Telecom 101_Day-05_GSM Phy Part-1
通信行业名词缩写解释要点

名词缩写解释3G-MSC3G-SGSN 3 rd Gen eration Mobile Switchi ng Centrerd3 Gen eration Servi ng GPRS Support Node GPRS的节点第三代移动交换中心第三代服务ATM Asyn chr on ous Tran sfer Mode 异步传递模式AAL2 ATM Adaptati on Layer type 2 ATM适配层类型2 AS Access Stratum 接入层BSSMAP Base Stati on Subsystem Man ageme nt Applicati on Part 理应用部分基站子系统管CC Conn ecti on Con firm 连接确认CN Core Network 核心网CS Circuit Switched 电路交换PS Packet Switched 分组交换PVC Perma nent Virtual Circuit 永久虚电路RLP Radio Link Protocol 无线链路协议RNC Radio Network Con troller 无线网络控制器RNL Radio Network Layer 无线网络层RFC RAB sub Flow Combi natio n RAB子流组合RFCI RFC In dicator RAB子流组合指SVC 示Switched Virtual Circuit交换虚电路SDU Service Data Unit 服务数据单元SMpSDU Support Mode for predefi ned SDU size 预定义SDU大小的支持模式SAP Service Access Point 业务接入点SRNS Servi ng RNS系统服务无线网络子TrM Tran spare nt Mode 透明模式TNL Tran sport Network Layer 传输网络层UE User Equipme nt 用户设备本文档用到下列缩略语ASC 接入业务类别 BCCH 广播控制信道 C- 控制-CCCH 公共控制信道 DCH 专用信道 DL 下行链路DSCH 下行链路共享信道 DTCH 专用业务信道FAUSCH 快速上行链路信令信道 L1 Layer 1 (物理层) L2 Layer 2 (数据链路层) L3 Layer 3 (网络层) PCCH 寻呼控制信道 PHY 物理层 PhyCH 物理信道RNC 无线网络控制器 RNS 无线网络子系统 RNTI 无线网络临时识别 RRC 无线资源控制 SAP 业务接入点 SDU 业务数据单元 SHCCH 共享信道控制信道 SRNC 服务RNC SRNS 服务RNSTFI 传输格式指示 U- 用户- UE 用户设备 UL 上行链路UMTS 通用移动通信系统 USCH 上行链路共享信道 UTRAUMTS 陆地无线接入UTRANUMTS 陆地无线接入网UPUTRANVC Virtual Circuit C-SAP CBC CBS CTCHCTCH-BS kbps L1 L2 L3 NSAPI UE User Pla neUMTS Terrestrial Radio Access Network 接入网控制业务接入点 小区广播中心 小区广播业务公共业务信道 公共业务信道块集 千比特/秒Layer 1 (physical layer) Layer 2 (data link layer) Layer 3 (n etwork layer) 网络层业务接入点 用户设备用户平面UMTS 陆地无线本文档中应用以下缩略语:AS 接入层C-SAP 控制服务接入点IETF In ter net工程任务组L2 层2 (数据链路层)L3 层3 (网络层)PID 分组标示RFC 请求注解RRC 无线资源控制RTP 实时协议SDU服务数据单元TCP 传输控制协议UE 用户设备UMTS 通用移动通信系统UTRA UMTS陆地无线接入UTRAN UMTS陆地无线接入网缩略语ARQ 自动重发请求BCCH 广播控制信道C- 控制-CCCH 公共控制信道CCH 控制信道CN 核心网DC 专用控制(SAP)DCH 专用信道DL 下行DSCH 下行共享信道DTCH 专用业务信道FCS 帧校验序列GC 通用控制(SAP)HO 切换ITU 国际电信联盟kbps 每秒千比特L1 层1 (物理层)L2 层2 (数据链路层)L3 层3 (网络层)MS 移动站Nt 通知(业务接入点)PCCH 寻呼控制信道PU 净荷PHY 物理层PhyCH 物理信道RNTI 无线网络临时标识RRC 无线资源控制SAP 业务接入点SDU 业务数据单元SHCCH 共享信道控制信道TDD 时分复用TFI 传输格式指示U-UEUL UMTS UTRA UTRAN 用户-用户设备上行链路全球移动通信系统UMTS陆地无线接入UMTS陆地无线接入网GPRS Gen eral Packet Radio ServiceAA ATM BG BSSGP CCU CGI DNS GGSN GSN ICMP IETFIPv4IPv6 L3MMLL-PDULLC MDFG MNRF MSP MTP2MTP3 NSAPI NSS PCU PDCH PDN PDP PTM PTP PVC RAIRRM SGSN SM SM-SC SMS-GMSC SMS-IWMSC SN-PDU SNDC SNDCP TCAP TCP TIDTLLI Anonym ous AccessAsyn chr on ous Tran sfer ModeBorder GatewayBase Stati on System GPRS ProtocolCha nnel Codec UnitCell Global Iden tityDomai n Name SystemGateway GPRS Support NodeGPRS Support NodeIn ter net Con trol Message ProtocolIn ter net Engin eeri ng Task ForceIn ter net Protocol vers ion 4In ter net Protocol vers ion 6Layer 3 Mobility Man ageme ntLLC PDULogical Link Con trolMobile Detached Flag for GPRSMobile statio n Not Reachable FlagMultiple Subscriber ProfileMessage Tran sfer Part layer 2Message Tra nsfer Part layer 3Network layer Service Access Point Ide ntifier Network SubSystemPacket Co ntrol UnitPacket Data CHa nn elPacket Data NetworkPacket Data Protocol, e.g., IP or X.25Poi nt To Multipoi ntPoint To PointPerma nent Virtual CircuitRoute ing Area Ide ntityRadio Resource Man ageme ntServi ng GPRS Support NodeShort MessageShort Message service Service Cen treShort Message Service Gateway MSCShort Message Service In terworki ng MSC SNDCP PDUSubNetwork Depe ndent Con verge nee SubNetwork Depe ndent Con verge nee Protocol Tran sacti on Capabilities Applicati on Part Tran smissi on Con trol ProtocolTunnel Ide ntifierTemporary Logical Link Ide ntityTRAUTran scoder and Rate Adaptor Un缩略BCC:BaseStatio nColourCode.基站色码。
LTE无线及核心网部分1

• EPC核心网网络架构秉承了控制与承 载分离的理念,将2/3G分组域中 SGSN的控制面功能与用户面功能相分 离,分别由两个网元来完成,其中 MME负责移动性管理、信令控制等控 制面功能,SGW负责媒体流处理及转 发等用户面功能。 • GGSN的用户面功能不变,由PGW 承担原GGSN的职能。
• EPC网络架构继承了DT思路,省去传统的基站 控制器(RNC、BSC),基站控制器的大部分功 能转移到基站eNodeB实现,核心网侧最少只需 SAE-GW一个网元实现用户面处理。原来的四级 架构演变为“eNodeB->SAE-GW->外部数据 网”,体现了扁平化的演进思路。
LTE网络基础 LTE频段划分
VBOX onLine
5
LTE网络基础 3GPP组织架构
VBOX onLine
Project Co-ordination Group (PCG)
TSG GERAN
GSM EDGE Radio Access Network
TSG RAN
Radio Access Network
Telecom Management
6
课程内容
LTE网络基础
LTE网络架构
LTE网络结构及网元功能 LTE系统接口和协议
空口协议栈结构 LTE关键技术
7
< 所有信息均为艾优威科技有限公司所有>
LTE网络架构 LTE系统网络架构
EPC S1
8
LTE网络架构 网元功能
接入网和核心网功能划分
eNB2 X2 eNB1
小区间RRM RB控制 连接移动性管 理
VBOX onLine
E-UTRAN提供空中接口功能(包含物理层、MAC、RLC、PDCP、RRC 功能)、以及小区间的RRM功能、RB控制、连接的移动性控制、无线资 源的调度、对eNB的测量配置、对空口接入的接纳控制等。
华为GSM面试

华为 GSM 网络优化面试题目汇总 (参考答案) 目 录
一、工作经验部分................................................................................................................................................................... 4 1、怎样才能更好的做好沟通;............................................................................................................................. 4 2、如果替换成华为的设备后,覆盖比原来的差,局方很生气,应该如何解释;.......................................... 4 3、搬迁前的准备工作有哪些,搬迁注意事项;..................................................................................................4 4、服务规范中,修改数据的五项注意是什么?..................................................................................................4 5、修改数据要做好哪些准备工作和注意哪些问题;..........................................................................................5 7、如果工程师去某个本地网进行网络优化,从
网络优化工作指导手册(GSM网络语音测试优化)V1.1

⽹络优化⼯作指导⼿册(GSM⽹络语⾳测试优化)V1.1 G S M⽹络语⾳测试优化指导⼿册版本号:V1.0⽬录1概述 (5)2ATU测试指标定义 (5)2.1全程呼叫成功率 (5)2.2GSM语⾳质量 (5)2.3语⾳MOS质量 (5)2.4语⾳RxQuality质量(GSM制式) (5)2.5GSM指标定义 (5)2.5.1接通率 (5)2.5.2掉话率 (6)2.5.3覆盖率 (6)2.5.4MOS话⾳质量 (6)2.5.5平均呼叫建⽴时延 (6)2.5.6话⾳质量RxQual (6)2.6道路测试指标(仅供参考,准确程度有待商榷) (7)2.6.1渗透率 (7)2.6.2重复率 (7)2.6.3溢出率: (7)2.6.4平均车速: (7)3测试⽅法 (8)4测试要求 (8)5路测中需要关注处理的现象 (8)5.1某个频点C/I特别低 (8)5.2主叫或被叫掉话 (9)5.3被叫未接通 (9)5.4切换失败 (9)5.5乒乓切换 (10)5.6Rxqual质差 (10)5.7Rxlev弱覆盖 (10)5.8TA过远覆盖 (11)5.9占⽤⼩区时间过短 (11)5.10室内⼩区信号泄露 (11)5.11缺乏主覆盖⼩区 (12)5.12服务⼩区信号强度骤降 (12)5.13刚切⼊的⼩区信号强度骤降 (12)5.14⼩区内各载波信号强度差异过⼤ (12) 5.15⼩区没有开启跳频 (13)5.16MS发射功率异常 (13)6覆盖异常处理 (13)6.1覆盖异常的定义 (13)6.2覆盖异常分析流程 (13)6.3覆盖异常解决⽅案 (14)6.3.1占⽤不合理⼩区处理 (14)6.3.2TA过远覆盖处理 (15)6.3.3缺乏主覆盖处理 (15)6.3.4弱覆盖处理 (16)7质差处理 (19)7.1质差的定义 (19)7.2质差分析流程 (19)7.3质差具体判断 (19)7.3.1硬件故障 (19)7.3.2较为单⼀的频率⼲扰 (19)7.3.3覆盖杂乱带来的复杂的频率⼲扰 (20) 7.3.4弱信号质差 (20)7.4质差解决⽅案 (20)7.4.1频率优化⽅案 (20)7.4.2天线⽅向⾓调整⽅案 (20)7.4.3天线下倾⾓调整⽅案 (21)7.4.4⼩区功率调整⽅案 (21)7.4.5⼩区参数调整⽅案 (22)7.4.6上⾏⼲扰排查⽅案 (22)8掉话处理流程 (23)8.1掉话的定义 (23)8.2掉话分析流程 (23)8.3掉话类型分类 (24)8.4掉话处理解决⽅案 (24)8.4.1弱覆盖掉话解决⽅案 (24)8.4.2质差掉话解决⽅案 (24)8.4.3超TA掉话解决⽅案 (24)9未接通处理流程 (24)9.1未接通的定义 (24)9.2未接通分析流程 (25)9.3未接通类型分类 (33)9.4未接通处理解决⽅案 (34)9.4.1弱信号未接通解决⽅案 (34)9.4.2质差未接通解决⽅案 (34)9.4.3超TA未接通解决⽅案 (34)9.4.4事件未接通解决⽅案 (34)9.4.5随机接⼊失败解决⽅案 (34)9.4.6SDCCH信道分配失败解决⽅案 (35)9.4.7TCH信道分配失败解决⽅案 (36)10其他参考⽂献................................................................................. 错误!未定义书签。
MOTOROLA基站初级培训11

目录MOTOROLA基站初级培训内容:●设备和基本操作(详见已发资料)●常用BTS命令●告警●BTS常见故障及问题处理●空中接口●数据库附录:●连线表●常用缩写时间仓促,有不妥之处,请多包涵常用BTS命令:命令的安全等级BSS 命令根据对系统的影响程度分为三个等级,访问不同的等级需要不同的password。
Level 1、该等级命令可以显示系统参数。
Level 2、在该等级,可以使用所有系统命令,包括更改系统database。
操作者可以更改Level1、Level2的password。
Level 3、该等级除了具有Level2的功能之外,还可以使用executive monitor(emon)。
到此等级需要通过两层password(3stooges,4beatles)。
假如购买了软件Feature,可以更改Level3的password。
●disp_cell <cell_desc>:显示小区有关参数●add_neighbor <src_gsm_cell_id><neighbor_gsm_cell_id> <placement>:添加邻小区<placement>internal 欲添加的neighbour cell 在本BSS中external 欲添加的neighbour cell在本BSS外●disp_neighbor <src_cell_desc>:显示某小区的邻小区●del_neighbor <src_cell_desc|all> <neighbor_cell_desc|all>:删除邻小区●disp_cell_status <location>:显示特定小区或某个站所有小区的状态。
可以看到小区工作状态,SDCCH、TCH的配置和占用情况●disp_bss:显示BSS下所有基站小区的信息●disp_gsm_cells <location>:显示某个site的所有小区信息●disp_rtf_channel <location> <rtf_id1> <rtf_id2> [<timeslot_number>]:显示载频空中接口信道状态,查看TCH、SDCCH等占用情况●disp_mms_ts_usage <location> <mms_id1> <mms_id2>:显示MMS上所有时隙的状态●equip <location> <dev/func_name>:在CM数据库中配置器件或功能●ins_device <location> <dev_name> <id1> <id2>:将器件恢复到工作状态●Lock_device <location> <dev_name> <id1> <id2>:锁定某个器件●unlock_device <location> <dev_name> <id1> <id2>:解锁某个器件●reset_device <location> <dev_name> <id1> <id2>:复位某个器件●reset_site [<location>]:复位基站●disp_act_alarm<location>[<device_name> <dev_id1> <dev_id2>:显示告警●chg_level:改变安全等级缺省的level 2的password 为3stooges缺省的level 3的password 为4beatles●disp_equipment <location> [<dev/func_name> <id1> <id2>:显示器件或功能的配置情况●disp_site:显示当前站号●disp_version:显示软件版本●reattempt_pl <location> <gclk_id1>:时钟重锁●state <location> <dev/func_name> <dev/func_id1> <dev/func_id2>:显示基站器件或功能状态●help [<command>]:显示某个命令的帮助信息参数解释若不输入<command>,则显示在当前security level 下允许使用的所有命令,否则显示有关指定的<command>的帮助信息●man <command>:显示某个命令详细用法●history [<num_commands>]:显示先前输入的命令参数解释若没有输入<num_commands>,系统将形式先前输入的最后23个命令●!!:输入刚才最后一条命令●!s:表示输入刚才最后一条已s字母开头的命令,诸如:!d、!ins等告警:告警严重级别表明此故障发生对系统的影响程度。
IP101G_PHY-to-PHY_ap_20120831

1.Settinga.Hardware circuit0.1 uFIP101GTx + or Rx+ orOriginal PHY-to-PHY CircuitTx - orAt the left side, point C and point E of IP101G should not be connected to neither any resistor nor any power source.At the right side, there are 2 possibilities for the power source of point B—No connection or VDD_B, depending on the vendor’s design. If other vendor’s PHY requires a supply voltage on the central tap of the transformer, then VDD_B should be applied to Point B; otherwise Point B does not need a power source.Note. The AC Bypass Capacitor should be added.2.DC Spec in RX of IP101G PHY to PHYDC typical: 1.65VPeak to Peak: minimum = +- 0.45V, maximum = +- 0.65V3. Simplified PHY to PHY circuitNo matter what the design architecture is, Point B are at the stable DC voltage. From the viewpoint of the AC coupled signal, all stable DC voltage points can be treated as short circuit. The simplified circuit from the Tx side of IP101G to Rx side of other vendor’s PHY can be represented by the following figure.12 mASimplified PHY-to-PHY Circuit4. Amplitude Calculation ModelBecause our concern is the AC coupled signal, we can make the capacitor short and ignore the loading effect of Rx differential load. The final simplified circuit can be represented by12 mA Amplitude Calculation Model0V -VpThe max differential voltage crossing R2 is 300mV. In the other word, +Vp and –Vp are 300mV and –300mV respectively. The real measured value will be less than this, because we bypass the loss of capacitor in the calculation.Because we calculate single end voltage crossing R2 in the above case, the actualdifferential voltage between Rx+ and Rx- is the double value of 300mV. i.e. it’s should be 0.6V. The following figure is the measured differential voltage on both PHY’s Rx side.Vertical Amplitude = 0.600VppThis theory can be applied to other vendor’s PHY, if the other vendor’s PHY also providesa current source.5. How to Tune the Tx/Rx performance•ResistorIn order to achieve the better Rx performance of IP101G, we recommend the designer to set these resistors as R2=R4= 25 ohm ~ 30ohm.Theoretically the designer does not need to tune these resistors, as long as these resistors are within the range.We can derive the differential voltage on Rx+- is within the range between 450mV(min) and 650mV(max). But the actual measured value should be a little smaller than this, because we ignore the loss of AC coupled capacitor in the calculation.6. Connect to IP175C/DIP101G connects to IP175C/D as the following application circuit.0.1 uFIP101GTx + or Rx+ orIP101G PHY-to-PHY IP175C/D CircuitTx - or7. Connect to IP178G/IP175GIP101G connects to IP178G/IP175G as the following application circuit.0.1 uF0.1 uFIP101G IP178G/IP175GTx + or Rx+ orIP101G PHY-to-PHY IP178G/IP175G CircuitTx - or Rx - or(~ABOVE~)。
中国联通GSM无线试题和答案(华为)-1

中国联通GSM无线试题和答案1.【初】一个BM模块最多需要 2 个E3M板、 2 个MCCS板。
一个E3M板可以带__4__个TCSM单元,提供__480__条话路。
2.【初】一块LPN7板可提供 4 条链路,一块LPAD板可提供 32 条链路。
3.【中】BSC BM模块中采用主备用的单板有: BIE 、 MPU 、 NET 。
4.【初】每个AM/CM模块下最多能连接 8 个BM模块。
5.【初】AM/CM中由 GCTN 板完成话音交换, GSNT 板完成信令交换。
6.【初】AM/CM内的通信方式主要有3 种:邮箱方式、串口方式和HDLC方式。
7.【初】自动数据配置台提供初始数据配置功能和动态数据配置功能,此外还提供数据浏览功能。
8.【高】某基站覆盖区内有一个大型体育场,每逢有重大赛事时,该基站话务量会急剧增加,这样的话务量剧增对基站带来的话统指标压力主要反映在TCH(话音信道)拥塞率增高和SDCCH(信令信道)拥塞率增高。
9.【中】MPU的SW1-3拨码开关ON表示负荷分担,OFF表示主备用,正常工作时多模块BSC的MPU该开关应该拨成 ON 。
10.【初】每个BM最多提供8个Pb端口、 64 个BTS、8条七号信令链路、 192 条LAPD链路。
11.【中】自动配置台每次动态设定完数据后都会在操作维护台上备份数据文件,备份文件位置:C:\Omc\SHELL\软件版本号\SYSDATA,备份文件名的样式为“XXXXXX.Dat”, XXX表示“年月日时分秒”, X用2位数据表示。
12.【中】MPU的SW1-3拨码开关ON表示负荷分担,OFF表示主备用,正常工作时多模块BSC的MPU该开关应该拨成 ON 。
13.【初】E3M根据BM的TCSM单元数目进行配置,一块E3M可连接 4 个TCSM单元,当每个BM模块配置2块E3M板时,最多可配置 8 个TCSM单元。
14.【中】在MTP链路性能测量话统任务中,信令链路发送(接收)占用百分比(%)指标超过40 %时,则说明该七号链路过载。
2021年GSM网优题库初级试题平时整理

GSM网优题库初级试题下面哪种办法不可以减轻或抵抗衰弱现象?A、分集接受B、跳频技术C、不持续发射D、频率复用下面哪个号码是唯一辨认移动顾客号码A、MSIDNB、IMSIC、IMEID、MSRN下面哪种状况下一定要进行位置更新?A、从A社区漫游到B社区。
B、从BSC1漫游到BSC2。
C、从MSC1漫游到MSC2。
D、从HLR1漫游到HLR2。
IMSI结合(IMSI attach)和普通位置更新区别在于:A、IMSI结合不需要鉴权,而普通位置更新需要鉴权。
B、IMSI结合不需要告知MSC/VLR,而普通位置更新必要告知MSC/VLR。
C、IMSI结合特指MS开机登记时发现当前社区LAI与SIM卡里存储LAI相似状况,而普通位置更新则指在开机登记或空闲状态时这两LAI不同状况。
D、IMSI结合是对开机登记MS而言,而普通位置更新是对通话状态下MS而言。
如下哪种逻辑信道工作于盗用模式、专用于切换?A、FACCHB、SACCHC、SDCCHD、FCCH如下是手机开机过程中需要占用逻辑信道顺序,哪一项是对的SDCCH AGCH RACH BCCH SCH FCCHTCH SDCCH AGCH RACH SCH FCCHFACCH SACCH TCH SDCCH AGCH RACHSDCCH AGCH RACH PCH基站辨认码BSIC是通过哪个逻辑信道来传送?A、BCCHB、SDCCHC、SCHD、SACCH手机在通话状态下,BSS系统会在空中接口发送如下哪些系统消息:A、系统消息类型1、2B、系统消息类型3、4C、系统消息类型5、5terD、系统消息类型7、8如下哪些系统消息中有邻区BCCH频点列表:A、系统消息类型1、3B、系统消息类型4、6C、系统消息类型2、2terD、系统消息类型7、8“Call Proceeding”是在()过程中被用到?A、MOCB、MTCC、Location UpdateD、Handover顾客位置登记和鉴权在信道上进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GSM Radio – Part 1: Physical Channel Structure1FREQUENCY BANDS AND CHANNELS (2)2GSM TDMA (4)3TDMA FRAME HIERARCHY (6)4BURST STRUCTURE (7)5TDMA MULTIFRAME STRUCTURE (9)5.1Traffic Multiframe (26-Multiframe) (10)5.2Control Multiframe (51-Multiframe) (11)5.3Cell Frequency Configurations (13)5.4TDMA Duplex (16)1 Frequency Bands and ChannelsGSM (Global Systems for Mobile) frequency bands are the radio spectra designated by the ITU (International Telecommunications Union) for the operation of the GSM for mobile systems.Original GSM radio band is 900 MHz (GSM 900). Another band later added to it as DCS (Digital Cellular System) at 1800 MHz (DCS 1800). The most of the world (except North America) uses these bands. These bands are, however, are not available in North America as they were allocated to some other wireless services. The North America uses 850 MHz (GSM 850) and 1900 MHz (PCS 1900). (PCS = Personal Cellular System)There are many GSM mobile stations (MSs) that support all these frequencies in order to make the MS globallycompatible. An MS that supports multiple frequencies is called multiband MS.Besides the standard GSM bands as above there are many special bands exist to meet special requirements/wiki/GSM_frequency_rangesSystem Band Uplink (MHz)Downlink (MHz)Channel NumberT-GSM-380380380.2–389.8390.2–399.8DynamicT-GSM-410410410.2–419.8420.2–429.8DynamicGSM-450450450.4–457.6460.4–467.6259–293GSM-480480478.8–486.0488.8–496.0306–340GSM-710710698.0–716.0728.0–746.0DynamicGSM-750750747.0–762.0777.0–792.0438–511T-GSM-810810806.0–821.0851.0–866.0DynamicGSM-850850824.0–849.0869.0–894.0128–251P-GSM-900900890.0–915.0935.0–960.01–124E-GSM-900900880.0–915.0925.0–960.0975–1023, 0-124R-GSM-900900876.0–915.0921.0–960.0955–1023, 0-124T-GSM-900900870.4–876.0915.4–921.0DynamicDCS-180018001710.0–1785.01805.0–1880.0512–885PCS-190019001850.0–1910.01930.0–1990.0512–810Note 1: The table shows the extents (ranges) of each band and not its center frequencyNote 2: The channel number indicates ARFCN number (discussed later) and includes only the useable channels.There are a number of channels which are reserved and not used for traffic or control. A number of themare used as guard band from the neighboring bands.−P-GSM, Standard or Primary GSM-900 Band−E-GSM, Extended GSM-900 Band (includes Standard GSM-900 band)−R-GSM, Railway GSM-900 Band (includes Standard and Extended GSM-900 band)−T-GSM or TETRA-GSM (TETRA = TErrestrial Trunked RAdio, formerly Trans-European Trunked Radio)•Each GSM bands are divided into uplink (lower frequency sub-band), downlink (upper frequency sub-band) and band gap (middle sub-band). Example: GSM 900•GSM radio channel is 0.2 MHz wide. Each channel has a fixed ID number, called Absolute Radio Frequency Channel Number (ARFCN) as given in the second column of the table below.Example: GSM 900ARFCN 0 represents the 0.2 MHz channel from 890 to 89.2 MHz (usually called 890 MHz channel)ARFCN 1 to 124 represent 890 + ARFCN * 0.2 MHz channelsNote: ARFCN 0 is reserved as a guard band between GSM band and its neighboring band./files/GSM_Quick_Ref.pdfGSM Frequency Calculator: /design/arfcn-calculator.php•GSM represents an ARFCN with a 10-bit number (0 to 1023). When the network assigns a channel to an MS (mobile station) it identifies this number. Example (GSM Layer 3 Message):Ref: Wireless Communications Systems and Networks, By Mullett, Thomson Publisher•Each ARFCN channel is a duplex channel and consists of an up and a down links. When we say ARFCN 1 we mean uplink 890.2 MHz and its downlink 935.2 MHz channels as a duplex. The uplink and downlink of all ARFCNs maintaina frequency distance equal to band gap + unidirectional bandwidth.Example: GSM 900 has band gap = 20 + 25 = 45 MHzUplink Frequency Range (MHz) Down LinkFrequencyRange(MHz)Bandwidthin eachdirection(MHz)Gapbetween upand downlink (MHz)DuplexDistance(MHzMax. possibleFrequencyChannels GSM 850 824–849 869–894 25 20 45 125 (124 useable)GSM 900 890 – 915 935 – 960 25 20 45 125 (124 useable) GSM 1800 1710 – 1785 1805 – 1880 75 20 95 375 (373 useable) GSM 1900 1850 – 1910 1930 – 1990 60 20 80 300 (298 useable) Note: The signal attenuation increases with frequency rise at a rate of 20 dB/decade. The ulink signal, which islower in frequency, suffers less attenuation. The MS, therefore, requires less transmission power.2 GSM TDMAEach frequency channel or ARFCN (200 kHz bandwidth) is shared by multiple users and/or control signal functions – one at a time. That is, it works in a TDMA (Time Division Multiple Access) fashion. The TDMA scheme divides the channel into 577 µs long time-slots. For a voice channel every 8th time-slot belongs to the same user. That is, a continuous digitized voice stream is sent periodically as data-burst (roughly 577 µs burst for 577 x 8 = 4.6 ms voice). The following figure illustrates the GSM TDMA conceptNote 1: The voice channels are duplex channels.Note 2: The above calculation is to provide the concept. The accurate calculation is little bit complicated and will be discussed later.A voice channel needs every 8th slot. That is why GSM calls a set of consecutive 8 time-slots a TDMA frame (Slot 0 to Slot 7) as shown in the above figure. A particular slot (say, Slot 3) of each of the TDMA frame is the fundamental voice/data-stream channel (called TDMA channel). The following figure illustrates that feature.8 slots8-slot TDMA-frame # 0TimeA frequency-channel carries TDMA frames, which are organized and transmitted as illustrated in the figure above. In the above figure Slot# 3 (with yellow shade) is a TDMA channel. Such a channel can be used for a voice or mix of a variety of control and management signaling (discussed later).A GSM system identifies a time slot using 3-bit code (0 to 7). When the network assigns a slot to an MS (mobile station) it identifies ARFCN and Time-Slot #. Example (GSM Layer 3 Message):Ref: Wireless Communications Systems and Networks, By Mullett, Thomson PublisherEach of the time-slots is the basic unit of a data packet (GSM calls it a data-burst). Thus the multiplexing in GSM takes the following format.GSM band ----- GSM Frequency Channel --------- GSM time-slotRef: Wireless Communications Systems and Networks, By Mullett, Thomson Publisher3 TDMA Frame HierarchyThe data-filled time-slots travel over the air interface one after another in sequence. However, the slots are logically arranged as a hierarchy (see below) – TDMA slots --- TDAM frame ---> Multi-frame ----> Super-frame ------> Hyper-frame.Ref: Wireless Communications Systems and Networks, By Mullett, Thomson PublisherThe hierarchy has a strange structure. The multiframe has two different sizes: 26-multiframe for traffic and 51-multiframe for control channels. The reason of such structures is to solve the following problem:Suppose a voice call is connected to Slot # 4 of a frequency but Slot # 4 of another frequency is set for its paging. In that case the user can not listen to the paging for another call (think call waiting service) if both the frames have the identical period of repetition.With the 26- and 51-multiframe structure a mobile station may miss on page due to coincidence of the voice and the page time-slots but will be able to capture the next repetition of the page since there will be no overlap of those time-slots.There are too many time values to remember. One of the easiest ways to remember all is remembering: •120 ms long 26-multiframe.Note that, a 26-multiframe sends/receives 6 blocks of voice (each of them is 20 ms long).•270.8 kbps bit-rate or 3.69 µS bit-durationThe following table summarizes the numbers./files/GSM_Quick_Ref.pdf4 Burst StructureThe burst is the transmission quantum of GSM. An MS sends or receives signal or information in the form of burst (that is, not continuously).A burst is put in a TDMA-timeslot. That is, a burst is carried by a time-slot. A burst in a time-slot must not overlap thebursts in the previous and next time-slots. Therefore, the time-slot is set to 156.25 bit-periods - bigger than the biggest burst (148 bits). The spare time (minimum 156.25 – 148 = 8.25 bit-periods) is the guard time. That is, Time-slot = burst-period + guard-period.A burst includes:-Information (user data/voice or control/signaling messages)-Tail-bits to allow the signal level to rise to an amplitude-level from zero-level before sending actual information-bits (and vice versa). This consists of all 0s (un-modulated carrier).-Training sequence– some predefined bit-sequence, known to the receiving end, to help extract information bits accurately. It typically consists of alternating 1s and 0s.The internal structure of a burst may have any one of the following five structures depending on the usage.Ref: Wireless Communications Systems and Networks, By Mullett, Thomson PublisherFrequency Correction BurstThis burst format is used by FCCH channel only. The whole data space (142 bits) is used for unmodulated carrier (pure sinusoid) or carrier modulated with all zero bits. The frequency is 1625/24 kHz (or approximately 67 kHz).This pure carrier is the ‘identity’ of a beacon frequency (also called BCCH-frequency or base-frequency) and FCCH slot.Synchronization BurstThis burst format is used by SCH channel only. This channel makes a mobile station time-synchronized with the base station clock. That is why the synchronization training sequence is very large for this burst. Only one training sequence is defined for this burst.Access BurstThis burst format is used by RACH and AGCH channels. When a mobile station sends an RACH message and receives an AGCH reply the MS and the BTS does not have the timing-advance information. For that reason, the actual message is relatively short and have a long guard band (GB) in order to make sure that there will be no overlap with the next burst. The length of the guard band in the access burst (68.25 bits x 3.69 = 251.16 µs) is equivalent to 37.5 kmpropagation delay. The GSM allows a cell radius up to of 35 km. That is, an RACH message from an MS at a distance of up to 35 km from the base station can reach to the base station antenna without overlapping the next burst. The FACCH channel uses this burst during handover operation (when the timing advance of new cell is not yet known). Only one training sequence is defined for this burst.Normal BurstThis burst format is used by all other channels (except FCCH, SCH, RACH and AGCH). That is, a normal burst is used by TCH, SDCCH, SACCH, FACCH, BCCH and PCH. Few important features of the burst is stated below.o Maximum 57 x 2 = 114 bits of voice/data per bursto Flag bit is to indicate if the channel is carrying user traffic (Flag = 0) or control message bits (Flag = 1).That is the flag is 0 for TCH and 1 for others.Dummy BurstThis is like normal burst but has no meaning of its payload bits.5 TDMA Multiframe StructureThe multiframe structure defines how the GSM channels (see below) can be structured.Ref: Wireless Personal Communications Systems, By David Goodman (modified)Note: Cell Broadcast Channel (CBCH) is another dedicated control channel (not shown in the table above)which is used for downlink SMS broadcast. This is a special SDCCH channel. Only one CBCH can be supported per cell5.1 Traffic Multiframe (26-Multiframe)The following figure depicts 26-multiframe structure for TCH/FR and TCH/ER.•Every 8th slot belongs to a TDMA channel. A consecutive 26 such (that is, 8th) slots of a TDMA channel forms a 26-multiframe.•24 out of 26 time-slots of a TDMA channel (Slot # 1 to 12 and 14 to 24) carry voice13th slot (Slot # 12) is for SACCH of that TCH channel26th slot (Slot # 25) is unusedFACCH channel has no time slot since it steals TCH slots whenever required.•24 voice slots of a multiframe carry 6 blocks of 20 ms digitized voice (total 120 ms voice). That is why the length of the multiframe is 120 ms.The following figure depicts 26-multiframe structure for TCH/HR.5.2 Control Multiframe (51-Multiframe)Any TDMA channel (that is every 8th time-slot of a frequency channel) is formatted as a 51-multiframe when used for control channels (other than TCH+SACCH/T+FACCH channels). The following diagram depicts the 51-multiframe structure with an example of base (beacon) frequency.Beacon Frequency Channel•This channel is a Slot # 0 channel (TDMA Channel 0) of a designated GSM frequency for a cell (see the picture above). It is formatted as 51-multiframe.•The first slot (Slot # 0 of the multiframe) of the multiframe is FCCH. The next one is SCH. This pair (FCCH and SCH) repeats 5 times in a multiframe at the designated location (see the figure above)•BCCH channel (4 slots long) appears once per 51-multiframe and it takes Slot # 2 to 4 (3rd, 4th, 5th and 6th slots) •The remaining slots (dotted yellow in the above figure) care common control channels or CCCH (PCH and AGCH) in this example.•Some control channels, such as BCCH, CCCH, SDCCH, SACCH and FACCH, form a message of 4 slots long.•The beacon is a downlink channel. Since GSM always has a pair of frequencies (up and down links) per ARFCN this beacon has its uplink counter part. That uplink contains RACH channel in this example (see the figure below).The following figure depicts a beacon TDMA channel (up and down link) for normal capacity cell. For a lowcapacity cell the number of PCH (downlink) and RACH (uplink) can be reduced and hence some SDCCH or TCH can be accommodated.EXAMPLE 1:.au/~elec5508/lectures/W05_gsm_architecture_and_channel_structure.pdfEXAMPLE 2:/conferences/GSM-NET.pdfNote: SDCCH associates a SACCH channel. The average data rate of SACCH is half of SDCCH and 1/24th of TCH/F, That is why two SDCCH message (4 slots each) pair with one SACCH message. EXAMPLE 3:/conferences/GSM-NET.pdf5.3 Cell Frequency ConfigurationsA GSM base-station (called Base Transceiver Station or BTS) has one or more GSM frequency channels (ARFCN). One of those frequency channels is defined as the base-frequency (beacon frequency or BCCH frequency). The first time-slot (Slot-0) of the base-frequency TDMA is used as the base-control channel (or beacon channel). Remaining part of the frequency channel (Slot-1 to 7) can be used as any mix of traffic and control channels. All other frequencies are mostly for traffic but can also be used for control channels. Mix of traffic and control channels depends on number of frequency channels per BTS (that is the capacity of a cell) and the traffic patterns. Examples:•Infrequent calls need less RACH channels•Shorter calls and/or less number of voice calls need less TCH•High traffic cell has a large number of frequency channels and it is likely that the base-frequency channel will have no traffic channel.GSM standard provides a number of combinations for traffic and control channels in order to suit different conditions. A list of such combinations is given below./images/DELCOM_GSM_LAYERONE.pdf Notes:•TCH/FS = TCH/Full-Slot = TCH/FR; TCH/HS = TCH/Half-Slot = TCH/F•SDCCH/4+ SACCH/4 means four SDCCH channels and two SACCH channels per 51-muliframe SDCCH/8+ SACCH/8 means eight SDCCH channels and four SACCH channels per 51-muliframeA Complete Example:A (SACCH),B (BCCH),C (CCCH = PCH, RACH and AGCH),D (SDCCH), F (FCCH), I(unused), R (RACH), S (SCH), T (TCH)•Typical small capacity cell with only one frequency channelNote 1: TCH/8 + SACCH is, indeed, SDCCH+SACCHNote 2: PAGCH/F is PCH. Note that, many implementations do not reserve any physical location for AGCH. A slot for PCH is also used as a slot for AGCH when required (AGCH has higher priority). It is better namingsuch as channel (PCH/AGCH) as CCCH•Medium Capacity Cell (example: four frequency channels)•Large Capacity Cell (example: twelve frequency channels)5.4 TDMA DuplexOne uplink slot and a downlink slot of a duplex GSM frequency (an ARFCN) forms a pair to provide one voice connection. These slots carry voice traffic bursts. This is called Traffic Channel (TCH) according to GSM terminology. Note that, the slots are like physical carrier, good for any type of data. A duplex pair of them becomes TCH when they are used (or designated) for voice traffic.The timing of uplink and downlink slots maintains a 3-slot distance in order to ensure that a cell-phone does not require transmission and reception operations simultaneously. This helps avoid a number of complexities including the requirement of high peak power, processor speed and large memory. This also helps simplify transceiver circuit.。