的放大作用,第一级的微 弱变化,会使输出级产生很大的变化。当输入短路 时(由于一些原因使输入级的Q点发生微弱变化 象: 温度),输出将随时间缓慢变化,这样就形成了零 点漂移。 • 产生零漂的原因是:晶体三极管的参数受温度的影 响。 • 解决零漂最有效的措施是:采用差动电路。
Vic为公模输入电压
• 在差动放大电路中,有两个输入端,当在这两个端 子上分别输入大小相等、相位相反的信号,放大器 能产生很大的放大倍数,把这种信号叫做差模信号, 这时的放大倍数叫做差模放大倍数。 • 如果在两个输入端分别输入大小相等,相位相同的 信号,(这实际是上一级由于温度变化而产生的信 号,是一种有害的东西),这种信号叫做共模信号, 这时的放大倍数叫做共模放大倍数。由于差动放大 电路的构成特点,电路对共模信号有很强的负反馈, 所以共模放大倍数很小。(一般都小于1)
Vo Ao (Vi Vi ) Ao Vi
其中Δ Vi=Vi+-Vi- 为运放的差模输入;由于运放的 输出电压只能在正负电源的电压之间,一般为 ±12V~ ±18V之间,所以,线性工作时,允许的差 模输入电压很小,只有毫伏级
(4)输入阻抗ri和输出阻抗ro: 输入阻抗ri是指运放开环运用时,从 两个输入端看进去的动态阻抗,它等于两 个输入端之间的电压Ui变化与其引起的输 入电流Ii的变化之比,即ri=∆Ui/∆Ii,ri越大 越好。双极型晶体管输入级的r i 值为10 4 10 6 Ω,单极型场效应管输入级r i 可达10 9 以上。输出阻抗ro是指运放开环运用时, 从输出端与地端看进去的动态阻抗。一般 在几百欧姆之内。
2. 输入失调电流Iis: 输入失调电流是指输入信号为零 时,两个输入端静态电流I + 与I - 之差, 一般为输入静态偏置电流的十分之一 左右。I is 是由差动输入级两个晶体管 的b值不一致所引起的。
3. 开环电压增益Ao: 开环电压增益是指集成运放在无外接 反馈电路时的差模电压放大倍数。也可用 Ao的常用对数表示。一般运放的电压增益 都很大,为60~100dB,高增益运放可达 140dB(即107)。 若运放工作于线性状态, 则有:
3.保护 ①输入端保护是当输入端所加的电压过高时 会损坏输入级的晶体管。在输入端处接入两 个反向并联的二极管,将输入电压限制在二 极管的正向压降以下;
②输出端保护是为了防止输出电压过大,可利用稳 压管来保护,将两个稳压管反向串联,将输出电压 限制在±(Uz+UD)的范围内,其中,Uz是稳压管的稳 定电压,UD是它的正向管压降;
– (1)共模信号及共模电压的放大倍数 Auc 共模信号---在差动放大管T1和 T2的基极接入幅度相等、极性相同的信号。共模信号的作用,对两管的作 用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此 两管集电极输出共模电压Uoc为零。因此差动电路对称时,对共模信号的 抑制能力强 – (2)差模信号及差模电压放大倍数 Aud 差模信号---在差动放大管T1和T2 的基极分别加入幅度相等而极性相反的信号。差模信号的作用,由于信号 的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者 的变化量的绝对值相等,由此我们可以看出差动电路的差模电压放大倍数 等于单管电压的放大倍数。 – 基本差动电路存在如下问题: 电路难于绝对对称,因此输出仍然存在零漂; 管子没有采取消除零漂的措施,有时会使电路失去放大能力;它要对地输 出,此时的零漂与单管放大电路一样。
UC1=UC2=VCC-ICRC
所以静态时, uid=0,
注意:两管基极电流为零
uo=0
零点漂移: 当放大电路输入端短路时,输出端仍有缓
慢变化的电压产生的现象
产生原因: 主要原因是温度的影响,所以有时也用温
度漂移来表示。直接耦合或电阻耦合使各 放大级的工作点互相影响,如果第一级产 生零漂,经多级放大后输出级将严重偏离 原工作点,这是构成直接耦合多级放大电 路时必须要加以解决的问题。
集成运算放大器的使用
1. 调零 实际运算放大器,当输入为零时输出并不为 零,采用调零技术可使输入为零时输出也为零。
2. 消振 集成运放是多级直接耦合的放大器, 因存在着分布电容等分布参数,信号在传输 过程中会产生相移。 信号频率变化时,相移也变化。当运 放闭环(输出端与输入端经过导线、元器件 相连)后,会在某些频率上产生自激振荡。 为了使放大器工作稳定,通常外接RC消振 电路或消振电容,用来破坏产生自激振荡的 条件。
• 差动放大电路 • 差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两 个管子的温度特性也完全对称。 它的工作原理是:当输入信号Ui=0时, 则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1UC2=0。温度上升时,两管电流均增加,则集电极电位均下降,由于它 们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电 压仍然为零。 • 它的放大作用(输入信号有两种类型)