精馏塔提馏段的温度控制系统

合集下载

常用串级和分程控制(介绍)

常用串级和分程控制(介绍)
结果:温度控制不稳定
概述
解决办法:再加入一个蒸汽流量控制系统,可控制 流量稳定。
FC
TC
问题:两套控制系统不能协调,甚至出现矛盾
温度控制系统要求增加或减小蒸汽流量,而流量控制 系统却只能根据事先的流量设定值进行定值控制。
概述
串级控制系统:两套控制系统的协调控制
FC
TC
特点:两个控制器,一个调节阀
- PID正反作用确定 . 先确定副控制器 调节阀选为气开型(故障关FC),特性为正作用; 流
量偏大时,阀门流通量应少, 对象特性为反作用; 所以 PID控制器应选正作用;
调节阀选为气关型(故障关FO),特性为反作用, PID控制器应选反作用;
串级控制系统
. 再确定主控制器 主控制器PID特性,不再需要考虑阀门特性和
一个控制器(主控制器)的输出送到另一个控制器 (副控制器)的给定,副控制器的输出送到控制阀ຫໍສະໝຸດ 述温度控制器流量控制器
控制阀
流量变送器
温度变送器
流量对象
温度对象
特点:两个闭环环路,内环和外环 内环:副环,副控制器、副对象、副变送器 (流量) 外环:主环,主控制器、主对象、主变送器 (温度)
概述
主环,定值控制系统,给定值由工艺设定,主控制
例:精馏塔提馏段温度控制系统 1)副环干扰 2)主环干扰
串级控制系统的特点
串级系统具有一定的自适应能力
自适应问题:控制器的参数往往是根据一定的控制对象设置的, 当控制对象特性发生变化时(非线性特性,操作条件变化、负 荷变化),原来好的控制器参数就变得不好了(不适应了) 串级系统中,副控制系统是随动系统,主控制器可根据操作条 件的变化,不断修改副控制器的给定值——自适应能力 “能力有限”,自适应控制(现代控制技术)

第七章 精馏塔的控制

第七章 精馏塔的控制

j LR x j
D,XD
F,ZF Vs y k Ls x k-1 ↑ ↓ k
VS VR , LS LR F
进料为气相,且为露点,则:
Ls B,xB
VR Vs F , LR LS
物料平衡示意图
其它情况下的进料较为复杂,
VR Vs 1 q F LS LR qF
4、节能与经济性
回收率:
Ri 组分i的产品流量 100 % 进料中组分i的流量
例如:丙烯—丙烷塔,进料流量F,丙烯含量Ei,塔顶丙烯 产品流量D,则丙烯回收率 =D/(FEi )×100% 其他的丙烯进入到塔底的丙烷产品中。
能耗-产品纯度-回收率的关系
能耗不变时,产品纯度↑,回收率↓ 保证产品纯度时,能耗↑,回收率↑,但回收率增加 到一定程度时,提高的就不明显了。 保证产品纯度的前提下,权衡回收率与能耗,选择最 佳的回收率与能耗搭配,使得产量尽量多些,能耗尽量少 些。
LR 定义回流比: R D
,则:
LR LR R VR LR D R 1
可通过回流比R和再沸器蒸汽量V→内部物料平衡→yj+1 回流比R↑,y~x斜率↑ 全回流(R=∞,D=0)时, yj+1 =xj为对角线
(3)提镏段物料平衡
再沸器物料平衡:
B LS VS
提馏段操作 线方程
个气泡时的温度称为泡点
全部变成饱和气相的温度称为露点。
精馏塔原理示意图
1、工艺流程 2、分类

板式塔 筛板塔、泡罩塔、浮阀塔
穿流塔、浮喷塔、浮舌塔

填料塔
增加气液两相的接触面积 乱堆填料,规整填料
精馏塔物料流程图
3、机理复杂、控制难度大

精馏塔的控制要求

精馏塔的控制要求

精馏塔的控制要求2.1 质量指标混合物分离的纯度是精馏塔控制的主要指标。

在精馏塔的正常操作中,产品质量指标就必须符合预定的要求,即保证在塔底或塔顶产品中至少有一种组分的纯度达到规定的要求,其他组分也应保持在规定的范围内,因此,应当取塔底或塔顶产品的纯度作为被控变量。

但是,在线实时监测产品纯度有一定的困难,因此,大多数情况下是用精馏塔内的“温度和压力”来间接反应产品纯度。

对于二元精馏塔,当塔压恒定时,温度与成分之间有一一对应的关系,因此,常用温度作为被控变量。

对于多元精馏塔,由于石油化工过程中精馏产品大多数是碳氢化合物的同系物,在一定的塔压下,温度与成分之间仍有较好的对应关系,误差较小。

因此,绝大多数精馏塔当塔压恒定时采用温度作为间接质量指标。

2.2 平稳操作为了保证精馏塔的平稳操作,首先必须尽可能克服进塔之前的主要可控扰动,同时缓和一些不可控的主要扰动,例如,对塔进料温度进行控制、进料量的均匀控制、加热剂和冷却剂的压力控制等。

此外,塔的进出物料必须维持平衡,即塔顶馏出物与塔底采出物之和应等于进料量,并且两个采出量的变化要缓慢,以保证塔的平稳操作。

另外,控制塔内的压力稳定,也是塔平衡操作的必要条件之一。

2.3 约束条件为了保证塔的正常、平稳操作,必须规定某些变量的约束条件。

例如,对塔内气体流速的限制,塔内气体流速过高易产生液泛,流速过低会降低塔板效率;再沸器的加热温差不能超过临界值的限制等。

3精馏塔的温度控制精馏塔控制最直接的质量指标是产品的组分,但产品组分分析周期长,滞后严重,因而温度参数成了最常用的控制指标,即通过灵敏板进行控制[3]。

3.1 精馏段温度控制精馏段温控灵敏板取在精馏段的某层塔板处,称为精馏段温控。

适用于对塔顶产品质量要求高或是气相进料的场合。

调节手段是根据灵敏板温度,适当调节回流比。

例如,灵敏板温度升高时,则反映塔顶产品组成XD下降,故此时发出信号适当增大回流比,使XD上升至合格值时,灵敏板温度降至规定值。

隔离壁精馏塔的简化温差控制

隔离壁精馏塔的简化温差控制
Hu a n g Ke j i n , Wu Ni n g , C h e n Ha i s h e n g , L u a n S h  ̄u n
( C o l l e g e o f I n f o r ma t i o n S c i e n c e a n d T e c h n o l o g y, B e i j i n g U n i v e r s i t y o f C h e mi c a l T e c h n o l o g y, B e i j i n g 1 0 0 0 2 9 , C h i n a )
第 8卷
第 9期 中 国 科 技 文 CH I NA S CI ENCEPAPER
Vo1 . 8 No . 9
2 0 1 3年 9月
隔 离 壁 精 馏 塔 的 简 化 温 差 控 制
黄克谨 , 吴 宁 , 陈海 胜 , 栾 淑君
( 北 京化 工 大 学 信 息 科 学与 技 术 学 院 , 北京 1 0 0 0 2 9 )
Ab s t r a c t :Al t h o u g h d i v i d i n g - wa l l d i s t i l l a t i o n c o l u m n( DW DC)c a n r e d u c e c o n s i d e r a b l y c a p i t a l i n v e s t me n t a n d u t i l i t y c o n s u mp t i o n,
c o n t r o l s t r a t e g y .By e mp l o y i n g t wo t e mp e r a t u r e c o n t r o l l o o p s i n t h e r e c t i f y i n g a n d s t r i p p i n g s e c t i o n s ,t wo t e mp e r a t u r e d i f f e r e n c e c o n t r o l l o o p s a r e u t i l i z e d t O g u a r a n t e e t h e s e p a r a t i o n o p e r a t i o n i n t h e p r e f r a c t i o n a t o r a n d ma i n t a i n t h e q u a l i t y o f t h e i n t e r me d i a t e p r o d u c t .I n t h i s c a s e ,t h e t e mp e r a t u r e d i f f e r e n c e c a n b e s i n g l e ,d o u b l e ,o r e v e n mu l t i p l e t e mp e r a t u r e d i f f e r e n c e .Th e s e p a r a t i o n o f a t e r n a r y mi x t u r e o f b e n z e n e ,t o l u e n e ,a n d o - x y l e n e i s u s e d t o e v a l u a t e t he p r o p o s e d s i mp l e t e mp e r a t u r e d i f f e r e n c e c o n t r o l s t r a t e g i e s .Th e s i mp l i f i e d d o u b l e t e mp e r a t u r e d i f f e r e n c e s c h e me a p p e a r s t o b e s u p e r i o r t o t h e s i mp l i f i e d s i n g l e t e mp e r a t u r e d i f f e r e n c e a n d c o n v e n t i o n a l t e mp e r a t u r e a n d t e mp e r a t u r e d i f f e r e n c e c o n t r o l s c h e me s ,i n n o t o n l y d y n a mi c p e r f o r ma n c e b u t a l s o t h e c a — p a b i l i t y o f s u p p r e s s i n g e x t e r n a l d i s t u r b a n c e s . Th e s e r e s u l t s d e mo n s t r a t e t h a t a p p l i c a t i o n s o f t h e s i mp l i f i e d t e mp e r a t u r e d i f f e r e n c e

串级控制系统的原理及设计

串级控制系统的原理及设计

串级控制系统的原理及设计中应注意的问题摘要:介绍了串级控制系统的基本原理,性能和设计中应注意的几个问题。

关键词:内环;外环;增益;时间常数;对象;共振现象;积分饱和现象。

1、概述1.1串级控制系统介绍单回路控制系统只用一个调节器,调节器只有一个输入信号,即只有一个闭环,在大多数情况下,这种简单系统能够满足工艺生产的要求。

但是也有一些另外的情况,譬如调节对象的动态特性决定了它很难控制,而工艺对调节质量的要求又很高;或者对调节对象的控制任务要求特殊,则单回路控制系统就无能为力了。

另外,随着生产过程向着大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,为此,需要在单回路的基础上,采取其他措施,组成复杂控制系统。

串级控制是改善调节过程的一种极为有效的方法,并且在实际中得到了广泛的应用。

我厂的生产过程自动控制系统中,串级控制系统是应用最为广泛的复杂控制系统。

1.2(简单控制系统)图1.1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料流进行传质传热。

为了保证生产过程顺利进行,需要把提馏段温度t保持恒定。

为此,在蒸汽管路上装一个调节阀,用它来控制加热蒸汽流量。

从调节阀动作到温度t发生变化,需要相继通过很多热容积。

实践证明,加热蒸汽压力的波动对温度t的影响很大。

此外,还有来自液相加料方面的各种扰动,包括他的流量、温度和组分等,它们通过提馏段的传质传热过程,以及再沸器中的传热条件(塔釜温度、再沸器液面等),最后也影响到温度t。

当加热蒸汽压力较大时,如果采用图1.1所示的简单控制系统,调节质量一般都不能满足生产要求。

如果采用一个附加的蒸汽压力控制系统,把蒸汽压力的干扰克服在入塔前,这样也提高了温度调节的品质,但这样就需要增加一只调节阀并增加了蒸汽管路的压力损失,在经济上很不合理。

比较好的方法是采用串级控制,如图1.2所示。

过程控制习题课

过程控制习题课

测量变送器和执行器与控制器(续)
题1:定值控制系统的过渡过程有几种形式?工程上一般要求为哪种过渡过程形式? 随动系统一般要求为哪种过渡过程形式? 答:五种,分别是:非周期发散过程、非周期衰减过程、发散振荡过程、等幅振荡 过程、衰减振荡过程等。 工程上一般要求为衰减振荡的过渡过程形式。随动系统一般要求为单调过程。 题2:一生产过程,被控对象为一阶特性,控制器为纯比例控制器,控制中还是发 生了衰减振荡过程?为什么?
Q2
R3
dh Q1 Q2 Q3 A dt R2 R3 h H s Wo ( s ) Q2 R2 Q1 s AR2 R3 s R2 R3 h Q3 R3
过程动态特性及建模(续)
R1 Q1
题2: (1) 列写过程微分方 程组;
h1 h2 Q12 R12
Q2
R2
将流量方程代入物料平衡方程, 即得到过程状态方程
过程动态特性及建模(续)
dh1 C1 Q1 Q2 Q12 , dt dh2 C2 Q12 Q3 dt h h Q2 1 , Q3 2 , R2 R3
h1 h2 Q12 R12
H1 ( s ) 1 Q1 (s) Q2 (s) Q12 (s), C1s
1 Q12 (s) Q3 (s) H 2 ( s) C2 s
H1 ( s ) H 2 ( s) Q2 ( s) , Q3 ( s) , R2 R3 H1 ( s ) H 2 ( s ) Q12 ( s) R12
5 如图所示为蒸汽加热器控制系统,若被控对象控制通道的传递函数为 Go s 7s 4 调节阀的传递函数为 GV s 1 控制器TC的传递函数为 GC s 1

精馏塔提馏段温度控制系统.doc

精馏塔提馏段温度控制系统.doc

University of South China过程控制仪表课程设计设计题目:精馏塔提馏段温度控制系统**:***班级:自动化073班学号:***********指导教师:高飞燕唐耀庚2 0 1 0年12 月31日1、系统简介精馏操作是炼油、化工生产过程中的一个十分重要的环节。

精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。

这些都给自动控制带来一定的困难。

同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。

精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。

在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案:当塔釜液为主要产品时,常常按提馏段指标控制。

如果是液相进料,也常采用这类方案。

这是因为在液位相进料时,进料量的变化,首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变化,所以采用提馏段控制温度比较及时。

另外如果对釜底出料的成分要求高于塔顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几倍最小回流比时,可采用提馏段控制。

提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。

2、设计方案及仪表选型2.1控制方案的确定图2-1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。

为了保证生产过程顺利进行,需要把提馏段温度θ。

保持恒定。

为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。

从调节阀的做到温度θ发生变化,需要相继通过很多热容积。

实践证明,加热蒸汽压力的波动对θ的影响很大。

此外,还有来自液相加料方面的各种干扰,包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。

精馏塔的温度控制

精馏塔的温度控制

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:摘要随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。

采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。

将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。

所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。

由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。

影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。

采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。

使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。

关键词:提馏段;温度;串级控制;超驰控制目录第1章绪论 (1)第2章课程设计的方案 (2)2.1概述 (2)2.1.1 物料平衡关系 (2)2.1.2 能量平衡关系 (3)2.2设计方案 (3)2.2.1控制方案类型 (3)2.2.2控制方案的选择 (4)第3章系统各仪表选择 (9)3.1检测变送器的原理 (9)3.1.1 温度变送器的选择 (9)3.1.2 流量变送器的选择 (10)3.2执行器的选择 (11)3.3调节器的选择 (12)3.4调节器与执行器、检测变送器的选型 (14)电磁流量计 (14)第4章系统仿真 (15)4.1串级控制系统MATLAB仿真分析 (15)第5章课程设计总结 (18)第6章参考文献 (20)第1章绪论精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南华大学过程控制仪表课程设计设计题目精馏塔提馏段的温度控制系统学生XXX专业班级自动化X X X学号XXXXXXXXXX指导老师XXX2012年6月25日目录1.系统简介与设计目的 (2)2.控制系统工艺流程及控制要求 (3)3.设计方案及仪表选型 (4)3.1控制方案的确定 (4)3.2控制系统图、方框图 (5)4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7)4.1检测元件 (7)4.1.1铠装热电偶特点 (7)4.1.2铠装热电偶主要技术参数 (7)4.2变送器 (7)4.2.1变送器主要技术指标 (7)4.3调节器 (8)4.4执行器 (8)4.4.1电/气阀门定位器作用 (8)5.绘制仪表盘电气接线图,端子接线图 (10)6.仪表型号清单 (11)7.设计总结 (12)参考文献 (13)1.系统简介与设计目的精馏操作是炼油、化工生产过程中的一个十分重要的环节。

精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏塔是一个多输入多输出的对象,它由很多级塔板组成,在机理复杂,对控制要求又大多较高。

这些都给自动控制带来一定的困难。

同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。

精馏塔的控制最终目标是,在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。

在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。

如果是液相进料,也常采用这类方案。

这是因为在液位相进料时,进料量的变化,首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变化,所以采用提馏段控制温度比较及时。

另外如果对釜底出料的成分要求高于塔顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几倍最小回流比时,可采用提馏段控制。

提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。

精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

2. 控制系统工艺流程及控制要求(1)控制系统的简单介绍,工艺流程分析;(2)各环节仪表的选型、仪表的工作原理及性能指标;(3)仪表间的配接说明;(4)绘制工艺流程原理框图;(5)给出仪表型号清单;(6)绘制仪表盘电气接线图,端子接线图。

3.设计方案及仪表选型3.1控制方案的确定图3-1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料进行传热传质。

为了保证生产过程顺利进行,需要把提馏段温度θ。

保持恒定。

为此在蒸汽管路上装上一个调节阀,用它来控制加热蒸汽流量。

从调节阀的做到温度θ发生变化,需要相继通过很多热容积。

实践证明加热蒸汽压力的波动对θ的影响很大。

此外,还有来自液相加料方面的各种干扰包括它的流量、温度和组分等,它们通过提馏段的传质过程,以及再沸器中传热条件(塔釜温度、再沸器液面等),最后也影响到温度θ。

很明显当加热蒸汽压力波动较大时,如果采用如图3-1所示的简单单回路温度控制系统,调节品质一般不能满足生产要求。

由于存在这些扰动故考虑串级控制系统。

图3-1精馏塔提馏段单回路温度控制方案串级控制系统(如图3-2),与单回路控制系统相比有一个显著的区别,即其在结构上多了一个副回路,形成了两个闭环----双闭环或称双环。

串级控制系统在结构上与电力传动自动控制系统中的双环系统相同,就其主回路外环来看是一个定值控制系统,而副回路环则为一个随动系统。

以加热炉串级控制系统为例,在控制过程中,副回路起着对炉出口温度的“粗调”作用,而主回路则完成对炉出口温度的“细调”任务。

与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说仅增加了一个测量变送器),但控制效果却有显著的提高。

其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统有如下几点的改善:①改善了被控过程的动态特性提高了系统的工作频率。

②对二次扰动有很强的克服能力。

③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

综上所述根据系统工艺要求决定在系统设计中采用闭环串级控制方式。

图3-2一般闭环串级控制系统3.2控制系统图、方框图本系统为了较好的达到控制目标采,用如图2-3所示的提馏段温度串级控制系统。

副调节器QC2根据加热蒸汽流量信号控制调节阀,这样就可以在加热蒸汽压力波动的情况下,仍能保持蒸汽流量稳定。

但副调节器QC2的给定值则受主调节器θC1的控制,后者根据温度θ改变蒸汽流量给定值Qr,从而保证在发生进料方面的扰动的情况下仍能保持温度θ满足要求。

用这个方法以非常有效地克服蒸汽压力波动对于温度θ的影响,因为流量自稳定系统的动作很快,蒸汽压力变化所引起的流量波动在2至3s以就消除了,而这样短暂时间的蒸汽流量波动对于温度θ的影响是很微小的。

进料加热蒸汽图2-3精馏塔提馏段温度控制串级控制系统图串级控制系统方块图如图2-4所示,它有俩个闭环系统:副环是流量自稳定系统,主环是温度控制系统。

图3-4提馏段温度串级控制系统框图主参数:塔底物料温度θ副参数:加热蒸汽流量Q控制量:蒸汽阀开度一次扰动D1:加热蒸汽压力的波动对θ的扰动。

二次扰动D2:来自液相加料方面的各种干扰;包括它的流量、温度和组分等,它们通过提馏段的传质过程以及再沸器中传热条件(塔釜温度、再沸器液面等)。

4.各个环节仪表的选型,仪表的工作原理以及性能指标4.1检测元件本系统选择铠装热电偶4.1.1铠装热电偶特点:1.热响应时间小,减少动态误差2.可弯曲安装使用3.测量围大4.机械强度高,耐压性能好4.1.2铠装热电偶主要技术参数:1.精度等级:I级或II级2.公称直径:Φ13.弯曲直径:R≥5D4.公称压力:常压测量500℃以上的高温,它可以直接测量各种生产过程中从0℃~800℃围的液体、蒸汽和其气体介质以及固体表面的温度,铠装热电偶响应时间τ0.5(秒)。

4.2变送器本系统的变送器用于温度的变送,故选择温度变送器。

其中较为常用的有模拟式温度变送器,一体化温度变送器以及智能式温度变送器三种。

本系统采用典型的模拟式温度变送器中的DDZ-III型热电偶温度变送器,属安全火花型防爆仪表。

还可以与检测元件热电偶相匹配。

将温度信号线性转换为统一标准信号。

本系统选择KBW-1121热电偶温度变送器4.2.1主要技术指标:1、输入信号:最小量程≥3mV最大量程<80mV(根据配用热电偶而定)2、输出信号:1~5V d.c 或4~20mA d.c3、负载电阻:0~500Ω4、精度:±0.5%(量程围≥5mV)±1.0%(5mV量程围≥3mV5、工作条件:环境温度:5~40℃相对湿度:10%-75%供电电源:24V±10%周围空气中不含有腐蚀性气体6、功耗:2W4.3调节器用DDZ-III型PID调节器TDM-400。

原理:调节器的正,反作用的选择要根据控制系统所包括的各个环节的情况而定,这样只要根据被控参数与变送器放大倍数的符号及整个控制回路开环放大倍数的符号为“负“的要求,就可以确定调节器的正,反作用,本系统,调节器因选反作用。

性能指标:输入信号:1-5V直流电压,外给定信号:4-20ma直流电流,负载电阻:250欧-750欧。

4.4执行器本系统使用电/气阀门定位器。

4.4.1电/气阀门定位器作用:1.将4~20mA或0~10mA转换为气信号,用以控制气动调节阀2.它还能够起到阀门定位的作用图4.4气源压力对应阀门开度实验图当输入I O→对主杠杆2产生向左的力F1 →主杠杆绕支点反时针偏转→挡板13靠近喷嘴15→P a↑→使阀杆向下移动→并带动反馈杆9绕支点4偏转→凸轮5也跟着逆时针偏转→从而使反馈弹簧11拉伸→最终使阀门定位器达到平衡状态。

此时,一定的信号压力就对应于一定的阀杆位移,即对应于一定的阀门开度。

本系统选用M52286系列电子式电动执行器主要技术参数:电源:AC220±50%,50HZ。

耗电功率(额定负载时):规格A型执行器50VA;规格B型执行器150VA;规格C型执行器220VA。

输入信号:DC4~20mA或DC1~5V输出信号:DC4~20mA(负载电阻500Ω以下)。

控制精度:基本误差:±1% 回差≤1% 死区≤1%工作行程调整围:“零点”±25%“行程”20%~100%阀的选择:本系统选择电/气阀门定位器:YT-1050输入信号:4~20mA DC阻抗:250 +/- 15 Ohm供给压力:1.4~7.0kgf/cm2(20~100 psi)行程:直行程:10~150mm, 角行程:0~900 5.绘制仪表盘电气接线图,端子接线图图5.1 电器接线图6给出仪表型号清单:表6-1 仪表清单7.设计总结在为期一个多星期的课程设计中,遇到过很多很多的问题,但我通过很多有效地途径,例如上网查相关资料,问身边的同学与朋友,或者请教本专业的老师,都得到了解决。

在设计过程中,从拿到题目,方案的设计到方案的确定,都经过了严谨的思考,回路的设计调节器的正反作用的确定,被控参数的选择,使系统能够达到设计目的。

通过这次设计,我对过程控制系统在工业中的运用有了深入的认识,对过程控制系统设计步骤、思路有一定的了解与认识。

我学到了控制系统的设计方法和步骤,拓展了知识面,了解了工业工程中控制系统起到的重要作用。

与此同时,在团队的协作中使我们在与人共事之中学会交流学会合作。

参考文献[1].毅,宝芬,曹丽,彭黎辉.自动检测技术及仪表控制系统[M].:化学工业,2009[2].方崇智译.过程控制系统[M].化学工业,1982[2].周泽魁.控制仪表与计算机控制装置[M].:化学工业,2007[3].金以慧.过程控制[M].:清华大学,2010[4].寿松.自动控制原理[M].:科学,2009[5]毅,宝芬,曹丽等.自动检测技术及仪表控制系统[M].:化学工业,2001年.[6] 乾斌,光斌,玲.MTALAB原理与应用[M].华中科技大学,2002[7] 楼然苗,光飞.MTALAB设计实例[M].航空航天大学,2003[8] 彭军.过程控制技术[M].电子科技大学,2003[9] 杰,黄鸿.过程控制技术[M].:高等教育,2003[10]华.石油控制理论[D].:大学,2008.。

相关文档
最新文档