专用集成运放及使用

合集下载

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运放的类型及应用

集成运放的类型及应用

集成运放的类型及应用集成运放(即集成式运算放大器)是一种高增益、高输入阻抗以及低输出阻抗的电子放大器,广泛应用于电路设计和信号处理等领域。

下面将详细介绍集成运放的类型及应用。

1. 类型:目前,常见的集成运放有多种类型,包括普通运放、仪表运放、高速运放、低功耗运放等。

普通运放:普通运放是最常见的一种集成运放,具有宽带宽、高增益、高输入阻抗和低输出阻抗的特点。

它的主要应用领域包括信号放大、滤波、理想运算放大器电路设计等。

仪表运放:仪表运放是一种精密运放,具有高共模抑制比、低偏置电流和低噪声的特点。

它的主要应用领域包括电压、电流、温度等测量,以及精密仪器和设备的信号放大等。

高速运放:高速运放是一种具有高增益带宽积(GBW)和快速响应特性的运放,适用于高频信号处理和快速信号放大等应用。

它的主要应用领域包括通信系统、高速数据传输、高速采样和测量等。

低功耗运放:低功耗运放是针对低电源电压和低功耗要求而设计的集成运放。

它可以在低电源电压下正常工作,并具有低静态功耗和低失调电压的特点。

它的主要应用领域包括移动设备、便携式仪器和电池供电系统等。

2. 应用:集成运放作为一种重要的电子器件,在电路设计和信号处理等领域应用广泛。

下面列举一些常见的应用示例:信号放大:集成运放最常见的应用就是信号放大。

通过调整运放的增益,可以将微弱的传感器信号放大到适合后续处理的范围,如压力传感器、温度传感器等。

滤波器:集成运放可以被用来设计各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

滤波器的设计可以通过选择运放的反馈电阻和电容来实现。

运算放大器电路设计:运算放大器电路是运放最重要的应用之一。

基于运算放大器的电路可以实现加法、减法、乘法、除法、积分、微分等运算,并被广泛应用于模拟电路设计、自动控制系统等领域。

电压和电流测量:仪表运放常用于电压和电流测量。

通过仪表运放的高共模抑制比和低偏置电流特性,可以实现高精度和高稳定性的电压和电流测量。

集成运放的应用

集成运放的应用

自动控制系统中的集成运放应用
模拟计算
集成运放可以用于实现各种模拟计算, 如加减乘除、积分、微分等,以实现控 制系统中的信号处理和运算。
VS
比较器和触发器
集成运放还可以用作比较器和触发器,用 于检测信号的阈值和状态变化,触发相应 的控制动作。
医学仪器中的集成运放应用
生理信号监测
集成运放在医学仪器中广泛应用于生理信号 的监测,如心电图、脑电图、血压等,用于 诊断疾病或研究生理机制。
医学成像
集成运放也可以用于医学成像设备中,如超 声波、核磁共振等,以实现信号的放大和处 理,提高成像质量。
05
集成运放的未来发展与应用 趋势
高性能集成运放的研发
高精度集成运放
随着电子测量技术的发展,对高精度放大器 的需求日益增长。高性能集成运放能够提供 高精度、低噪声、低失真的放大信号,广泛 应用于科学实验、医疗仪器、通信设备等领 域。
02
集成运放的基本应用
放大电路
放大电路
集成运放作为放大器使用时,可 以实现对微弱信号的放大,广泛 应用于信号处理、音频放大、传 感器输出等领域。
放大倍数
通过改变反馈电阻的阻值,可以 调整放大倍数,实现不同需求的 信号放大。
输入输出阻抗
集成运放在放大电路中具有较高 的输入阻抗和较低的输出阻抗, 有利于信号的传输和隔离。
03
集成运放的特殊应用
模拟运算的应用
01
模拟运算放大器在模拟运算中发挥着重要作用现各种运算功能,广泛 应用于信号处理、控制系统等领域。
03
集成运放具有高精度、低噪声、低失真等特点,能 够提高运算精度和稳定性。
有源滤波器的应用
1
有源滤波器是集成运放的重要应用之一,用于实 现各种滤波功能,如低通、高通、带通、带阻等。

电工与电子技术第三章 集成运算放大器及其应用

电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2

第2章 集成运放及其基本应用

第2章   集成运放及其基本应用

集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
RL
RE2
RC4
T9
R2
第2级:差动放大器
第3级:单管放大器
Hale Waihona Puke -UEE集成运算放大器符号
国内符号:
反相输入端 u- 同相输入端 u+
- + +
输出端 uo
同相输入端: 该端输入信号变化的极性与输出端相同
反相输入端: 该端输入信号变化的极性与输出端相反
美国符号:
u- u+


uo
运 算 放 大 器 外 形 图
集成电路运算放大器
集成运算放大器是一种高电压增益,高输入 电阻和低输出电阻的多级直接耦合放大电路。
运算放大器方框图
1.输入级 使用高性能的差分放大电路,它必 须对共模信号有很强的抑制力,而且采用双端输 入双端输出的形式。
2.电压放大级 要提供高的电压增益,以保证 运放的运算精度。中间级的电路形式多为差分电 路和带有源负载的高增益放大器。 3.输出级 由PNP和NPN两种极性的三极 管或复合管组成,以获得正负两个极性的输出电 压或电流。具体电路参阅功率放大器。
4.偏置电路 提供稳定的几乎不随温度而变化 的偏置电流,以稳定工作点。 另举例说明集成运放内部结构
集成运放内部结构(举例)
极 性 判 RC1 断 RC2

集成运算放大器及应用—集成运算放大器(电子技术课件)

集成运算放大器及应用—集成运算放大器(电子技术课件)

(a)新国标符号
(b)以往用过的符号
图3.1.2 集成运放的符号
4.集成运放实物 (1)封装形式、引脚排列
金属壳封装
双列直插式 塑料封装
图3.1.3 集成运放封装与引脚图
图3.1.4 LM324引脚图
(2)运算放大器外形图
图3.1.5 集成运放实物图
三、理想集成运放的主要参数 1.理想集成运放
4.共模抑制比 KCMR 反映了集成运放对共模信号的抑制能力。
5.输入失调电压、电流 U IO 0 I IO 0 它是指集成运放输出电压为零时,两个输入端所加补偿电压的大小、两个输
入端的静态电流之差均为零。 6.上限截止频率 f H
反映集成运放的频率特性。
集成运放的线性应用(一)
3.2.1 集成运放的线性应用(一)
差模信号是指 ui1 = – ui2,即两个输入信号大小相同,极性相反。 共模信号是指 ui1 = ui2 ,即两个输入信号大小相同,极性相同。
2.输入电阻 rid
它是指集成运放在开环状态下,输入差模信号时两输入端之间的动态电阻, 反映差模输入时,集成运放向信号源索取电流的大小。
3.输出电阻 ro 0
二、集成运放的组成及符号 1.集成运放的组成框图
uid +
输入级
中间电压 放大级
输出级 uo
偏置电路
图3.1.1 集成运放的组成框图
2.各组成部分的特点
采用差分放大电路。要求输入电阻 高,输入端耐压高,抑制温度漂移 能力强,静态电流小。
采用共发射极放大 电路。要求有足够 的放大能力。
采用互补对称输出电 路。要求输出电压范 围宽,输出电阻小, 非线性失真小。
一、线性区的集成运放

集成运放及其基本运用

集成运放及其基本运用
发展
随着半导体工艺的进步,集成运放性能不断提高,同时出现 了许多新型集成运放,如CMOS集成运放、BiCMOS集成运 放、开关电容集成运放等,进一步拓展了应用领域。
集成运放的应用领域
信号放大
滤波器
集成运放可用于信号的放大,实现信号的 线性放大和非线性变换。
集成运放可以构成各种滤波器,如低通滤 波器、高通滤波器、带通滤波器等,用于 信号处理和噪声抑制。
解决方法
采用负反馈技术,优化电路元件匹配, 以及在必要时加入补偿电容或电感。
PART 06
集成运放的应用实例
REPORTING
WENKU DESIGN
音频信号处理应用
音频信号放大
集成运放可以用于放大音 频信号,提高声音质量。
音频均衡器
通过调整不同频段的增益 和相位,实现音频信号的 均衡处理。
音频滤波器
集成运放及其基本运 用
https://
REPORTING
• 集成运放概述 • 集成运放的基本原理 • 集成运放的分类与选择 • 集成运放的基本运用 • 集成运放的常见问题与解决方案 • 集成运放的应用实例
目录
PART 01
集成运放概述
REPORTING
WENKU DESIGN
波、方波、三角波等。
通过RC电路或LC电路等振荡 器结构,结合运放的线性区 和饱和区特性,可以产生不 同频率和幅度的波形信号。
信号发生器在测试测量、通信 和自动控制等领域有广泛应用。
PART 05
集成运放的常见问题与解 决方案
REPORTING
ห้องสมุดไป่ตู้
WENKU DESIGN
噪声问题
噪声来源
集成运放的噪声主要来源于内部 元件的热噪声和外部环境的电磁 干扰。

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)
集成运放的内部结构。无论是输入信号的正向电压或负向电压超过二极管导通电压, 则V1或V2中就会有一个导通,从而限制了输入信号的幅度,起到了保护作用。
(a)反相输入
(b)同相输入
图3.3.9 输入保护电路
(3)输出保护 利用稳压管V1和V2接成反向串联电路。若输出端出现过高电压,集成运放输
出端电压将受到稳压管稳压值的限制,从而避免了损坏。
由于大部分集成运放内部电路的改进,已不需要外加补偿网络。
3.保护电路 (1)电源极性的保护 利用二极管的单向导电特性防止由于电源极性接反而造成的损坏。当
电源极性错接成上负下正时,两二极管均不导通,等于电源断路,从而起 到保护作用。
图3.3.8 电源极性保护电路
(2)输入保护 利用二极管的限幅作用对输入信号幅度加以限制,以免输入信号超过额定值损坏
由图可见,他们之间存在差值称为回差电 压或迟滞宽度u,用 表示,即:
图3.3.7 滞回电压比较器的传输特性
u Uth1 Uth2
三、集成运放使用常识 1.零点调整 方法:将输入端短路接地,调整调零电位器,使输出电压为零。 2.消除自激振荡 方法:加阻容补偿网络。具体参数和接法可查阅使用说明书。目前,
滞回比较器具有两个不同的阈值,且相差较大(通常称我电压 滞回特性),即惯性,因而也就具有一定的抗干扰能力。
(1)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相
输入端的电位为:
u
R1 R1 R2
F
Uth1
(2)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相输入端
的电位为:
u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 单电源型
在正、负两电源下工作的运算放大器为普通的运 算放大器,而只用单电源工作的运算放大器为单电源 型,通常它自0V起也能放大信号。
1.2 集成运放的选择及使用
1.运放的选择
当采用集成运放设计电子电路时,应该首先理 解设计说明书和产品说明书介绍的运算放大器的参 数的含义,了解其参数是否满足电路的要求,然后 对电路作必要的修改,找出所选运放的外部接线图 进行连接。若有相同类型的集成运放,应选择失调 电压小、调零效果好、补偿电容小、输出幅度合适 又不产生失真的运放,同时还要考虑信号源的性质 、负载的性质、环境条件影响等其他因素。
2.运放使用注意事项
(1)运放的调零
调零的作用是实现运放零输入-零输出的要 求,运放调零有两种方法,一种是通过运放本身 的调零端子外加调零电位器调零;另一种是通过 给运放的输入端加偏移电压调零。
(2)自激的消除
自激振荡是运放工作时产生的一种现象,如 果电路出现自激现象,应该判断是哪种原因造成 的,尽量增加地线的面积,在运放供电脚附近, 一般是在附近增加高频退耦电容,采用高频屏蔽 等方法消除自激,减小干扰。
3.高速型
高速型运放是指输出端能对输入端信号的变化做 出快速反应,一般通过转换速率来描述其性能,
4.低功耗型
通常运算放大器的静态功耗在50mW以上。如果在 电源电压±15V时,最大功耗低于6mW;或是工作在 低电源电压(如1.5~4V)时,具有较低的静态功耗并 能保持良好的电气性能,这类运放为低功耗型运放。
5.高压型
普通运放的工作电压为V,而工作电压在V以上的 运算放大器为高电压型,这种运放的动态范围较宽。
6.低输入偏流型
运算放大器的输入偏流为零时是理想情况。
7.可编程序型
对这种类型的运算放大器,通过调整控制端电流 Iset,使输入电压、输入偏置电流和静态功耗等参数达 到给定的值。如LM4250等。
(2)将集成运放接成电压跟随器形式,如图所示,
将万用表置于直流电压档。当电位器RP滑动点至UCC时, 输出电压为最大值,接近于UCC,再将RP滑动点至地端, 输出电压为最小值,接近于零,表明运放性能良好,否
则说明运放已经损坏。
模拟 电子 技术 基础
(3)运放的保护
运放在实验、调试中容易出现电源极性接反、电源 电压过高或输出端短路等现象,将造成运放的损坏。因 此在使用运放时。可以加一保护电路,如图所示。
3.运放的简单测试
在维修工作中,可以使用万用表或者集成运放 参数测试仪对集成运放进行简单的测试,以确定质 量的好坏。方法如下:
(1)用万用表的电阻档测量集成运放各引脚对 负电源端及对正电源端的正、反向电阻,将测得的 阻值与同型号的质量良好的运放进行比较,若比较 接近,则说明运放正常;若阻值差别很大,则说明 运放损坏。使用万用表时候注意量程。
模拟 专用集成运放简介 1.2 集成运放的选择及使用
1.1 专用集成运放简介
1.低输入失调电压型 无信号时,运算放大器正、负输入端之间产
生的电压称为失调电压,在理想状态下应为零。 2.高精度、低漂移型
这种类型的运放,在电路结构上除采用低噪 声差分输入级外,还采用热匹配设计和低温度系 数的精密电阻,或者在电路加入自动控温系统电 路以减小温度漂移。
相关文档
最新文档