2001年华东师范大学硕士研究生数学分析试题解答
2001考研数学一试题及答案解析

2001考研数学一试题及答案解析2001年考研数学一试题及答案解析一、选择题1.设A是n阶实对称矩阵,B是n阶对称矩阵,则下列结论正确的是()A. AB是对称矩阵B. AB是反对称矩阵C. AB是零矩阵D. AB不一定是对称矩阵答案:D解析:对称矩阵的乘积不一定是对称矩阵,故选D。
2.设A是n阶矩阵,|A|≠0,则下列结论正确的是()A. A是可逆矩阵B. A的行列式不等于0C. A的秩等于nD. A的特征值不等于0答案:A解析:根据矩阵可逆的定义,可知选项A正确。
3.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则下列结论正确的是()A. 函数f(x)在[a,b]上一定有最大值和最小值B. 函数f(x)在(a,b)内一定有极值点C. 函数f(x)在[a,b]上一定有极值点D. 函数f(x)在(a,b)内一定有最大值和最小值答案:B解析:根据极值定理,可知选项B正确。
4.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,则函数f(x)在[a,b]上()A. 一定有最大值和最小值B. 一定有极值点C. 一定有极大值和极小值D. 不一定有极值点答案:D解析:函数在区间[a,b]上连续,且在(a,b)内可导并不意味着一定有极值点,故选D。
5.若f(x)在区间[a,b]上连续,且在(a,b)内可导,且f'(x)>0,则下列结论正确的是()A. 函数f(x)在[a,b]上单调递减B. 函数f(x)在[a,b]上单调递增C. 函数f(x)在(a,b)内存在极大值D. 函数f(x)在[a,b]上存在极小值答案:B解析:根据导数的定义,可知选项B正确。
二、填空题1.设A是n阶实对称矩阵,且A的主对角线元素都为1,则A的特征值之和为____。
答案:n+1解析:根据实对称矩阵的特征值之和等于主对角线元素之和,故特征值之和为n+1。
2.设z为复数,|z|=1,则z^3的实部为____。
2001考研数学一试题及答案解析

fpg 2001 年全国硕士研究生入学统一考试数学一试题一、填空题( 本题共 5 小题,每小题 3 分,满分15 分.把答案填在题中横线上.)( 1) 设xy e (C sin x C cosx) ( C1,C2 为任意常数)为某二阶常系数线性齐次微分方程の通1 2解,则该方程为_____________.( 2) 设 2 y z2 2r ,则div ( grad r) (1, 2,2 ) =_____________.x( 3) 交换二次积分の积分次序: 0 1 ydy f (x, y)dx=_____________.1 2( 4) 设矩阵A满足 2 4 0A A E ,其中E 为单位矩阵,则1( A E) =_____________.( 5) 设随机变量Xの方差是2 ,则根据切比雪夫不等式有估计P{ X E(X)2}y_____________.二、选择题(本题共5小题,每小题3分,满分15分.)O ( 1) 设函数 f (x) 在定义域内可导, y f (x) の图形如右图所示,x 则y f (x)の图形为( 2) 设f (x, y) 在点(0,0) 附近有定义,且f x (0,0) 3, f ( 0,0) 1,则y( A ) d| 3dx dy.z (0,0)( B ) 曲面z f (x, y) 在(0,0, f (0,0)) 处の法向量为{3,1,1}.fpgfpg( C) 曲线z fy(x,y)在(0,0, f (0,0)) 处の切向量为{1,0,3}.( D)曲线z fy(x,y)在(0,0, f (0,0)) 处の切向量为{3,0,1}.( 3) 设f (0) 0,则f (x) 在x=0 处可导の充要条件为( A )1lim f (1 cosh)2h 0h存在. ( B)1hlim f (1 e )h 0h存在.( C)1lim f (h sinh)2h 0h存在. ( D)1lim [ f (2 h) f (h)]h0 h存在.1 1 1 1 4 0 0 0( 4) 设1 1 1 1 0 0 0 0A ,B,则A 与B1 1 1 1 0 0 0 01 1 1 1 0 0 0 0( A ) 合同且相似. ( B) 合同但不相似.( C) 不合同但相似. ( D) 不合同且不相似.( 5) 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上の次数, 则X 和Y の相关系数等于( A ) -1. ( B ) 0. ( C) 12. ( D) 1.三、( 本题满分 6 分 )xarctan e求dx2xe. 四、( 本题满分 6 分 )设函数z f (x, y) 在点(1,1)处可微,且 f (1,1) 1, fx| 2(1,1)f,| 3y, (x) f (x,df (x, x)) .求x 13( )xdx.五、( 本题满分8 分 ) fpgfpg设f (x) =2x1 x arctan x, x 0,1, x 0,将f (x) 展开成xの幂级数,并求级数n 1(1n1)24nの和.六、( 本题满分7 分 )2 2 2 2 2 2计算I y z dx z x dy x y dz( ) (2 ) (3 )L,其中L 是平面x y z 2 与柱面x y 1の交线,从Z轴正向看去, L 为逆时针方向.七、( 本题满分7 分 )设 f (x) 在( 1,1)内具有二阶连续导数且 f (x) 0,试证:(1) 对于( 1,1)内の任一x 0,存在惟一の(x) ( 0,1) ,使 f ( x) = f (0) + xf ( (x)x) 成立;(2)1 lim (x) . x 02八、( 本题满分8 分 )设有一高度为h(t ) ( t 为时间) の雪堆在融化过程,其侧面满足方程2 22(x y )z h(t ) ( 设h(t)长度单位为厘米,时间单位为小时) ,已知体积减少の速率与侧面积成正比( 比例系数为0.9) ,问高度为130 ( 厘米) の雪堆全部融化需多少小时?九、( 本题满分 6 分 )设 1 , 2 , , s 为线性方程组Ax 0の一个基础解系, 1t1 1 t2 2 , 2 t1 2 t2 3, ,s t s t ,其中t1,t2 为实常数.试问t1,t2 满足什么条件时, 1, 2, , s 也为Ax 0 の一个1 2 1基础解系.十、( 本题满分8 分 )已知 3 阶矩阵 A 与三维向量x,使得向量组 2 23 3 2 .x, Ax, A x线性无关,且满足 A x Ax A x2( 1) 记P =(x, Ax, A x),求3 阶矩阵B ,使1 A PBP ;( 2) 计算行列式 A E .fpgfpg 十一、( 本题满分7 分)设某班车起点站上客人数X 服从参数为( 0 ) の泊松分布,每位乘客在中途下车の概率为p( 0 p 1) ,且中途下车与否相互独立.以Y 表示在中途下车の人数,求:( 1) 在发车时有n个乘客の条件下,中途有m 人下车の概率;( 2) 二维随机变量(X,Y)の概率分布.十二、( 本题满分7 分)设总体X 服从正态分布N( , 2 ) ( 0 ) , 从该总体中抽取简单随机样本X1 ,X2 , , X2n ( n 2 ), 其样本均值为X12n2ni 1X Y,求统计量iin12( X i X 2X)のn i数学期望E(Y ) .2001 年考研数学一试题答案与解析一、填空题( 1) 【分析】由通解の形式可知特征方程の两个根是r1,r2 1 i ,从而得知特征方程为2 2(r r )(r r ) r (r r )r rr r 2r 2 0 .1 2 1 2 1 2由此,所求微分方程为'' 2 ' 2 0y y y .( 2) 【分析】先求grad r .grad r= r , r , r x , y , zx y z r r r .x y z再求div grad r= ( ) ( ) ( )x r y r z r=2 2 2 2 2 21 x 1 y 1 z 3 x y z2 ( ) ( ) ( )3 3 3 3r r r r r r r r r.fpgfpg于是div grad r|2 2 (1, 2,2) = |(1, 2,2)r 3.( 3) 【分析】这个二次积分不是二重积分の累次积分,因为 1 y 0 时1 y2 .由此看出二次积分0 2dy f (x, y) dx是二重积分の一个累次1 1 y积分,它与原式只差一个符号.先把此累次积分表为0 2dy f ( x, y )dx f (x, y) dxdy .1 1 yD由累次积分の内外层积分限可确定积分区域 D :1 y 0,1 y x2 .见图.现可交换积分次序原式= 0 2 2 0 2 1 xdy f (x, y) dx dx f ( x, y)dy dx f (x, y)dy.1 1 y 1 1 x 1 0( 4) 【分析】矩阵A の元素没有给出,因此用伴随矩阵、用初等行变换求逆の路均堵塞.应当考虑用定义法.因为 2( A E)( A 2E) 2E A A 4E 0 ,故( A E)( A 2E) 2E ,即A 2E( A E) E .2按定义知 1 1( A E) (A2E) .2( 5) 【分析】根据切比雪夫不等式D(x)P{ X E( X ) } ,2于是D(x) 1 P{ X E(X)2} .22 2二、选择题( 1) 【分析】当x 0 时, f (x) 单调增 f ' (x) 0,( A ) ,( C) 不对;当x 0 时, f ( x) :增——减——增f x :正——负——正,( B) 不对,( D)对.'( )'( )应选( D).fpgfpg( 2) 【分析 】 我们逐一分析 .关于 ( A ) ,涉及可微与可偏导の关系 .由 f (x, y) 在(0,0)存在两个偏导数f (x, y) 在(0,0)处可微.因此 ( A) 不一定成立 .关于 ( B) 只能假设f (x, y) 在(0,0)存在偏导数f (0,0)f (0,0),xy,不保证曲面 z f ( x, y) 在(0,0, f (0,0)) 存在切平面 .若存在时 ,法向量 n=f (0,0)f (0,0), ,1 {3,1,-1}与{3,1,1}不x y共线,因而( B) 不成立 .x t ,y 0,它在点(0,0, f (0,0)) 处の切向量为 关于 ( C) ,该曲线の参数方程为zf ( t ,0),d'{t ',0,f (t ,0)}| t{ 1,0, f x (0,0)}{1,0,3}dt.因此,( C) 成立 .( 3) 【分析 】当f (0) 0时,'f(0) limx 0f (x)f (x) f (x) limlimx 0 x 0 xxx.关于 ( A) :1f (1 cos h ) 1 cos h 1 f (t) limf (1 cos h ) lim t 1 cos h lim22h 0h 0th1 cos hh2 t, 由此可知1limf (1 cos h)2h 0hf .' (0) ' (0)若f (x) 在 x 0可导( A ) 成立 ,反之若 ( A) 成立f' (0)f .如 f (x)| x |满 '(0) ' (0)足( A ) ,但f 不 . ' (0) ' (0)关于 ( D ) :若 f (x) 在 x 0可导,1f (2 h) f (h)''lim [ f (2 h) f ( h)] lim[2] 2 f (0)f (0)hhhh h 2.( D) 成立 .反之( D) 成立l im( f (2h ) f (h )) 0 f (x) 在 x 0 连续 ,f (x) 在 x 0 可h导.如f (x) 2x 1, x 00, x 0满足( D),但f (x) 在x0 处不连续,因而 f 也不.'(0)'(0)再看( C) : fpgfpg1 h sin h f (h sin h) h sin h f (t)lim f (h sin h) lim lim2 2 2h h h0 0 sin 0h h h h h t( 当它们都时) .注意,易求得h sin hlim 02h 0h.因而,若 f ( C) 成立.反之若( C) 成立' (0)' (0)l imt 0f (t)t( 即f ) .因为只要'(0)' (0) f (t)t有界,任有( C) 成立,如 f (x) | x|满足( C) ,但f ' (0) 不.因此,只能选( B) .( 4) 【分析】由 4 3| E A| 4 0,知矩阵Aの特征值是4,0 ,0, 0.又因A 是实对称矩阵, A 必能相似对角化,所以A与对角矩阵 B 相似.作为实对称矩阵,当A B 时,知A与B有相同の特征值,从而二次型Tx Ax 与Tx Bx 有相同の正负惯性指数,因此A与B 合同.所以本题应当选( A) .注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1 0A 与0 21 0B ,0 3它们の特征值不同,故A 与B 不相似,但它们の正惯性指数均为2,负惯性指数均为0.所以 A 与B 合同.( 5) 【分析】解本题の关键是明确X 和Yの关系:X Y n ,即Y n X ,在此基础上利用性质:相关系数XY の绝对值等于 1 の充要条件是随机变量X 与Y 之间存在线性关系,即Y aX b ( 其中a,b是常数) ,且当a 0 时, XY 1 ;当a0 时, XY 1,由此便知XY 1,应选( A) .事实上, Cov( X ,Y) Cov( X ,n X ) DX , DY D(n X ) DX ,由此由相关系数の定义式有XY Cov( X ,Y) DXDX DY DX DY1.三、【解】原式=x1 1 dex 2 x 2 x xarctane d(e ) [e arctane ]2x 2x2 2 e (1 e )=x x1 de de2 x x(e arctan e )2x 2 x 2 e 1 efpgfpg= 122 x x x x(e arctan e e arctan e) C .四、【解】先求(1) f (1, f (1,1)) f (1,1) 1 .求ddx 3 2 ' '(x) |x 3 (1) (1) 3 (1),归结为求1' (1).由复合函数求导法d' ' '(x) f (x, f ( x, x)) f (x, f ( x, x)) f ( x, x)1 2dx,' ' ' ' '(1) f (1,1) f (1,1)[ f (1,1) f (1,1)] .1 2 1 2注意' f1f (1,1)(1,1) 2x,f (1,1)'f (1,1) 32y.因此d' (1) 2 3(2 3) 17 , 3(x) |x 3 17 51.1dx五、【分析与求解】关键是将arctan x展成幂级数,然后约去因子x,再乘上 21 x 并化简即可.直接将arctan x 展开办不到,但'(arctanx) 易展开,即1' n 2n(arctan x) ( 1) x , | x| 121 xn 0, ①积分得n( 1)x x' n 2n 2n 1arctanx (arctant ) dt ( 1) t dt x , x [ 1,1]. ②0 02n 1n 0 n 0因为右端积分在x 1 时均收敛,又a rctan x 在x 1 连续,所以展开式在收敛区间端点x 1成立.现将②式两边同乘以21 xx得2 n n n 2n 21 x ( 1) ( 1) ( 1) x2 2n 2narctanx (1 x ) x xx 2n 1 2n 1 2n 1n 0 n 0 n 0=n n 1 ( 1) ( 1)2n2nx x n 0 n 02n 1 2n 1fpgfpg=1 1n 2n1 ( 1) ( )x2n 1 2n 1n 11n 1n( 1) 221 4n2nx , x [ 1,1], x 0上式右端当x 0时取值为1,于是n( 1) 22nf (x) 1 x , x [ 1,1].21 4n n 1上式中令x 1n 1n( 1) 1 1 1[ f (1) 1] (2 1)21 4n2 2 4 4 2.六、【解】用斯托克斯公式来计算.记S为平面x y z 2上L 所为围部分.由L の定向,按右手法则S取上侧, Sの单位法向量1n (cos ,cos ,cos ) (1,1,1).3于是由斯托克斯公式得cos cos cosI dSx y z S2 2 2 2 2 2y z 2z x 3x y=S1 1 1 [( 2y 4z) ( 2z 6x) ( 2x 2y) ]dS3 3 3= 2 2(4x 2y 3z)dS(利用x y z 2) (6 x y)dS.3 S 3 S于是'2 '21 Z x Z y 1 1 1 3 .按第一类曲面积分化为二重积分得2I (6 x y) 3dxdy 2 (6 x y)dxdy ,3 D D其中 D 围S在xy 平面上の投影区域| x | | y | 1( 图).由D 关于x, y 轴の对称性及被积函数の奇fpgfpg偶性得(x y)dxdy 0D2I 12dxdy 12( 2) 24.D七、【证明 】 ( 1) 由拉格朗日中值定理 ,x (1, 1) , x 0 , (0,1) ,使'f (x) f (0) xf ( x)(与x 有关 ) ;又由 f '' (x) 连续而 f '' (x) 0, f ''(x) 在 (1, 1) 不变号 , f ' (x) 在 (1, 1) 严格单调, 唯一.( 2) 对f x 使用 ' ( ) ' ( ) f の定义 .由题 ( 1) 中の式子先解出 '' (0)'' (0) f x ,则有' ( ) ' ( )'f (x) f (0) f ( x)x. 再改写成'''f (x) f (0) xf (0) f ( x) f (0)x.'''f ( x) f (0)f (x) f (0) xf (0) 2xx,解出 ,令 x0 取极限得1''f (0)'''f (x) f (0) xf (0)f ( x) f (0) 21limlim/ lim2''x 0x 0x 0(0)2xxf.八、【解】 ( 1) 设t 时刻雪堆の体积为 V (t) ,侧面积为 S(t ) .t 时刻雪堆形状如图所示先求S(t ) 与V (t) .侧面方程是2222(x y )h (t) 22z h(t )(( x, y) D : xy)xyh(t )2.z 4x z 4y ,xh(t )yh(t ).fpgfpg2 2 2z 2 z 2 h (t) 16( x y )S(t) 1 ( ) ( ) dxdy dxdyx y h(t )D Dxy xy.作极坐标变换: x r cos , y r sin ,则1D :0 2 ,0 r h(t ) .xy2112 h(t)2 22S(t) d h (t) 16r rdrh(t )0 03 12 1 h(t ) 132 2 2 2 2[h (t) 16r ] | h (t ).h(t ) 48 12用先二后一の积分顺序求三重积分h(t )V (t) dz dxdy ,D (x)其中2 22(x y )D( z): h(t ) z(t)h(t ),即2 2 1 2x y [h (t) h(t) z] .2h t( ) 12 3 3 3V (t) [ h (t) h(t )z]dz [h (t) h(t ) ] h (t) .2 2 2 4( 2) 按题意列出微分方程与初始条件.体积减少の速度是d VdtdV,它与侧面积成正比( 比例系数0.9) ,即0.9 Sdt将V (t) 与S(t) の表达式代入得 3 2 ( ) 0.9 13 2( )dhh t h t4 dt 12,即dh dt 1310. ①h (0) 130 . ②( 3) 解①得13h(t ) t C . 由②得C 130 ,即1013h(t ) t 130 .10令h(t) 0 ,得t100.因此,高度为130 厘米の雪堆全部融化所需时间为100 小时.九、【解】由于i (i 1,2 s) 是1, 2, s 线性组合,又 1 , 2, s 是Ax 0の解,所以根据齐次线性方程组解の性质知( 1,2 )i i s 均为Ax 0の解.从1, 2 , s 是A x 0の基础解系,知s n r ( A) .fpgfpg下面来分析1, 2 , s 线性无关の条件.设k1 1 k2 2 k s s 0,即(t k t k s ) (t k t k ) (t k t k ) (t k s t k s ) s 0 .1 12 1 2 1 1 2 2 2 2 13 3 2 1 1由于1, 2, s 线性无关,因此有t k t k0,1 12 s0,t k t k2 1 1 2t k t k0, (*)2 2 1 3t k t k0.2 s 1 1 s因为系数行列式t 0 0 0 t1 20 0 0t t2 1s s 1 s0 t t 0 0 t ( 1) t, 2 1 120 0 0 t t2 1k1 k2 k s 0.所以当s s 1 st1 ( 1) t2 0 时,方程组(*) 只有零解从而1, 2, s 线性无关.十、【解】( 1) 由于AP PB ,即2 23 2 2 A( x, Ax, Ax) (Ax, A x, A x) ( Ax, A x,3 Ax 2A x)0 0 02(x, Ax, A x) 1 0 3 ,0 1 20 0 0B 1 0 3 . 所以0 1 2( 2) 由( 1) 知A B ,那么A E B E ,从而fpgfpg1 0 0| A E | | B E | 1 1 3 4.0 1 1m m n m十一、【解】( 1) P{Y m| X n} C p (1 p) ,0 m n,n 0,1,2, .n( 2) P{ X n,Y m} = P{ X n} P{Y m | X n}nm m n m= (1 ) ,0 , 0,1,2, .e C p p m n nnn!十二、【解】易见随机变量(X1 X n 1) ,( X2 X n 2 ) , ,( X n X2n) 相互独立都服从正态分布2N(2 ,2 ) .因此可以将它们看作是取自总体2N(2 ,2 ) の一个容量为nの简单随机样本.其样本均值为n 2n1 1( X X ) X 2Xi n i in ni 1 i 1,样本方差为n1 12(X X 2X ) Yi n in 1 n 1i 1.因样本方差是总体方差の无偏估计,故1E( Y) 2n 12,即 2E(Y ) 2(n 1) .fpg。
2001-数一真题、标准答案及解析

形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2
2001年考研数学一试题及完全解析(Word版)

yOx2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________.(5)设随机变量X 的方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y'=的图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处的法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处的切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导的充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h→-存在.(4)设1111400011110000,,1111000011110000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 的相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan .四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x 的幂级数,并求级数∑∞=--1241)1(n nn 的和.六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分) 设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内的任一0x ≠,存在惟一的)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立;(2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)的雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21 为线性方程组0Ax =的一个基础解系,11122t t βαα=+,21223,t t βαα=+,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21 也为0Ax =的一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)的泊松分布,每位乘客在中途下车的概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率; (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分) 设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(的数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是div grad r|(1,2,2)-=(1,2,2)22|3r -=.(3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A 的元素没有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处的切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时).注意,易求得20sin lim0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t→(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A 的特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当AB 时,知A 与B 有相同的特征值,从而二次型T x Ax 与T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确X 和Y 的关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρ的绝对值等于1的充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有1XY ρ===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++.四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===.求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=.五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n ∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f n ππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L 的定向,按右手法则S 取上侧,S 的单位法向量(cos ,cos ,cos )3n αβγ==. 于是由斯托克斯公式得222222cos cos cos 23SI dS x y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=[(24(26(22]333Sy z z x x y dS --+--+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=-+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上的投影区域||||1x y +≤(图).由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对'()f x θ使用''(0)f 的定义.由题(1)中的式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x xθθθ---⋅=, 解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===.八、【解】 (1)设t 时刻雪堆的体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤.⇒2(003()22221()()2113[()16]().()4812t t S t d h t h t r h t h t πθππ==⋅+=⎰用先二后一的积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件.体积减少的速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t 的表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时.九、【解】由于(1,2)i i s β=是12,,s ααα线性组合,又12,,s ααα是0Ax =的解,所以根据齐次线性方程组解的性质知(1,2)i i s β=均为0Ax =的解.从12,,s ααα是0Ax =的基础解系,知()s n r A =-.下面来分析12,,s βββ线性无关的条件.设11220s s k k k βββ++=,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=.由于 12,,s ααα线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*)因为系数行列式12211211221000000000(1)000s s st t t t t t t t t t +=+-, 所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====.从而12,,s βββ线性无关.十、【解】 (1)由于AP PB = ,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知AB ,那么A E B E ++,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,mmn mn P Y m X n C p p m n n -===-≤≤=.(2){,}P Xn Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσ的一个容量为n 的简单随机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。
2001年考研数学一试题答案与解析

2001年考研数学一试题答案与解析一、(1)【分析】 由通解的形式可知特征方程的两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r rr r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=.(2)【分析】 grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭.再求 divgrad r=()()()x y z x r y r z r ∂∂∂++∂∂∂ =222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=.于是 divgra d r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分的累次积分,因为10y -≤≤时12y -≤.由此看出二次积分是二重积0211(,)ydy f x y dx --⎰⎰分的一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分的内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵的元素没A 有给出,因此用伴随矩阵、用初等行变换求逆的路均堵塞.应当考虑用定义法.因为 2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即2()2A E A E E +-⋅=.按定义知11()(2)2A E A E --=+. (5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤, 于是2()1{()2}22D x P XE X -≥≤=. 二、(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x>时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对.应选(D ).(2)关于(A ),涉及可微与可偏导的关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面在(,)z f x y =(0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线的参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点处的切(0,0,(0,0))f 向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===.因此,(C )成立. (3)【分析】 当(0)0f =时,'0()(0)lim x f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知201lim (1cos )h f h h →-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃.关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-. ⇒(D )成立.反之(D )成立0l i m ((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但在处不连续()f x 0x =,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h →-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要有界()f t t ,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由43||40E A λλλ-=-=,知矩阵的特征A 值是4,0,0,0.又因是实对称A 矩阵,A 必能相似对角化,所以与对角矩A 阵B 相似.作为实对称矩阵,当A B 时,知与有相同的A B 特征值,从而二次型与T x Ax T x Bx 有相同的正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦,它们的特征值不同,故A 与B 不相似,但它们的正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题的关键是明确和的关XY系:X Y n +=,即Y n X =-,在此基础上利用性质:相关系数的绝XY ρ对值等于1的充要条件是随机变量与之间XY存在线性关系,即Y aX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数的定义式有(,)1XY Cov X Y DXDX DY DX DYρ-===-.三、【解】原式=222211arctan ()[arctan ]22(1)x x x x xx xde e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x x x xde de e e e e---++⎰⎰=21(arctan arctan )2x x x xe e e e C ---+++. 四、【解】先求(1)(1,(1,1))(1,1)1f f f ϕ===.求32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法'''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意 '1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y∂==∂.因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】关键是将展成arctan x 幂级数,然后约去因子x ,再乘上并化简21x +即可. 直接将展开办arctan x不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n n n x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ② 因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得2222220001(1)(1)(1)arctan (1)212121n n n n n n n n n x x x x x x x n n n +∞∞∞===+---=+=++++∑∑∑=12200(1)(1)2121n n n n n n x x n n -∞∞==--++-∑∑ =21111(1)()2121nnn x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑,[1,1]x ∈-,0x ≠上式右端当时0x=取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑.上式中令1x =21(1)111[(1)1](21422442n n f nππ∞=-⇒=-=⨯-=--∑.六、【解】用斯托克斯公式来计算.记为平面上所S2x y z ++=L为围部分.由L的定向,按右手法则取S 上侧,S 的单位法向量1(cos ,cos ,cos )(1,1,1)3n αβγ== .于是由斯托克斯公式得222222cos cos cos 23SI dSx y z y z z x x y αβγ∂∂∂=∂∂∂---⎰⎰=111[(24)(26)(22)]333Sy z z x x y dS --+--+--⎰⎰ =22(423)(2)(6)33S Sx y z dS x y z x y dS -++++=-+-⎰⎰⎰⎰利用.于是'2'211113x y Z Z ++=++=.按第一类曲面积分化为二重积分得2(6)32(6)3D DI x y dxdy x y dxdy =-+-=-+-⎰⎰⎰⎰,其中围在平面D S xy 上的投影区域||||1x y +≤(图).由关于轴的对D ,x y 称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰⇒ 21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使'()(0)()f x f xf x θ=+(θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一. (2)对使用的定义'()f x θ''(0)f .由题(1)中的式子先解出'()f x θ,则有'()(0)()f x ff x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=, 解出θ,令x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】(1)设时刻雪堆的t 体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示,先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤.⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒ 22222()16()()1()()()xyxyD D z z h t x y S t dxdy dxdy x y h t ∂∂++=++=∂∂⎰⎰⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则1:02,0()2xy D r h t θπ≤≤≤≤. ⇒12()2220013()222221()()16()2113[()16]|().()4812h t h t S t d h t r rdr h t h t r h t h t πθππ=+=⋅+=⎰⎰用先二后一的积分顺序求三重积分()0()()h t D x V t dz dxdy=⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-.⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰. (2)按题意列出微分方程与初始条件. (3)体积减少的速度是dVdt-,它与侧面积成正比(比例系数0.9),即将与的表达0.9dV S dt =-()V t ()S t 式代入得22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-. ①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t =.因此,高度为130厘米的雪堆全部融化所需时间为100小时. 九、【解】由于是线性组(1,2)i i s β= 12,,s ααα 合,又12,,s ααα 是0Ax =的解,所以根据齐次线性方程组解的性质知均为(1,2)i i s β= 0Ax =的解.从是的基础解12,,s ααα 0Ax =系,知()s n r A =-.下面来分析线12,,s βββ 性无关的条件.设11220s s k k k βββ++= ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++= .由于线性无关12,,s ααα ,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩(*) 因为系数行列式1221121122100000000(1)000s s st t t t t t t t t t +=+-,所以当112(1)0s s st t ++-≠时,方程组(*)只有零解120s k k k ==== .从而线性无关12,,s βββ .十、【解】(1)由于AP PB =,即22322(,,)(,,)(,,32)A x Ax A x Ax A x A x Ax A x Ax A x ==-2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦.(2)由(1)知A B ,那么A E B E ++ ,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m mn m n P Y m X n C p p m n n -===-≤≤= .(2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm mn m n e C p p m n n n λλ--⋅-≤≤=十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X + 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体的一个容2(2,2)N μσ量为的简单随n 机样本.其样本均值为21111()2n ni n i i i i X X X X n n +==+==∑∑,样本方差为2111(2)11n i n ii X X X Y n n +=+-=--∑. 因样本方差是总体方差的无偏估计,故21()21E Y n σ=-,即.2()2(1)E Y n σ=-。
华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000年攻读硕士学位研究生入学试题考试科目:数学分析一.(24分)计算题: (1)011lim();ln(1)x x x→-+(2)32cos sin ;1cos x xdx x⨯+⎰ (3)设(,)z z x y =是由方程222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.二.(14分)二、设 n n ne )11(+=,*N n ∈;1)11(++=n n nE ,*N n ∈;证明: (1)}{n e 是严格递增的;(2)}{n E 是严格递减的; (3)用对数函数x ln 的严格递增性质证明:111ln 11n n n⎛⎫<+< ⎪+⎝⎭,对一切n ∈N *成立. 三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f在(),a b 内可导,'|()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同理在点b 左连续). 四.(14分)设12(1).nn I x dx =-⎰证明:(1)1221n n nI I n -=+,n=2,3…;(2)2,3n I n≥n=1,2,3….五(12分)设S 为一旋转曲面,由平面光滑曲线{(),[,](()0)z y f x x a b f x ==∈≥饶x 轴旋转而成。
试用二重积分计算曲面面积的方法,导出S 的面积公式为'22()1()baA f x fx dx π=+⎰(提示:据空间解几知道S 的方程为222()y z f x +=)六(24分)级数问题:(1)设sin ,0()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩,求()(0)k f。
(2)设1nn n a =∑收敛,lim 0n n na →∞=证明:111()nnn n n n n n a a a +==-=∑∑。
(3)设{()}n f x 为[],a b 上的连续函数序列,且()(),[,]n f x f x x a b ⇒∈证明:若()f x 在[],a b 上无零点。
华东师大数学分析答案完整版

华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
数学分析课后习题答案(华东师范大学版)

P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C xxdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴Cx x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx xx x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102⑿C x dx x dx x x x +==⎰⎰81587158⒀ Cx dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C ee e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()( P.188 习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C ex d e dx xe x x x +==⎰⎰222222241)2(41 ⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112 ⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1( ⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xx x dx dxx dx+===+⎰⎰⎰2tan 2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdx x dx xdxx x dx 222sin cos sin cos 1)cos 1(cos 1 C xx xxd x ++-=--=⎰sin 1cotsin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1πππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dx x x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin 解法二:C x x xd xx xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dx x x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56tdx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx x x x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f ex f x f x f +=='⎰⎰)()()()()( 4.证明:⑴ 若⎰=dx x I nn tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan212, 所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I nm sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m n m11sin cos 11sin cos),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而31-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx x x dx x x dx xx x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x ⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得 41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dxx x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122 ⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x)12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dxcos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x 其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx x xx 1112解 令 x x t +-=11,则2211t t x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴Cx x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx xx x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x xde x x d x e dx x x e dx x esin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令⑹C x x d xx x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,CxC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin ⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x Cx B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,duu dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+=C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan 32312arctan 32arctan ⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx u v b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I. ..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大数学分析2001年试卷
一、(30分)简单计算题
(1) 验证当x →∞时,20
2x
t x e dt ⎰
与2
x e 为等价无穷大量.
(2) 求不定积分
2ln(1)
x dx x +⎰.
(3) 求曲线积分 2
(cos )sin OA
I y y dx x ydy =
-+⎰,其中有向曲线 OA
为沿着正弦曲线sin y x =从O (0,0)到点A (,0)π.
(4) 设f 为可微函数,222()u f x y z =++,并有方程 23326x y z xyz ++=,试对以
下两种情形分别计算
u
x
∂∂在点0(1,1,1)P 处的值; 1) 由方程确定了隐函数(,)z z x y =; 2) 由方程确定了隐函数(,)z z z x =;
二、(12分)求椭球2222221x y z a b c ++=与锥面222
2220x y z a b c
+-=(0)z ≥所围成的立体.
三、(12分)证明:若函数()f x 在有限区域(,)a b 内可导,但无界,则其导函数'
()f x 在(,)
a b 内必无界.
四、(12分)证明:若
1
n
n a
∞
=∑绝对收敛,则
1
2
1
()n
n n a a a
a ∞
=+++∑ 亦必绝对收敛。
五、(17分)设()f x 在[0,1]上连续,(1)0f =,证明:
1. {}n
x 在[0,1]上不一致收敛;
2.
{}()n
f x x 在[0,1]上一致收敛;
六、(17分)设函数()f x 在闭区间[],a b 上无界,证明:
1. {}[],n x a b ∃⊂,使得lim ();n n f x →∞
=∞
2.
{}[],c a b ∃⊂,使得0,(),f x c δδδ∀>+ 在(c-)[a,b]上无界.
(此题鼓励多)
2001年华东师范大学硕士研究生招生考试
<数学分析>试题解答
一、⑴用洛必达法则验证:
22
222
222l i m 2l i m 0
0x x
x
t x x x
t x xe
xe dt e e dt e x +=⎰⎰+∞
→+∞→ 1lim
2
2
+=⎰
+∞
→x x
t x xe
dt
e
1)
21(lim
2
2
2
++=+∞
→x e e x x
x
110=+=
⑵
⎰⎰-+=+)1
()1l n ()1l n (2x
d x dx x x ⎰+++-
=)
1()1ln(1x x dx
x x C x
x x x ++++-=1ln )1ln(1
⑶2
π
-
=I
⑷第一种情况:
).22)(('222x zz x z y x f x
u
+++=∂∂ xy z yz
xy z yz z x 221636322---
=---
=
.0)
1,1,1(=∂∂x
u
第二种情况:FOR xz
y yz
y x 6463---
=
SO ,
).3(')22)((')1,1,1(222)
1,1,1(f yy x z y x f x
u x -=+++=∂∂
二、设立方体在xy 平面的投影区域为:
⎭⎬⎫
⎩
⎨⎧≤+=21),(2222b y a x y x D 。
⎰⎰⎪⎪⎭
⎫ ⎝⎛+---=D dxdy b y a x c b y a x c V 222222221。
令2
1:',,sin ,cos 2
≤===r D abr J ar y ar x θθ。
⎰
⎰
--=
π
θ20
21
022)1(abrdr r r c d V ⎰
--=2
1
22)1(2dr r r r abc π
abc π3
2
2-=。
三、(反证法):若)('x f 在),(b a 上有界,设M x f ≤)('。
则对任意取定),(b a c ∈,对一
切),(b a x ∈有)()(')()()()(c f c x f c f c f x f x f x +-⋅≤+-≤ξ
*
=+-≤M c f a b M )()(
导致与)(x f 在),(b a x ∈上无界的条件矛盾,故证得)('x f 在),(b a x ∈上必定无
界。
四、 因为
∑∞
=1
n n
a
收敛,所以存在0>M ,使
M a a a n ≤+++ 21, n n n a M a a a a ≤+++⇒)(21 。
又因为
∑∑∞
=∞
==1
1
n n n n
a M a
M 收敛,故由优级数列判别法推得
∑∞
=+++1
21)(n n n
a a a a
也收敛。
五、
⑴⎩⎨
⎧=∈=∞
→1
,1)
1,0(,0lim x x n 。
由于)(01)0(sup 1
0∞→→/=-<≤n x n
x ,因此{}n x 在)1,0[不一致收敛,故在[0,1]上更
不一致收敛。
⑵由于0)1(=f ,因此
]1,0[,0)(lim ∈∀=∞
→x x x f n
n
0>∀ε,因f 在1=x 左连续,故0>∃δ,当]1,1(δ-∈x 时,满足 ε<=-)()1()(x f f x f 于是当]1,1(δ-∈x 时,有
+∈∀<≤-N n x f x x f n
,)(0)(ε,
说明{}
n x x f )(在]1,1(δ-∈x 上一致连续。
又在]1,0[δ-∈x 上,因为)(x f 在[0,1]上连续,故存在最大值0>M (若
M=0,则0)(≡x f ,结论显然成立)。
此时有
)(0)1(0)(sup 10∞→→-≤--≤≤n M x x f n
n
x δδ
,
所以{}
n x x f )(在]1,0[δ-∈x 上一致连续。
综上证得{}
n x x f )(在[0,1]上一致连续。
六、
⑴ 因为f 在],[b a 上无界,故],[,0b a x M ∈∃>∀,使M x f >)(。
现取),2,1( ==n n M ,相应地),2,1](,[ =∈∃n b a x n ,使得n x f n >)(, 故∞=∞
→)(lim n n x f 。
⑵证明:(利用致密性原理)
因为⑴中所得的{}],[b a x n ⊂,故存在收敛子列,设为 ],[lim b a c x k n k ∈=∞
→
0,01>∃>∀K δ,当1K k >时, ],[);(b a c x k n ⋂∈δ 。
另一方面。
因为∞=∞
→)(lim n n x f ,故0,02>∃>∀K M ,当2K k >时
使M n f k >)(。
综上,当{}21,max K K K k =>时,同时有 ],[);(b a c x k n ⋂∈δ ,M n f k >)(,
于是f 在],[);(b a c ⋂δ上无界。
说明:利用有限覆盖原理亦可以完成证明。