人教版九年级下册数学《第28章锐角三角函数》单元测试题含答案

合集下载

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

《锐角三角函数》单元练习题一.选择题1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.3.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米4.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m5.如图,P是∠α的边OA上一点,且点P的横坐标为3,sinα=,则tanα=()A.B.C.D.6.如图,网格中小正方形的边长都为1,点A,B,C在正方形的顶点处,则cos∠ACB的值为()A.B.C.D.7.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m8.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD 的值为()A.B.C.D.9.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米10.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.1811.已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A.18米B.4.5米C.米D.米.12.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm二.填空题13.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,若3a=4b,则sin B的值是.14.已知∠A是锐角,且cos A=,则tan A=.15.如图,在点A处测得点B处的仰角是.(用“∠1,∠2,∠3或∠4”表示)16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为米(结果保留根号).18.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.三.解答题19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.20.如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)21.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.22.如图,已知:R t△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A 作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠F AE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据:≈1.73)24.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)25.被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:项目内容课题测量郑州会展宾馆的高度的仰角是α,前进一段距离到达C点用测倾器CF测得楼β,且点A、B、C、D、E、F均在同一竖直平测量数据∠α的度数∠β的度数EC的长度,40°45°53米……请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)参考答案一.选择题1.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.2.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.3.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.4.【解答】解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.5.【解答】解:如图,由sinα==可设PQ=4a,OP=5a,∵OQ=3,∴由OQ2+PQ2=OP2可得32+(4a)2=(5a)2,解得:a=1(负值舍去),∴PQ=4,OP=5,则tanα==,故选:C.6.【解答】解:如右图所示,∵网格中小正方形的边长都为1,∴CE==2,AC==,AE=3,CD=4,作AH⊥CE于点H,∵,∴,解得,AH=,∵AC=,AH=,∠AHC=90°,∴CH==,∴cos∠ACH=,即cos∠ACB=,故选:D.7.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.8.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.9.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.10.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.11.【解答】解:如图:由题意得:斜坡AB的坡度:i=1:2,AE=9米,AE⊥BD,∵i==,∴BE=18米,∴在Rt△ABE中,AB==9(米).故选:D.12.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.二.填空题(共6小题)13.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,令b=3x,则a=4x,由勾股定理可得c=5x,所以sin B===,故答案为:.14.【解答】解:∵∠A为锐角,且cos A=,以∠A为锐角作直角三角形△ABC,∠C=90°.∴cos A==.设AC=5k,则AB=13k.根据勾股定理可得:BC=12k.∴tan A==.故答案为:.15.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.16.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.【解答】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°﹣60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB﹣GB=50﹣20=30米,∴EG=AG•tan30°=30×=10米,在Rt△AHP中,AH=HF•t an45°=10米,∴FD=HB=AB﹣AH=50﹣10(米).答:2号楼的高度为(50﹣10)米.故答案为:(50﹣10).18.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.三.解答题(共7小题)19.【解答】解:原式=2×+4××﹣6×()2=1+2﹣3=0.20.【解答】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC==,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC=PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.21.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.22.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.23.【解答】解:延长BD交AE于点G,作DH⊥AE于H,设BC=xm,由题意得,∠DGA=∠DAG=30°,∴DG=AD=6,∴DH=3,GH==3,∴GA=6,在Rt△BGC中,tan∠BGC=,∴CG==x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x,由题意得,x﹣x=6,解得,x=≈14,答:大树的高度约为14m.24.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.25.【解答】解:由题意可得:设BN=FN=x,则tan40°==≈0.84,解得:x=278.25,故AB=278.25+1.5≈280(m),答:郑州会展宾馆的高度为280m.。

人教版九年级数学下册单元测试卷:第28章 锐角三角函数 含答案

人教版九年级数学下册单元测试卷:第28章 锐角三角函数   含答案

人教版九年级数学下册单元测试卷:第28章 锐角三角函数 含答案一、填空题(每小题3分,共48分)1.在△ABC 中,AB =10,AC =6,BC =8,则cos A 的值为________. 2.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时. 3.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =1,过点C 作CD 1⊥AB 于D 1,过点D 1作D 1D 2⊥BC 于D 2,过点D 2作D 2D 3⊥AB 于D 3,则D 2D 3=________,这样继续作下去,线段D n D n +1=____________.4. 如图,已知一条东西走向的河流,在河流对岸有一点A ,小明在岸边点B 处测得点A 在点B 的北偏东30°方向上,小明沿河岸向东走80m 后到达点C ,测得点A 在点C 的北偏西60°方向上,则点A 到河岸BC 的距离为________米.二、选择题(每小题3分,共48分)5.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .csinA =aB .bcosB =cC .atanA =bD .ctanB =b 6.已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.347.如图,,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A ,B 两地之间的距离为( )A .800sin α米B .800tan α米 C. 800sin α米 D. 800cos α米8.如果把一个锐角△ABC 的三边的长都扩大为原来的3倍,那么锐角A 的正弦值( ) A .扩大为原来的3倍 B .缩小为原来的13 C .没有变化 D .不能确定9.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )第7题图 第12题图A.35B.45C.34 D .5410.已知0°<α<90°,且2sin(α-10°)=3,则α等于( ) A .50° B .60° C .70° D .80°11.如图,在湖边高出水面50 m 的山顶A 处看见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志P 处的仰角为45°,又观察到其在湖中的像P ′的俯角为60°,则飞艇距离湖面的高度为( )A .(25 +75)mB .(50 +50)mC .(75 +75)mD .(50 +100)m 12.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC的值为( )A.35B.34C.105D .1 13.如图,在△ABC 中,cosB =,sinC =,AC =5,则△ABC 的面积是( ) A. 13 B .12 C .14 D .21 14.如图,在△ABC 中,∠C =90°,AB =12,tan B =33.以点A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则△ACD 的周长为( ) A .12 B .12 3 C .6+6 3 D .6+9 3 15.在△ABC 中,若tan A =1,sin B =,你认为最确切的判断是( )A . △ABC 是等腰三角形B . △ABC 是等腰直角三角形 C . △ABC 是直角三角形D . △ABC 是一般锐角三角形16.如图,小明为测量一条河流的宽度,他在河岸边相距80 m 的P 和Q 两点分别测定对岸一棵树R 的位置,R 在Q 的正南方向,在P 东偏南36°的方向,则河宽( ) A . 80tan 36° B . 80tan 54° C .D . 80tan 54°17.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:①sin A =;②cos B =0.5;③tan A=;④tan B =,其中正确的有( )A . ①②③B . ①②④C . ①③④D . ②③④ 18.在△ABC 中,∠A ,∠B 都是锐角,且cos A =,sin B =0.5,则△ABC 是( )A . 直角三角形B . 钝角三角形C . 锐角三角形D . 不能确定19.如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sin B =45,那么tan ∠CDE的值为( )A.12B.33C.22D.2-1 20.如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =k x 的图象恰好经过斜边A ′B的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( ) A .3 B .4 C .6 D .8三、解答题(本大题有7个小题,共68分.) 21.(8分)计算:(1)3tan30°+cos 245°-2sin60°; (2)sin60°-1tan60°-2tan45°-3cos30°+2sin45°.22.(9分)根据下列条件解直角三角形:(1)在Rt △ABC 中,∠C =90°,c =83,∠A =60°; (2)在Rt △ABC 中,∠C =90°,a =36,b =9 2.23.(9分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度(结果精确到0.1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,3≈1.7).24.(9分)已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0. (1)试判断△ABC 的形状;(2)求(1+sin A )2-2cos B -(3+tan C )0的值.25.(10分)如图,△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为点E .(1)求线段CD 的长; (2)求cos ∠ABE 的值.26.(11分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK =80°),身体前倾成125°,脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?27.(12分)如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC航行去营救船C,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?参考答案1.352.40+40333.338 ⎝⎛⎭⎫32n +1 解析:在△ABC 中,∠ACB =90°,∠B =30°,则CD 1=32;进而在△CD 1D 2中,有D 1D 2=32CD 1=⎝⎛⎭⎫322,同理可得D 2D 3=⎝⎛⎭⎫323=338,…,则线段D n D n +1=⎝⎛⎭⎫32n +1.4.205.A 6.A 7. D 8.C 9.B 10.C 11.D 12.B 13. A 14.C 15.B 16.A 17.D 18.A19.A 解析:在△ABE 中,AE ⊥BC ,AB =5,sin B =45,∴AE =4,∴BE =AB 2-AE 2=3,∴EC =BC -BE =8-3=5.∵四边形ABCD 是平行四边形,∴CD =AB =5,∴△CED为等腰三角形,∴∠CDE =∠CED .∵AD ∥BC ,∴∠EAD =∠AEB =90°,∠ADE =∠CED ,∴∠CDE =∠ADE .在Rt △ADE 中,∵AE =4,AD =BC =8,∴tan ∠CDE =tan ∠ADE =48=12.20.C 解析:设点C 的坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D .∵tan ∠BAO =2,∴BO AO =2.∵S △ABO =12·AO ·BO =4,∴AO =2,BO =4.由旋转得A ′O ′=AO =2,BO ′=BO =4.∵点C 为斜边A ′B 的中点,CD ⊥BO ′,∴CD =12A ′O ′=1,BD =12BO ′=2,∴y =BO -CD =4-1=3,x =BD =2,∴k =xy =2×3=6.21.解:(1)原式=3×33+⎝⎛⎭⎫222-2×32=12.(4分)(2)原式=32-13-2×1-3×32+2×22=0.(8分)22.解:(1)∠B =30°,a =12,b =4 3.(4分)(2)∠A =30°,∠B =60°,c =6 6.(9分)23.解:如图,作CD ⊥AB 交AB 的延长线于D .(1分)设CD =x 米.在Rt △ADC 中,∠DAC =25°,∴tan25°=CD AD ,∴AD =CD tan25°≈x0.5=2x 米.(4分)在Rt △BDC 中,∠DBC =60°,由tan60°=x 2x -4=3,解得x =4323-1≈2.8.(8分)答:生命迹象所在位置C 的深度约为2.8米.(9分)24.解:(1)∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0,∴tan A =1,sin B =32,(2分)∴∠A =45°,∠B=60°,∴∠C =180°-45°-60°=75°,∴△ABC 是锐角三角形.(5分)(2)∵∠A =45°,∠B =60°,∠C =75°,∴原式=⎝⎛⎭⎫1+222-212-1=12.(9分) 25.解:(1)在△ABC 中,∵∠ACB =90°,sin A =BC AB =45,而BC =8,∴AB =10.(2分)∵D 是AB 的中点,∴CD =12AB =5.(4分)(2)在Rt △ABC 中,∵AB =10,BC =8,∴AC =AB 2-BC 2=6.(5分)∵D 是AB 中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.(8分)在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425,即cos ∠ABE 的值为2425.(10分)26.解:(1)如图,过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166cm,FG=100cm,∴EF=66cm.∵∠FGK=80°,∴∠GFN=10,FN=100·sin80°≈98(cm).(2分)∵∠EFG=125°,∴∠EFM=180°-125°-10°=45°,∴FM=66·cos45°=332≈46.53(cm),∴MN=FN+FM≈144.5cm,∴此时小强头部E点与地面DK相距约为144.5cm.(5分)(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48cm,O为AB的中点,∴AO =BO=24cm.∵EM=66·sin45°≈46.53(cm),∴PH≈46.53cm.(7分)∵GN=100·cos80°≈17(cm),CG=15cm,∴OH≈24+15+17=56(cm),OP=OH-PH≈56-46.53=9.47≈9.5(cm),∴他应向前9.5cm.(11分)27.解:(1)如图,作CE⊥AB于E.设AE=x海里,在Rt△AEC中,∠CAE=60°,∴CE=AE·tan60°=3x海里,AC=AEcos60°=2x海里.(2分)在Rt△BCE中,∠CBE=45°,∴BE=CE=3x海里.∵AB=AE+BE=100(3+1)海里,∴x+3x=100(3+1),解得x=100.∴AC=200海里.(4分)在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于F.设AF=y海里,则AD=2y海里,DF=CF=3y海里.(6分)∵AC=AF +CF=200海里,∴y+3y=200,解得y=100(3-1),∴AD=2y=200(3-1)海里.(8分)答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(3-1)海里.(9分)(2)由(1)可知DF=3AF=3×100(3-1)≈127(海里).(11分)∵127海里>100海里,∴巡逻船A沿直线AC航行去营救船C,在去营救的途中没有触暗礁危险.(12分)人教版九年级数学下册第二十八章 锐角三角函数 单元测试题(含答案)一、选择题(本大题共7小题,每小题4分,共28分)1.如图1,在Rt △ABC 中,∠C =90°,BC =1,tan A =12,则下列判断正确的是( )A .∠A =30°B .AC =12C .AB =2D .AC =22.在△ABC 中,∠A ,∠C 都是锐角,且sin A =32,tan C =3,则△ABC 的形状是( )图1A .直角三角形B .钝角三角形C .等边三角形D .不能确定3.如图2,直线y =34x +3与x 轴,y 轴分别交于A ,B 两点,则cos ∠BAO 的值是( )图2A.45B.35C.43D.544.如图3,一河坝的横断面为梯形ABCD ,AD ∥BC ,AB =CD ,坝顶BC 宽10米,坝高BE 为12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )图3A .26米B .28米C .30米D .46米5.如图4,某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/时的速度沿北偏西60°方向航行23小时到达B 处,那么tan∠ABP 的值为( )图4A.12B .2 C.55D.2 556.如图5,在Rt △ABC 中,∠B =90°,∠A =30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A ,D 为圆心,AB 长为半径画弧,两弧在AB 的下方交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )图5A.312B.36C.33D.327.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔是本市现存最古老的建筑.如图6,测绘师在离铁塔10米的点C 处测得塔顶A 的仰角为α,他又在离铁塔25米的点D 处测得塔顶A 的仰角为β.若tan αtan β=1,点D ,C ,B 在同一条直线上,则测绘师测得铁塔的高度约为(参考数据:10≈3.162)( )图6A .15.81米B .16.81米C .30.62米D .31.62米二、填空题(本大题共7小题,每小题4分,共28分) 8.计算:cos30°+3sin30°=________. 9.若α为锐角,且tan(α+20°)=33,则α=_____________. 10.如图7所示的网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是________.图711.如图8,一山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200米到达点B ,则小辰上升了________米.图812.如图9,菱形ABCD 的周长为20 cm ,且tan ∠ABD =43,则菱形ABCD 的面积为________cm 2.图913.如图10所示,在△ABC 中,AB =AC ,∠A =45°,AC 的垂直平分线与AB ,AC 分别交于点D ,E ,连接CD .如果AD =1,那么tan ∠BCD =________.图1014.如图11所示,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos E =________.图11三、解答题(本大题共4小题,共44分)15.(8分)计算:|-3|+3tan30°-12-(2020-π)0.16.(10分)如图12,在▱ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE的值.图1217.(12分)如图13,为了测出旗杆AB的高度,在旗杆前的平地上选择一点C,测得旗杆顶部A的仰角为45°,在C,B之间选择一点D(C,D,B三点共线),测得旗杆顶部A的仰角为75°,且CD=8 m.(1)求点D到CA的距离;(2)求旗杆AB的高.图1318.(14分)如图14,皋兰山某处有一座信号塔AB,山坡BC的坡度为1∶3,现为了测量塔高AB,测量人员选择山坡C处为一测量点,测得∠DCA=45°,然后他沿着山坡向上行走100 m到达点E处,再测得∠FEA=60°.(1)求山坡BC的坡角∠BCD的度数;(2)求塔顶A到CD的铅直高度AD(结果保留整数,参考数据:3≈1.73,2≈1.41).图14答案1.D2.C3.A4.D5.A6.B7.A[8.[答案] 39.[答案] 10°10.[答案] 1 211.[答案] 100 12.[答案] 24 13.[答案] 2-114.[答案] 1 215.解:原式=3+3×33-2 3-1=3-2 3.16.解:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,DC∥AB,∴∠DEA=∠EAB.∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE=10,∴BC=10.∵62+82=102,即CE2+BE2=BC2,∴∠BEC=90°.(2)∵四边形ABCD是平行四边形,∴AB=DC=CE+DE=16.∵AB∥CD,∴∠ABE =∠BEC =90°,∴AE =AB 2+BE 2=162+82=8 5, ∴cos ∠DAE =cos ∠EAB =AB AE =168 5=2 55.17.解:(1)如图,过点D 作DE ⊥AC 于点E ,则DE =CD ·sin45°=8×22=4 2(m).答:点D 到CA 的距离为4 2 m.(2)∵∠ADB =75°,∠C =45°, ∴∠CAD =∠ADB -∠C =30°.在Rt △ADE 中,AE =DE tan ∠CAD =4 2÷33=4 6(m).∵∠C =45°,∠CED =90°, ∴△CDE 是等腰直角三角形, ∴CE =DE =4 2 m ,∴AC =AE +CE =(4 6+4 2)m ,∴AB =AC ·sin C =(4 6+4 2)×22=(4 3+4)m.答:旗杆AB 的高为(4 3+4)m. 18.解:(1)依题意,得tan ∠BCD =13=33,∴∠BCD =30°.(2)如图,过点E 作EG ⊥CD 于点G . ∵∠DCA =45°,∠BCD =30°, ∴∠ACE =15°,∠DAC =45°. ∵∠AEF =60°, ∴∠EAF =30°. ∵∠DAC =45°,∴∠EAC=∠DAC-∠EAF=15°,∴∠ACE=∠EAC,∴AE=CE=100 m.在Rt△AEF中,∠AEF=60°,∴AF=AE·sin60°=50 3 m.在Rt△CEG中,CE=100 m,∠ECG=30°,∴EG=CE·sin30°=50 m,∴AD=AF+FD=AF+EG=50 3+50≈137(m).答:塔顶A到CD的铅直高度AD约为137 m.人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案)一、选择题1.△ABC中,若AB=6,BC=8,∠B=120°,则△ABC的面积为()A.12B.12C.24D.482.如图,将一面三角形的小旗放在边长都为1的小正方形方格中(三角形的各顶点均在小正方形的顶点上),则cos A的值为()A.B.C.D.3.如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行2 km 到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则观测站O距港口A的距离(即OA的长)为()A.kmB.2 kmC.2kmD.4km4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A.3米B.6米C.3米D.2米6.计算:tan 45°-cos 60°等于()A.B.C.1D.7.在△ABC中,若|sin A|+2=0,∠A,∠B都是锐角,则∠C的度数是() A.75°B.90°C.105°D.120°8.如图,在边长为1的小正方形组成的网络中,△ABC的三个顶点在格点上,则cos A的值是()A.B.C.D.9.若tan A=,则sin A的值是()A.B.C.3D.10.如图,某地入口处原有三级台阶,每级台阶高为20 cm,深为30 cm,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡的坡度i=1∶5,则AC的长度是()A.200 cmB.210 cmC.240 cmD.300 cm二、填空题11.Rt△ABC中,∠C=90°,AB=10,BC=8,则cos B=________.12.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,tan∠BCD=,AC=12,则BC=____________.13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则tan ∠BAC=____________.14.如图,一艘海轮位于灯塔P的东北方向,距离灯塔40海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为____________海里(结果保留根号).15.已知△ABC,若有|sin A-|与(tan B)2互为相反数,则∠C的度数是__________.16.如图,某建筑物BC上有一旗杆AB,从与BC相距38 m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度约为__________ m.(结果精确到0.1 m,参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)17.如图,P(12,a)在反比例函数y=图象上,PH⊥x轴于H,则tan ∠POH的值为__________.18.某水库水坝的坝高为10米,迎水坡的坡度为1∶2.4,则该水库迎水坡的长度为____________米.19.△ABC中,∠C=90°,(1)若cos A=,则tan B=________;(2)若tan A=,则sin B=__________.20.如图,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正弦值是____________.三、解答题21.在△ABC中,已知∠A=60°,∠B为锐角,且tan A,cos B恰为一元二次方程2x2-3mx+3=0的两个实数根.求m的值并判断△ABC的形状.22.如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据:≈1.73)23.在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的A、B两个工厂间修一条笔直的公路,在工厂A北偏东60°方向、工厂北偏西45°方向有一点P,以P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否有居民需要搬迁?(参考数据:≈1.4,≈1.7)24.如图,在Rt△OAB中,∠OBA=90°,且点B的坐标为(0,4).(1)写出点A的坐标;(2)画出△OAB绕点O顺时针旋转90°后的△O1A1B1;(3)求出sin ∠A1OB1的值.25.如图,在△ABC中,∠A=30°,∠B=45°,AB=12+12,求△ABC的面积.26.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB:EB=1∶1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)27.计算:(1)tan 30°cos 60°+tan 45°cos 30°;(2)tan260°-2sin 30°cos 45°.28.计算:(1)cos 30°-sin 60°+2sin 45°·tan 45°;(2)sin 30°cos 45°+tan260°.答案解析1.【答案】A【解析】作AD⊥BC于点D.∵∠B=120°,∴∠ABD=180°-120°=60°,在直角△ABD中,AD=AB·sin 60°=6×=3,在△ABC的面积是BC·AD=×8×3=12.故选A.2.【答案】A【解析】∵∠A的对边长是3,邻边长是4,∴根据勾股定理得到斜边长是5.∴cos A=.故选A.3.【答案】C【解析】如图,过点A作AD⊥OB于D.在Rt△AOD中,∠B=180°-30°-90°-15°=45°,∴AD=AB·sin 45°=2×=km,∴OA=2×=2km.即该船航行的距离(即OA的长)为2km.故选C.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】B【解析】设直线AB与CD的交点为点O.∴=.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan 60°=.∵CD=6.∴AB=×CD=6.故选B.6.【答案】A【解析】将tan 45°和cos 60°的值代入求解.原式=1=.故选A.7.【答案】C【解析】∵|sin A|=0,(-cos B)2=0,∴sin A-=0,-cos B=0,∴sin A=,=cos B,∴∠A=45°,∠B=30°,∴∠C=180°-∠A-∠B=105°.故选C.8.【答案】D【解析】如图所示,∵AB=3,BC=4,∴AC==5,∴cos A==.故选D.9.【答案】B【解析】如图,∵tan A=,∴设BC=k,AC=4k,由勾股定理,得AB===k,∴sin A===.故选B.10.【答案】C【解析】过B作BD⊥AC,由题可知,BD=60 cm,AD=60 cm.∵tan ∠BCA==,∴DC=300 cm,∴AC=DC-AD=300-60=240(cm).故选C.11.【答案】【解析】如图所示,∵∠C=90°,AB=10,BC=8,∴cos B===.12.【答案】9【解析】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A,∴tan∠BCD=tan A=,在Rt△ABC中,AC=12,∴tan A==,则BC=9.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,OC=,在Rt△AOC中,tan ∠BAC===.14.【答案】40+40【解析】在Rt△APC中,∵AP=40,∠APC=45°,∴AC=PC=40.在Rt△BPC中,∵∠PBC=30°,∴BC=PC·tan 60°=40×=40.∴AB=AC+BC=40+40(海里).15.【答案】90°【解析】∵|sin A-|与(tan B)2互为相反数,∴sin A-=0,tan B=0,则sin A=,tan B=,∴∠A=30°,∠B=60°,则∠C的度数是90°.16.【答案】7.2【解析】根据题意,得EF⊥AC,CD∥FE,∴四边形CDEF是矩形,已知底部B的仰角为45°,即∠BEF=45°,∴∠EBF=45°,∴CD=EF=FB=38,在Rt△AEF中,AF=EF·tan 50°=38×1.19≈45.22,∴AB=AF-BF=45.22-38≈7.2,∴旗杆的高约为7.2米.17.【答案】【解析】∵P(12,a)在反比例函数y=图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=.18.【答案】26【解析】∵大坝高10米,背水坝的坡度为1∶2.4,∴水平距离=10×2.4=24(米).根据勾股定理,可得背水面的坡长为=26(米).19.【答案】【解析】(1)∵cos A=,∴∠A=60°,又∵∠C=90°,∴∠B=30°,∴tan B=;(2)在△ABC中,∠C=90°,tan A=,设BC=2x,则AC=3x.故AB=x.∴sin B===.20.【答案】【解析】连接AC,由网格特点和勾股定理可知,AC=,AB=2,BC=,∵AC2+AB2=10,BC2=10,∴AC2+AB2=BC2,∴△ABC是直角三角形,∴sin ∠ABC===,故答案为.21.【答案】解∵∠A=60°,∴tan A=.把x=代入方程2x2-3mx+3=0,得2()2-3m+3=0,解得m=.把m=代入方程2x2-3mx+3=0得2x2-3mx+3=0,解得x1=,x2=.∴cos B=,即∠B=30°.∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.【解析】先求出一元二次方程的解,再根据特殊角的三角函数值求出各角的度数,判断三角形的形状.22.【答案】解计划修建的这条高速公路不会穿越保护区.理由如下:作PH⊥AC于H.由题意可知:∠EAP=60°,∠FBP=30°,∴∠PAB=30°,∠PBH=60°,∵∠PBH=∠PAB+∠APB,∴∠BAP=∠BPA=30°,∴BA=BP=120,在Rt△PBH中,sin ∠PBH=,∴PH=PB·sin 60°=120×≈103.80,∵103.80>100,∴这条高速公路不会穿越保护区.【解析】作PH⊥AC于H.求出PH与100比较即可解决问题.23.【答案】解过P作PC⊥AB于C,设BC=x,则AC=3-x,∵PC∥BF,∴∠CPB=∠PBF=45°,∴△PCB是等腰直角三角形,∴PC=BC=x,∵∠EAB=90°,∠EAP=60°,∴∠PAC=90°-60°=30°,tan ∠PAC=,∴tan 30°==,∴x=≈=1.05<1.2,答:修筑公路时,这个村庄有一些居民需要搬迁.【解析】作垂线段PC,计算PC的长与1.2千米作比较,若PC>1.2时,居民不需要搬迁;若PC<1.2时,居民需要搬迁;先设BC=x,则AC=3-x,根据30度的余弦列式求出PC的长,则可以得出结论.24.【答案】解(1)从图上读出点A的坐标(3,4);(2)(3)根据勾股定理得O1A1==5,故sin ∠A1OB1=.【解析】(1)从图上读出点A的坐标即可.(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可.(3)利用解的正弦值,即对边÷斜边.25.【答案】解作CH⊥AB于H,如图,设CH=x,在Rt△ACH中,∵∠A=30°,∴AH=CH=x,在Rt△CBH中,∵∠B=45°,∴BH=CH=x,∴AB=BH+AH=x+x,∴x+x=12+12,∴△ABC的面积=CH·AB=×12×(12+12)=72+72.【解析】作CH⊥AB于H,如图,设CH=x,在Rt△ACH中利用含30度的直角三角形三边的关系得AH=CH=x,在Rt△CBH中,根据等腰直角三角形的性质得BH=CH=x,则AB=BH+AH=x+x,原式可得到方程x+x=12+12,解方程得到x=12,然后根据三角形面积公式求解.26.【答案】解设BC=x米,在Rt△ABC中,∠CAB=180°-∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB∶EB=1∶1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.【解析】设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.27.【答案】解(1)tan 30°cos 60°+tan 45°cos 30°=×+1×=+=.(2)原式=()2-2××=1.【解析】将特殊角的三角函数值代入求解.28.【答案】解(1)原式=+2××1=;(2)原式=×+×()2=+×3=1.【解析】直接利用特殊角的三角函数值代入求出即可.。

人教版九年级数学下册第28章:锐角三角函数 全章测试含答案

人教版九年级数学下册第28章:锐角三角函数  全章测试含答案

人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。

人教版九年级数学下册 第28章 锐角三角函数 单元检测试卷(有答案)

人教版九年级数学下册 第28章  锐角三角函数 单元检测试卷(有答案)

人教版九年级数学下册第28章锐角三角函数单元检测试卷(有答案)一、单选题(共10题;共30分)1.在中,,若cosB= ,则sinA的值为( )A. B. C. D.2.在中,°, °,AB=5,则BC的长为( )A. 5tan40°B. 5cos40°C. 5sin40°D.3.sin60°的值等于()A. B. C. D.4.已知在R t △ABC中,∠C = 90°,∠A =,AB = 2,那么BC的长等于A. B. C. D.5.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A. 45°B. 1C.D. 无法确定6.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A. B. C. D.7.sin30°+tan45°﹣cos60°的值等于()A. B. 0 C. 1 D. -8.如图,菱形OABC在平面直角坐标系中的位置如图所示,若sin∠AOC= ,OA=5,则点B的坐标为()A. (4,3)B. (3,4)C. (9,3)D. (8,4)9.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.10.如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm2二、填空题(共10题;共30分)11.在△ABC中,∠C=90°,若tanA= ,则sinB=________.12.如图,在Rt△ABC中,斜边BC上的高AD=4,,则AC=________.13.计算:2cos60°﹣tan45°=________.14.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= ,必定成立的是________.15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为________.16.如图,在△ABC中,∠C=90°,AC=2,BC=1,CD是AB上的高,则tan∠BCD的值是________.17.如图,正方形ABCD的边长为12,点O为对角线AC、BD的交点,点E在CD上,tan∠CBE=,过点C作CF⊥BE,垂足为F,连接OF,将△OCF绕着点O逆时针旋转90°得到△ODG,连接FG、FD,则△DFG的面积是________.18.如图,在8×4的正方形网格中,每个小正方形的边长都是1,若△ABC的三个顶点都在图中相应的格点上,则tan∠ACB=________ .19.如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG 的长为________.20.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则cos∠MCN=________.三、解答题(共8题;共60分)21.如图,锐角△ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tanB的值.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)24.我市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌(AB),放置在教学楼的顶部(如图所示).小明在操场上的点D处,用1米高的测角仪CD,从点C测得宣传牌的底部B的仰角为37°,然后向教学楼正方向走了4米到达点F处,又从点E测得宣传牌的顶部A的仰角为45°.已知教学楼高BM=17米,且点A,B,M在同一直线上,求宣传牌AB的高度(结果精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).25.如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.26.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A 处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).27.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)28.如图,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速行驶向港口P,乙船从港口P出发,沿南偏东45°方向匀速行驶驶离岗口P,现两船同时出发,2小时后乙船在甲船的正东方向,求乙船的航行速度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】C4.【答案】A5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】B10.【答案】C二、填空题11.【答案】12.【答案】513.【答案】014.【答案】②15.【答案】16.【答案】17.【答案】18.【答案】19.【答案】20.【答案】三、解答题21.【答案】解:过点A作AH⊥BC于H,∵S△ABC=27,∴,∴AH=6,∵AB=10,∴BH= = =8,∴tanB= = = .22.【答案】解:设AC的长为x,那么BC的长就为2x.x2+(2x)2=AB2,x2+(2x)2=(4)2,x=4.答:河床面的宽减少了4米.23.【答案】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD= ,则AD=AC•sin∠ACD=250 ≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.24.【答案】解:过点C作CN⊥AM于点N,则点C,E,N在同一直线上,设AB=x米,则AN=x+(17﹣1)=x+16(米),在Rt△AEN中,∠AEN=45°,∴EN=AN=x+16,在Rt△BCN中,∠BCN=37°,BM=17,∴tan∠BCN= =0.75,∴= ,解得:x=1 ≈1.3.经检验:x=1 是原分式方程的解25.【答案】.解:过点A作AE⊥CD于点E,过点B作BF⊥CD,交CD的延长线于点F,则四边形ABFE为矩形,所以AB=EF,AE=BF,由题意可知AE=BF=1 100-200=900(米),CD=19 900米.∵在Rt△AEC中,∠C=45°,AE=900米,∴CE=900米.在Rt△BFD中,∠BDF=60°,BF=900米,∴DF= = =300 (米).∴AB=EF=CD+DF-CE=19 900+300 -900=19 000+300 (米).答:两海岛间的距离AB是(19 000+300 )米26.【答案】解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°= x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD= x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×(1.732+1)≈8米27.【答案】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200× =100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∴车速为=14.6m/s.∵60千米/小时=m/s,又∵14.6<,∴此车没有超速.28.【答案】解:设乙船的航行速度为每小时x海里,2小时后甲船在点B处,乙船在点C 处,则PC=2x海里,过P作PD⊥BC于D,则BP=86﹣2×15=56(海里),在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴PD=PB•cos60°=28(海里),在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC•cos45°=2x• = x,∴x=28,即x=14 ≈20,答:乙船的航行速度约为每小时20海里人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、342、在△ABC中,若1sin 02A B -=,则△ABC 是( )A 、等腰三角形B 、等腰直角三角形C 、直角三角形D 、等边三角形 3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21B 、2C 、25D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .32 m B .62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( ) A 、72米 B 、36米 C 、336米 D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( ) A .8.1米 B .17.2米 C .19.7米 D .25.5米 二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α= 9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离(第3题) (第4题) (第6题) ED CB A DB C AB D CE ABC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°, 则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形ABCD 的对角线AC BD ,的长分别为m n ,,可以证明当AC BD ⊥时(如图1),四边形ABCD 的面积12S mn =,那么当AC BD ,所夹的锐角为θ时(如图2),四边形ABCD 的面积S = .(用含m n θ,,的式子表示) 三、解答题(共61分) 14、计算:(8分)(1)45sin 60)︒-︒ (2)3sin60°﹣2cos30°﹣tan60°•tan45°.15、(8分)如图,防洪大堤的横断面是梯形,背水坡AB 的坡比i =(指坡面的铅直高(第10题)(第11题) (第13题)D 图1 C图2度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A 处水平飞行至B 处需8秒,在地面C 处同一方向上分别测得A 处的仰角为75°,B 处的仰角为30°.已知无人飞D CBA机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01) (2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

人教版九年级数学下册《第28章锐角三角函数》单元测试卷(含答案)

人教版九年级数学下册《第28章锐角三角函数》单元测试卷(含答案)

新人教版九年级下《第28章锐角三角函数》单元测试卷一、选择题(本大题共10小题,共30.0分)1.sin60°的值等于()A. B. C. D.2.已知α为锐角,sin(α-20°)=,则α=()A. B. C. D.3.在正方形网格中,∠α的位置如图所示,则tanα的值是()A.B.C.D. 24.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A. B. C. D.5.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A. 不变B. 扩大5倍C. 缩小5倍D. 不能确定6.在△ABC中,∠C=90°,tan A=,则cos A的值为()A. B. C. D.7.在△ABC中,∠A=120°,AB=4,AC=2,则sin B的值是()A. B. C. D.8.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A. 3米B. 米C. 米D. 米9.坡度等于1:的斜坡的坡角等于()A. B. C. D.10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为()A. 47mB. 51mC. 53mD. 54m二、填空题(本大题共7小题,共26.0分)11.求值:sin60°-tan30°= ______ .12.如图,在直角三角形ABC中,∠C=90°,AC=5,AB=10,则∠A= ______ 度.13.如图,∠AOB放置在正方形网格中,则cos∠AOB的值为______ .14.△ABC中,∠C=90°,斜边上的中线CD=6,sin A=,则S△ABC= ______ .15.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高)______ .16.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成______ .17.如图,在△ABC中,∠C=90°,BC=1,AB=2,则sin A= ______ .三、解答题(本大题共7小题,共64.0分)18.已知α为一锐角,sinα=,求cosα,tanα.19.如图,已知AC=4,求AB和BC的长.20.如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.求新传送带AC的长度.22.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.23.如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是3千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP的方向以千米/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)答案和解析1.【答案】C【解析】解:sin60°=.故选:C.根据特殊角的三角函数值直接解答即可.此题考查了特殊角的三角函数值,是需要识记的内容,要注意积累.2.【答案】D【解析】解:∵α为锐角,sin(α-20°)=,∴α-20°=60°,∴α=80°,故选D.根据特殊角的三角函数值直接解答即可.本题考查的是特殊角的三角函数值,属较简单题目.3.【答案】D【解析】解:由图可得,tanα=2÷1=2.故选D.此题可以根据“角的正切值=对边÷邻边”求解即可.本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.4.【答案】D【解析】解:A、∵sinB=,∴b=c•sinB,故选项错误;B、∵cosB=,∴a=c•cosB,故选项错误;C、∵tanB=,∴a=,故选项错误;D、∵tanB=,∴b=a•tanB,故选项正确.故选D.根据三角函数的定义即可判断.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.【答案】A【解析】解:∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选:A.易得边长扩大后的三角形与原三角形相似,那么对应角相等,相应的三角函数值不变.用到的知识点为:三边对应成比例,两三角形相似;相似三角形的对应角相等.三角函数值只与角的大小有关,与角的边的长短无关.6.【答案】D【解析】解:如图,∵tanA==,∴设BC=x,则AC=3x,∴AB==x,∴cosA===.故选D.根据正切的定义得到tanA==,于是可设BC=x,则AC=3x,根据勾股定理计算出AB,然后利用余弦的定义求解.本题考查了三角形函数的定义:在三角形三角形中,一锐角的余弦等于它的邻边与斜边的比值;这个锐角的正切等于它的对边与邻边的比值.也考查了勾股定理.7.【答案】B【解析】解:延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.首先延长BA过点C作CD⊥BA延长线于点D,进而得出AD,CD,BC的长,再利用锐角三角函数关系求出即可.此题主要考查了解直角三角形,作出正确辅助线构造直角三角形是解题关键.8.【答案】B【解析】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=6.∴AB==6.故选:B.依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.本题主要考查平行线分线段成比例定理,解题的关键是根据实际问题抽象出几何图形.解:坡角α,则tanα=1:,则α=30°.故选A.根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.10.【答案】B【解析】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故选:B.由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.11.【答案】【解析】解:原式=-=-=.故答案为.根据sin60°=,tan30°=得到原式=-,然后通分合并即可.本题考查了特殊角的三角函数值:sin60°=,tan30°=.也考查了二次根式的运算.解:∵∠C=90°,AC=5,AB=10,∴cosA===,∴∠A=30°,故答案为:30°.根据条件求出,即可得到cos∠A的值,再根据特殊角的三角函数值求出∠A的度数.此题主要考查了锐角三角函数定义,以及特殊角的三角函数值,解决此题的关键是求出cosA.13.【答案】【解析】解:将∠AOB放在一直角三角形中,邻边为1,对边为2,由勾股定理得斜边,则cos∠AOB的值==.根据余弦的定义,cos∠AOB等于邻边比斜边,可以求得cos∠AOB的值.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的余弦为邻边比斜边.14.【答案】【解析】解:在Rt△ABC中,∵斜边上的中线CD=6,∴AB=12.∵sinA==,∴BC=4,AC==8.∴S△ABC=AC•BC=16.根据直角三角形中斜边上的中线为斜边的一半可求出AB;根据三角函数的定义求出AC,根据面积公式解答.本题利用了直角三角形的性质:直角三角形中斜边上的中线为斜边的一半和锐角三角函数的概念求解.15.【答案】(2+1.6)m【解析】解:由题意得:AD=6m,在Rt△ACD中,tanA==∴CD=2,又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6,所以树的高度为(2+1.6)m.已知小丽与树之间的距离为6m即AD=7m,可由直角三角形ACD及三角函数的关系可求出CD 的长度,再由AB=1.6m可得出树的高度.本题考查解直角三角形的应用,要注意利用已知线段及三角函数关系求未知线段.16.【答案】,【解析】解:过点A作AC⊥x轴于C.在直角△OAC中,∠AOC=90°-60°=30°,OA=14千米,则AC=OA=7千米,OC=7千米.因而小岛A所在位置的坐标是(7,-7).故答案为:(7,-7).过点A作AC⊥x轴于C,根据已知可求得小岛A的坐标.本题主要考查了解直角三角形的应用-方向角问题,正确记忆三角函数的定义是解决本题的关键.17.【答案】【解析】【分析】本题考查了锐角的三角函数值的定义,理解定义是关键.利用锐角三角函数的定义求解.【解答】解:sinA==.故答案为.18.【答案】解:由sinα==,设a=4x,c=5x,则b==3x,故cosα==,tanα==.【解析】根据sinα=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出cosα的值,同理可得tanα的值.本题考查了同角三角函数的关系,求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.19.【答案】解:作CD⊥AB于点D,在Rt△ACD中,∵∠A=30°,∴∠ACD=90°-∠A=60°,CD=AC=2,AD=AC•cos A=2.在Rt△CDB中,∵∠DCB=∠ACB-∠ACD=45°,∴BD=CD=2,∴BC=2,∴AB=AD+BD=2+2.【解析】作CD⊥AB于点D,根据三角函数的定义在Rt△ACD中,在Rt△CDB中,即可求出CD,AD,BD,从而求解.本题考查了解直角三角形,作出辅助线是解题的关键,难度中等.20.【答案】解:作BE⊥l于点E,DF⊥l于点F.∵∠ ∠ ,∠ ∠ ,∴∠根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos∠ ,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.【解析】作BE⊥l于点E,DF⊥l于点F,求∠ADF的度数,在Rt△ABE中,可以求得AB的值,在Rt△ADF中,可以求得AD的值,即可计算矩形ABCD的周长,即可解题.本题考查了矩形对边相等的性质,直角三角形中三角函数的应用,锐角三角函数值的计算.21.【答案】解:在Rt△ABD中,AD=AB sin45°=4×=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.答:新传送带AC的长度约为8米.【解析】根据正弦的定义求出AD,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE-DE=5+5+5-15=(5-5)m.答:宣传牌CD高约(5-5)米.【解析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=30°,求出CG的长;根据CD=CG+GE-DE即可求出宣传牌的高度.此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.23.【答案】解:(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,∴BD=PD=3千米.在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,∴AD=PD=3千米,PA=6千米.∴AB=BD+AD=3+3(千米);(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=AB=千米,AF=AB=+3 千米.在△ABC中,∠C=180°-∠BAC-∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴CF=BF=千米,∴PC=AF+CF-AP=3千米.故小船沿途考察的时间为:3÷=3(小时).【解析】(1)过点P作PD⊥AB于点D,先解Rt△PBD,得到BD和PD的长,再解Rt△PAD,得到AD和AP 的长,然后根据BD+AD=AB,即可求解;(2)过点B作BF⊥AC于点F,先解Rt△ABF,得出BF和AF的长,再解Rt△BCF,得出CF的长,可求PC=AF+CF-AP,从而求解.本题考查了解直角三角形的应用-方向角问题,难度适中.通过作辅助线,构造直角三角形是解题的关键.24.【答案】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m【解析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键。

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

人教版九年级下《第二十八章锐角三角函数》单元测试题含答案

人教版九年级下《第二十八章锐角三角函数》单元测试题含答案

第二十八章 锐角三角函数一、选择题(每小题3分,共30分) 1.sin60°的值等于( ) A.12 B.22 C.32 D.332.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( )A.83B .6C .12D .8 3.已知α为锐角,且cos(90°-α)=12,则cos α的值为( )A.33 B.22 C.12 D.324.如图1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图1A .1B .1.5C .2D .35.如图2,∠AOB 在正方形网格中,则cos ∠AOB 的值为( )图2A.12B.22C.32D.336.如图3,将△ABC 放在每个小正方形的边长都为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )图3A.55 B.105 C .2 D.127.如图4,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )图4A.53B.2 55C.52 D.238.如图5,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到转轴底端的距离为( )图5A.3米 B .2米 C .2 2米 D .3米9.如图6,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在南偏西22°方向上.航行2小时后到达N 处,观测灯塔P 在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )图6A .22.48海里B .41.68海里C .43.16海里D .55.63海里10.如图7,四边形BDCE 内接于以BC 为直径的⊙A ,已知BC =10,cos ∠BCD =35,∠BCE =30°,则线段DE 的长是( )图7A.89 B .7 3 C .4+3 3 D .3+4 3 请将选择题答案填入下表:题号 12345678910总分答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在△ABC 中,∠B =45°,cos C =35,AC =5a ,则△ABC 的面积用含a 的式子表示是________.图812.为解决停车难的问题,在一段长56米的路段上开辟停车位,如图9,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:2≈1.4)图913.如图10,在等腰三角形ABC 中,AB =AC ,BC =4,D 为BC 的中点,点E ,F 在线段AD 上,tan ∠ABC =3,则阴影部分的面积是________.图1014.已知△ABC ,若⎪⎪⎪⎪sin A -12与(tan B -3)2互为相反数,则∠C 的度数是________. 15.如图11,已知四边形ABCD 是正方形,以CD 为一边向CD 两旁分别作等边三角形PCD 和等边三角形QCD ,那么tan ∠PQB 的值为________.图1116.如图12,已知点A(5 3,0),直线y =x +b(b >0)与y 轴交于点B ,连接AB.若∠α=75°,则b =________.图12三、解答题(共52分)17.(5分)计算:cos30°tan60°-cos45°sin45°-sin260°.18.(5分)如图13,在△ABC中,AB=4,AC=6,∠ABC=45°,求BC的长及tan C 的值.图1319.(5分)如图14,在半径为1的⊙O中,∠AOB=45°,求sin C的值.图1420.(5分)如图15,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)图1521.(7分)如图16,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.图1622.(7分)如图17,市防汛指挥部决定对某水库的水坝进行加高加固,设计师提供的方案是:水坝加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水坝原来的高度.图1723.(9分)阅读下面的材料:小凯遇到这样一个问题:如图18①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:(1)△ABD 的面积为________(用含m 的式子表示); (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图③,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为________(用含a ,b ,α的式子表示).图1824.(9分)观察与思考:阅读下列材料,并解决后面的问题.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,过点A 作AD ⊥BC 于点D(如图19①),则sin B =AD c ,sin C =ADb ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即b sin B =csin C ,同理有c sin C =a sin A ,a sin A =b sin B ,所以a sin A =b sin B =c sin C. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题:(1)如图②,△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A =________°,AC =________;(2)如图③,在某次巡逻中,渔政船在C 处测得海岛A 在其北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得海岛A 在其北偏西75°的方向上,求此时渔政船距海岛A 的距离AB.(结果精确到0.01海里,6≈2.449)图19详解详析1.C2.B [解析] 由题意可得sin A =23=BCAB.因为BC =4,所以AB =6.3.D [解析] 因为cos(90°-α)=12,α为锐角,所以90°-α=60°,所以α=30°,所以cos α=32. 4.C [解析] ∵点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,∴tan α=3t =32,∴t =2. 5.B [解析] 如图,连接AC .由网格图的特点,易得△ACO 是等腰直角三角形,所以∠AOB =45°,所以cos ∠AOB 的值为22.6.D [解析] 如图,连接BD .由网格图的特点可知AD ⊥BD ,由AD =2 2,BD =2,可得tan A 的值为12.7.A [解析] 在Rt △ABC 中,根据勾股定理可得AB 2=AC 2+BC 2=(5)2+22=9,∴AB =3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin B =AC AB =53.故选A. 8.A [解析] 如图,设转轴底端为A ,两立柱底端的点为B ,C ,BC 的中点为D ,则有AB =AC =2米,所以AD ⊥BC ,且CD =1米,所以AD =3米.9.B [解析] 如图,过点P 作P A ⊥MN 于点A ,MN =30×2=60(海里).∵∠PMN =22°,∠PNA =44°, ∴∠MPN =∠PNA -∠PMN =22°, ∴∠PMN =∠MPN , ∴MN =PN =60海里. ∵∠PNA =44°,∴在Rt △NAP 中,P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里). 故选B.10.D [解析] 如图,过点B 作BF ⊥DE 于点F .在Rt △CBD 中,∵BC =10,cos ∠BCD =35,∴DC =6,∴BD =8.在Rt △BCE 中,BC =10,∠BCE =30°, ∴BE =5.在Rt △BDF 中,∠BDF =∠BCE =30°,BD =8, ∴DF =BD ·cos30°=4 3.在Rt △BEF 中,∠BEF =∠BCD , 即cos ∠BEF =cos ∠BCD =35,∴EF =BE ·cos ∠BEF =3,∴DE =EF +DF =3+4 3. 11.14a 2 12.1713.6 [解析] 由等腰三角形的轴对称性可知阴影部分的面积等于△ABC 的面积的一半.因为BD =12BC =2,AD ⊥BC ,tan ∠ABC =3,所以AD =6,所以△ABC 的面积为12,所以阴影部分的面积为6.14.90° [解析] 由题意得sin A =12,tan B =3,所以∠A =30°,∠B =60°,所以∠C的度数是90°.15.2-3 [解析] 延长QP 交AB 于点F .∵四边形ABCD 是正方形,△PCD 和△QCD 是以CD 为边的等边三角形, ∴四边形PCQD 是菱形.设正方形ABCD 的边长为a ,则可得PE =QE =32a ,DE =EC =12a ,FB =12a , ∴tan ∠PQB =FBFQ=12a a +32a=2- 3. 16.5 [解析] 设直线y =x +b (b >0)与x 轴交于点C ,易得C (-b ,0),B (0,b ), 所以OC =OB , 所以∠BCO =45°.又因为α=75°,所以∠BAO =30°. 因为OA =5 3,所以OB =5,所以b =5. 17.1418.解:如图,过点A 作AD ⊥BC 于点D .在Rt △ABD 中,∠B =45°, ∵sin B =ADAB,∴AD =AB ·sin B =4×sin45°=4×22=2 2, ∴BD =AD =2 2.在Rt △ADC 中,AC =6,由勾股定理,得DC =AC 2-AD 2=62-(2 2)2=2 7, ∴BC =BD +DC =2 2+2 7,tan C =AD DC =2 22 7=147. 19.解:如图,过点A 作AD ⊥OB 于点D . ∵在Rt △AOD 中,∠AOB =45°, ∴OD =AD =OA ·cos45°=1×22=22, ∴BD =OB -OD =1-22, ∴AB =AD 2+BD 2=(22)2+(1-22)2=2- 2. ∵AC 是⊙O 的直径,∴∠ABC =90°,AC =2,∴sin C =ABAC =2-22.20.解:如图,过点B 作BF ⊥AE 于点F , 则BF =DE .在Rt △ABF 中,sin ∠BAF =BF AB, 则BF =AB ·sin ∠BAF ≈10×35=6(m).在Rt △CDB 中,tan ∠CBD =CD BD ,则CD =BD ·tan65°≈10×157≈21(m). 则CE =DE +CD =BF +CD ≈6+21=27(m).答:大楼CE 的高度约是27 m.21.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠ABC +∠BAD =180°. 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°.∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°.∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.22.解:如图所示,过点E 作EC ⊥BD 于点C , 设BC =x 米.∵∠ABE =120°, ∴∠CBE =60°. 在Rt △BCE 中, ∵∠CBE =60°,∴tan60°=CE BC =3,即CE =3x 米. ∵背水坡AF 的坡度i =1∶1,∴CF AC=1. ∵AC =(3+x )米,CF =(1+3x )米, ∴1+3x 3+x=1,解得x =3+1, ∴EC =3x =(3+3)米.答:水坝原来的高度为(3+3)米.23.解:(1)∵AO =m ,∠AOB =30°,∴AE =12m , ∴△ABD 的面积为12×12m ×6=32m . 故答案为32m. (2)由(1)得S △ABD =32m . 同理,CF =12(4-m ), ∴S △BCD =12BD ·CF =6-32m . ∴S 四边形ABCD =S △ABD +S △BCD =6.解决问题:分别过点A ,C 作直线BD 的垂线,垂足分别为E ,F ,设AO 为x .∵∠AOB =α,∴AE =x ·sin α,∴S △ABD =12BD ·AE =12b ·x ·sin α. 同理,CF =(a -x )·sin α,∴S △BCD =12BD ·CF =12b ·(a -x )·sin α. ∴S 四边形ABCD =S △ABD +S △BCD =12b ·x ·sin α+12b ·(a -x )·sin α=12ab ·sin α. 故答案为12ab ·sin α. 24.解:(1)60 20 6(2)依题意,得BC =40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,ABsin∠ACB=BC sin A,即ABsin60°=20sin45°,解得AB=10 6≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.。

人教版初中数学九年级下册《第28章 锐角三角函数》单元测试卷(含答案解析

人教版初中数学九年级下册《第28章 锐角三角函数》单元测试卷(含答案解析

人教新版九年级下学期《第28章锐角三角函数》单元测试卷一.选择题(共10小题)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tanB=()A.B.C.D.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tanA的值逐渐增大,cotA的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tanA<1.A.①②B.③④⑤C.①②③D.③④3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.Rt△ABC中,∠A:∠B:∠C=1:2:3,则sinB=()A.B.C.D.15.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t=()A.0.5B.1.5C.4.5D.27.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里二.填空题(共8小题)11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.12.用不等号“>”或“<”连接:sin50°cos50°.13.已知α是锐角,且tanα=1,则sinα+cosα=.14.如图,在Rt△ABC中,∠C=90°,BC=12,tanA=,则sinB=.15.计算:tan45°+=;16.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有条.B.用计算器计算:•tan63°27′≈(精确到0.01).17.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么tan ∠BAH的值是.18.如图是学生用的台灯,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是cm(用含根号的式子表示).三.解答题(共10小题)19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.完成下列表格,并回答下列问题,(1)当锐角α逐渐增大时,sinα的值逐渐,cosα的值逐渐,tanα的值逐渐.(2)sin30°=cos,sin=cos60°;(3)sin230°+cos230°=;(4);(5)若sinα=cosα,则锐角α=.21.计算:sin45°+sin2α+cos2α+22.计算:2cos230°+﹣sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sinC=,求BC的长.25.2014年,“即墨古城”在即墨区破土重建,2016年建成,现已成为青岛北部一个重要的旅游景点,为了衡量古城“潮海”门的高度,在数学课外实践活动中,小明分别在如图所示的A,B两点处,利用测角仪对“潮海”,门的最高点C进行了测量,测得∠A=30°,∠B=45°,若AB=22米,求“潮海”门的最高点C 到地面的高度为多少米?(结果精确到1米,参考数据:≈1.732)26.某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)27.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)28.为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB 的距离(结果保留根号).人教新版九年级下学期《第28章锐角三角函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.若Rt△ABC是“好玩三角形”,且∠C=90°,BC≥AC,则tanB=()A.B.C.D.【分析】如图,因为BC≥AC,只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.只要证明∠DAC=30°即可解决问题;【解答】解:如图,∵BC≥AC,∴只有BC边上的中线,满足条件,AD=BC,设CD=BD=a.则AD=2a,CD=a,AD=2CD,∵∠C=90°,∴∠DAC=30°,∴AC=a,∴tanB==.故选:B.【点评】本题考查锐角三角函数、三角形的中线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.2.以下说法正确的是()①当∠A从0°逐渐增大到90°时,tanA的值逐渐增大,cotA的值逐渐减小;②tan12°•tan78°=1;③在△ABC中,已知∠C=90°,如果tan(90°﹣A)=2,那么cot(90°﹣A)=2;④若∠A为锐角,则0<tanA<1.A.①②B.③④⑤C.①②③D.③④【分析】当∠A从0°逐渐增大到90°时,tanA的值逐渐增大,cotA的值逐渐减小;一个角的正切值等于它的余角的余切值.【解答】解:①根据锐角三角函数的增减性,可知正确;②∵tan78°=cot12°,∴tan12°•tan78°=1.正确;③根据同角的正切和余切互为倒数.错误;④如tan60°=>1.错误.故选:A.【点评】本题考查了锐角三角函数的增减性和同角的三角函数的关系.3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0【分析】将两式分别两边平方,利用sin2α+cos2α=1,求出sinαcosα的值,解答即可.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.【点评】本题利用了同角的三角函数的关系sin2α+cos2α=1来进行化简求值的.4.Rt△ABC中,∠A:∠B:∠C=1:2:3,则sinB=()A.B.C.D.1【分析】设∠A=x°,∠B=2x°,∠C=3x°,根据三角形内角和定理可得x+2x+3x=180,解方程可得x的值,进而可得∠B的度数,然后可得答案.【解答】解:设∠A=x°,∠B=2x°,∠C=3x°,x+2x+3x=180,解得:x=30,∴∠B=60°,∴sinB=.故选:C.【点评】此题主要考查了特殊角的三角函数值,关键是利用方程思想确定∠B的度数.5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT【分析】本题要求熟练应用计算器.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.【点评】本题要求同学们能熟练应用计算器,熟悉计算器的各个按键的功能.6.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t=()A.0.5B.1.5C.4.5D.2【分析】过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα=,∴t=4.5.故选:C.【点评】本题考查了锐角三角函数的定义,过点A作x轴的垂线,构造出直角三角形是利用正切列式的关键,需要熟记正切=对边:邻边.7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm【分析】根据OA=OB,可知△AOB是等腰三角形,作OG⊥AB于点G,从而可以得到AG=BG,∠AOB=2∠AOG,从而可以得到OG的长.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答.8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,设BC=5k,AC=12k,利用勾股定理求出k即可解决问题;【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米【分析】过B作BF⊥CD,作FG⊥BD,解直角三角形即可得到结论.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.10.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.二.填空题(共8小题)11.如图,在Rt△ABD中,∠A=90°,点C在AD上,∠ACB=45°,tan∠D=,则=.【分析】由tan∠D==可设AB=2x、AD=3x,根据∠ACB=45°知AC=AB=2x,得出CD=x,继而可得答案.【解答】解:在Rt△ABD中,∵tan∠D==,∴设AB=2x,AD=3x,∵∠ACB=45°,∴AC=AB=2x,则CD=AD﹣AC=3x﹣2x=x,∴==,故答案为:.【点评】本题主要考查锐角三角形函数的定义,解题的关键是熟练掌握正切函数的定义及等腰三角形的性质.12.用不等号“>”或“<”连接:sin50°>cos50°.【分析】先由互余两角的三角函数的关系得出cos50°=sin40°,再根据当角度在0°~90°间变化时,正弦值随着角度的增大而增大得出sin50°>sin40°,从而得出结果.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.【点评】本题考查了锐角三角函数的增减性:当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).也考查了互余两角的三角函数的关系.13.已知α是锐角,且tanα=1,则sinα+cosα=.【分析】根据α是锐角,且tanα=1,推出α=45°即可解决问题.【解答】解:∵α是锐角,且tanα=1,∴α=45°,∴sinα+cosα=+=故答案为:【点评】此题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,BC=12,tanA=,则sinB=.【分析】根据正切函数,可得AC,根据勾股定理求得斜边AB的长,然后利用三角函数的定义即可求解.【解答】解:由在Rt△ABC中,∠C=90°,BC=12,tanA=,得=,即=,∴AC=5.由勾股定理,得AB==13.sinB==,故答案为:.【点评】本题考查了勾股定理以及三角函数,理解三角函数的定义是关键.15.计算:tan45°+=5;【分析】先代入三角函数值、计算算术平方根,再计算加法可得答案.【解答】解:tan45°+=1+4=5,故答案为:5.【点评】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值和算术平方根的定义.16.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有20条.B.用计算器计算:•tan63°27′≈ 5.29(精确到0.01).【分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【解答】解:A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有=20,故答案为:20;B、•tan63°27′≈2.646×2.001≈5.29,故答案为:5.29.【点评】本题主要考查计算器﹣三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.17.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么tan ∠BAH的值是.【分析】设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,然后得出tan∠BAH的值.【解答】解:设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,∴tan∠BAH=,故答案为:【点评】本题考查了解直角三角形,等腰三角形的性质,锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=BC=x是就解题的关键.18.如图是学生用的台灯,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是17+20cm(用含根号的式子表示).【分析】根据sin30°=,求出CF的长,根据sin60°=,再求出BF的长,即可得出CE的长.【解答】解:由题意得:AD⊥CE,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin30°=,∴CF=15cm,在直角三角形ABG中,sin60°=,∴,解得:BG=20,又∠ADC=∠BFD=∠BGD=90°,∴四边形BFDG为矩形,∴FD=BG,∴CE=CF+FD+DE=CF+BG+ED=15+20+2=17+20(cm).答:此时灯罩顶端C到桌面的高度CE是17+20cm.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.三.解答题(共10小题)19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.【分析】依题意设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,先证明△CEM是直角三角形,再利用三角函数的定义求解.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.【点评】本题考查了锐角三角函数值的求法.关键是利用勾股定理的逆定理证明直角三角形,把问题转化到直角三角形中求解.20.完成下列表格,并回答下列问题,(1)当锐角α逐渐增大时,sinα的值逐渐增大,cosα的值逐渐减少,tanα的值逐渐增大.(2)sin30°=cos60゜,sin30゜=cos60°;(3)sin230°+cos230°=1;(4)30°;(5)若sinα=cosα,则锐角α=45°.【分析】根据特殊角的三角函数值填写即可;(1)根据锐角三角函数的增减性,同角三角函数的关系填写;(2)根据同角三角函数的关系解答;(3)根据同角三角函数的关系解答;(4)45°角的正弦和余弦相等.【解答】解:填表如下:(1)当锐角α逐渐增大时,sinα的值逐渐增大,cosα的值逐渐减少,tanα的值逐渐增大.(2)sin30°=cos 60゜,sin 30゜=cos60°;(3)sin230°+cos230°=1;(4)30°;(5)若sinα=cosα,则锐角α=45°.故答案为:增大,减少,增大.60゜,30゜;1;30°;45°.【点评】考查了三角函数,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.21.计算:sin45°+sin2α+cos2α+【分析】利用平方关系得到sin2α+cos2α=1,再将特殊角的三角函数值代入,即可求出式子的值.【解答】解:原式=×+1+﹣,=1+1+1﹣1,=2.【点评】此题考查了特殊角的三角函数值和三角函数的平方关系,同时在计算时要注意无理数的运算.22.计算:2cos230°+﹣sin60°.【分析】首先代入特殊角的三角函数值,然后再计算乘方,后算乘法,最后计算加减即可.【解答】解:原式=2×()2+﹣,=+﹣,=3﹣.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.【分析】(1)分别计算出各数,进而可得出结论;(2)根据(1)中的关系可得出结论;(3)任选一个角验证(3)的结论即可;(4)用α表示一个锐角,写出这个关系式即可.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.【点评】本题考查的是三角函数,根据题意找出规律是解答此题的关键.24.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sinC=,求BC的长.【分析】作AD⊥BC,在△ACD中求得AD=ACsinC=3、,再在△ABD中根据AB=3、AD=3求得BD=3,继而根据BC=BD+CD可得答案.【解答】解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵AC=5,,∴AD=AC•sinC=3.∴在Rt△ACD中,.∵AB=,∴在Rt△ABD中,.∴BC=BD+CD=7.【点评】本题主要考查解直角三角形,解题的关键是根据题意构建合适的直角三角形及三角函数的定义.25.2014年,“即墨古城”在即墨区破土重建,2016年建成,现已成为青岛北部一个重要的旅游景点,为了衡量古城“潮海”门的高度,在数学课外实践活动中,小明分别在如图所示的A,B两点处,利用测角仪对“潮海”,门的最高点C进行了测量,测得∠A=30°,∠B=45°,若AB=22米,求“潮海”门的最高点C 到地面的高度为多少米?(结果精确到1米,参考数据:≈1.732)【分析】过C作CD⊥AB,交AB延长线于点D,分别在直角三角形ACD与直角三角形BCD中,表示出AD与BD,由AD﹣BD=AB列出方程,求出方程的解即可得到结果.【解答】解:过C作CD⊥AB,交AB延长线于点D,在Rt△ACD中,设CD=x米,∴AD==x米,在Rt△BCD中,CD=x米,∴BD=x米,∴x﹣x=22,解得:x=≈30,则“潮海”门的最高点C到地面的高度为30米.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)【分析】在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt △ADC中,解直角三角形求AD的长度,用AD﹣AB即可求出滑板加长的长度.【解答】解答:在Rt△ABC中,AC=AB•sin45°=4×=2,∵∠ABC=45°,∴AC=BC=2,在Rt△ADC中,AD=2AC=4,AD﹣AB=4﹣4≈1.66.答:改善后滑板会加长1.66米.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.27.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【分析】(1)在Rt△ABH中,通过解直角三角形求出BH;(2)过B作DE的垂线,设垂足为G.在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:(1)Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)过B作BG⊥DE于G,由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.28.为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB 的距离(结果保留根号).【分析】作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值求解.【解答】解:过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,,∴AC=PC,在Rt△PBC中,,∴BC=PC,∵AB=AC+BC=,∴PC=100,答:建筑物P到赛道AB的距离为100米.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28章 锐角三角函数单元测试题一、选择题(每题3分,共30分)1.在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sinB =23 B .cos B =23C .tan B =23D .tan B =32 2.在Rt △ABC 中,∠C =90°,tan B =32,BC =23,则AC 等于( ) A .3 B .4 C .4 3 D .63.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A .35B .34C .105 D .14.如图所示,在四边形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =45,BC =10,则AB 的长是( )A .3B .6C .8D .95.如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A =30°,则sin E 的值为( )A .12B .22C .32D .33(第3题) (第4题) (第5题) 6.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB =8,BC =10,则tan ∠EFC 的值为( )A .34B .43C .35D .45(第6题) (第7题) (第8题) 7.如图所示,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( )A .34B .43C .35D .458.如图,某地修建高速公路,要从B 地向C 地修一条隧道(B ,C 在同一水平面上).为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( )A .100 3 mB .50 2 mC .50 3 mD .1003 3 m 9.等腰三角形一腰上的高与腰长之比是,则等腰三角形顶角的度数为( )A .30°B .50°C .60°或120°D .30°或150° 10.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15°方向的A 处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B ,C 之间的距离为( ) A .20海里 B .103海里 C .202海里 D .30海里二、填空题(每题3分,共30分)11.在△ABC 中,∠C =90°,AB =13,BC =5,则tan B =________.12.计算:131-⎪⎭⎫⎝⎛-|-2+3tan 45°|+(2-1.41)0=________.13.如图,正方形ABCD 的边长为4,点M 在边DC 上,M ,N 两点关于对角线AC 所在的直线对称,若DM =1,则tan ∠ADN =________.14.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =________.15.如图所示,将以A 为直角顶点的等腰直角三角形ABC 沿直线BC 平移得到△A′B′C′,使点B′与C 重合,连接A′B ,则tan ∠A′BC′的值为________. 16.如图所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,cos ∠BAC =34,则墙高BC =________米.(第13题) (第15题) (第16题) 17.如图所示,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D′处,那么tan ∠BAD′等于________. 18.一次函数的图象经过点(tan 45°,tan 60°)和(-cos 60°,-6tan 30°),则此一次函数的解析式为________.19.如图所示,在△ABC 中,∠ACB =90°,CD 是AB 边上的中线,AC =6,CD =5,则sin A 等于________.20.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且CF FD =13.连接AF 并延长交⊙O 于点E ,连接AD ,DE.若CF =2,AF =3.下列结论:①△ADF ∽△AED ;②FG =2;③tan E =52;④S △DEF =45,其中正确的是________.(第17题)(第18题)(第19题)三、解答题(21题12分,23题8分,其余每题10分,共60分) 21.计算:(1)2(2cos 45°-sin 60°)+244;(2)sin 60°·cos 60°-tan 30°·tan 60°+sin 245°+cos 245°.22.在△ABC 中,∠C =90°.(1)已知c =83,∠A =60°,求∠B ,a ,b ; (2)已知a =36,∠A =45°,求∠B ,b ,c.23.如图,已知▱ABCD ,点E 是BC 边上的一点,将边AD 延长至点F ,使∠AFC =∠DEC.(1)求证:四边形DECF 是平行四边形;(2)若AB =13,DF =14,tan A =125,求CF 的长.24.如图,海上有一灯塔P ,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A 点处测得P 在北偏东60°方向上,继续行驶20分钟后,到达B 处又测得灯塔P 在北偏东45°方向上,问客轮不改变方向继续前进有无触礁危险?25.如图,拦水坝的横断面为等腰梯形ABCD ,坝顶宽BC 为6 m ,坝高为3.2 m ,为了提高水坝的拦水能力需要将水坝加高2 m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD 的长为多少?26.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin 2α的值.小娟是这样给小芸讲解的:如图①,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB =90°. 设∠BAC =α,则sin α=BC AB =13.易得∠BOC =2α.设BC =x ,则AB =3x ,AC =22x.作CD ⊥AB 于D ,求出CD =________(用含x 的式子表示),可求得sin 2α=CDOC =________.【问题解决】已知,如图②,点M ,N ,P 为⊙O 上的三点,且∠P =β,sin β=35,求sin 2β的值.答 案一、1.C2.A 点拨:由tan B =AC BC 知AC =BC·tan B =23×32=3.3.B4.B 点拨:因为AD =DC ,所以∠DAC =∠DCA.又因为AD ∥BC ,所以∠DAC =∠ACB ,所以∠DCA =∠ACB.在Rt △ACB 中,AC =BC·cos ∠ACB =10×45=8,则AB =BC 2-AC 2=6. 5.A 6.A7.B 点拨:如图所示,连接BD ,由三角形中位线定理得BD =2EF =2×2=4.又BC =5,CD =3,∴CD 2+BD 2=BC 2.∴△BDC 是直角三角形,且∠BDC =90°,∴tan C =BD CD=43.(第7题)8.A9.D 点拨:有两种情况:当顶角为锐角时,如图①,sin A =12,∠A =30°;当顶角为钝角时,如图②,sin (180°-∠BAC)=12,180°-∠BAC =30°,∠BAC =150°.(第9题)10.C 二、11.12512.2+3 点拨:原式=3-|-2+3|+1=4-2+3=2+ 3. 13.43 14.1215.13 点拨:如图,过A′作A′D ⊥BC′于点D ,设A′D =x ,则B′D =x ,BC =2x ,BD =3x.所以tan ∠A′BC′=A′D BD =x 3x =13.(第15题)16.7 点拨:由cos ∠BAC =AC AB =34,知3AB =34,AB =4米. 在Rt △ABC 中,BC =AB 2-AC 2=42-32=7(米).17.2 点拨:由题意知BD′=BD =2 2.在Rt △ABD′中,tan ∠BAD′=BD′AB =222=2.18.y =23x -3 点拨:tan 45°=1,tan 60°=3,-cos 60°=-12,-6tan 30°=-2 3.设y =kx +b 的图象经过点(1,3),⎝⎛⎭⎫-12,-23,则用待定系数法可求出k =23,b =- 3.19.45 点拨:∵CD 是Rt △ABC 斜边上的中线,∴AB =2CD =2×5=10,∴BC =AB 2-AC 2=102-62=8,∴sin A =BC AB =810=45. 20.①②④三、21.解:(1)原式=2×⎝⎛⎭⎫2×22-32+62=2-62+62=2.(2)原式=32×12-33×3+⎝⎛⎭⎫222+⎝⎛⎭⎫222 =34-1+12+12 =34. 22.解:(1)∠B =30°,a =12,b =43; (2)∠B =45°,b =36,c =6 3.23.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠ADE =∠DEC.又∵∠AFC =∠DEC ,∴∠AFC =∠ADE ,∴DE ∥FC. ∴四边形DECF 是平行四边形.(2)解:过点D 作DH ⊥BC 于点H ,如图.(第23题)∵四边形ABCD 是平行四边形, ∴∠BCD =∠A ,AB =CD =13.又∵tan A =125=tan ∠DCH =DHCH ,∴DH =12,CH =5.∵DF =14,∴CE =14.∴EH =9. ∴DE =92+122=15.∴CF =DE =15. 24.解:过P 作PC ⊥AB 于C 点,如图,(第24题)据题意知AB =9×26=3,∠PAB =90°-60°=30°,∠PBC =90°-45°=45°,∠PCB =90°,∴PC =BC. 在Rt △APC 中,tan 30°=PC AC =PC AB +BC =PC 3+PC ,即33=PC3+PC ,∴PC =33+32海里>3海里, ∴客轮不改变方向继续前进无触礁危险.25.解:由题意得BG =3.2 m ,MN =EF =3.2+2=5.2(m ), ME =NF =BC =6 m .在Rt △DEF 中,EF FD =12,∴FD =2EF =2×5.2=10.4(m ).在Rt △HMN 中, MN HN =12.5,HN =2.5MN =13(m ). ∴HD =HN +NF +FD =13+6+10.4=29.4(m ). ∴加高后的坝底HD 的长为29.4 m . 26.解:22x 3;429如图,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作MR ⊥NO 于点R.(第26题)在⊙O 中,易知∠NMQ =90°.∵∠Q =∠P =β, ∴∠MON =2∠Q =2β.在Rt △QMN 中,∵sin β=MN NQ =35,∴设MN =3k ,则NQ =5k ,∴MQ =QN 2-MN 2=4k ,OM =12NQ =52k.∵S △NMQ =12MN·MQ =12NQ·MR ,∴3k·4k =5k·MR.∴MR =125k.在Rt △MRO 中,sin 2β=sin ∠MOR =MR OM =125k52k =2425.。

相关文档
最新文档