Mean parity of single quantum excitation of some optical fields in thermal channel

合集下载

浙江大学 1998 年攻读硕士学位研究生入学考试试题 考试科目 量子力学第一题

浙江大学 1998 年攻读硕士学位研究生入学考试试题 考试科目 量子力学第一题

浙江大学1998 年攻读硕士学位研究生入学考试试题考试科目量子力学第一题:(10 分)(1)写出玻尔-索末菲量子化条件的形式。

(2)求出均匀磁场中作圆周运动的电子轨道的可能半径。

(利用玻尔-索末菲量子化条件r 求,设外磁场强度为B )第二题:(20 分)(1)若一质量为? 的粒子在一维势场V ( x) = ? 级。

(2)若某一时刻加上了形如e sin 为一已知常数)。

? 0, 0 ≤x ≤ a 中运动,求粒子的可能能? ∞, x > a , x < 0 ωx a ,e (1 )的势场,求其基态能级至二级修正(ω?1 2 2 ? ?ωx , x > 0 ,求粒子(质量为? )的可能的能级。

(3)若势能V ( x ) 变成V ( x ) = ? 2 ? ∞, x<0 ? 第三题:(20 分)氢原子处于基态,其波函数形如ψ= ce ? r a ,a 为玻尔半径,c 为归一化系数。

(1)利用归一化条件,求出c 的形式。

(2)设几率密度为P ( r ) ,试求出P ( r ) 的形式,并求出最可几半径r 。

(3)求出势能及动能在基态时的平均值。

? ? (4)用何种定理可把< V > 及< T > 联系起来?第四题:(15 分)?2 ?2 ?2 ? = Lx + Ly + Lz ,转子的轨道角动量量子数是 1 ,一转子,其哈密顿量H 2I x 2I y 2I z ? ? ? (1)试在角动量表象中求出角动量分量Lx ,Ly ,Lz 的形式;? (2)求出H 的本征值。

第五题:(20 分)若基态氢原子处于平行板电场中,电场是按下列形式变化E = ? r ? 0, ? ?ε0 e ? ?t t≤0 η, t >0 ,η为大于零? 的常数,求经过长时间后,氢原子处于2P 态的几率。

设H ′为微扰哈密顿,(( ) ? H′100,210 = 28 aε0 e ?ηt ? ? 5 ?e ;t > 0)H′(当3 2 ( ) 100,21±1 = 0)。

量子多体系统的理论模型

量子多体系统的理论模型

量子多体系统的理论模型引言量子力学是描述微观物质行为的基本理论。

在量子力学中,描述一个系统的基本单位是量子态,而量子多体系统则是由多个量子态组成的系统。

由于量子多体系统的复杂性,需要借助一些理论模型来描述和研究。

本文将介绍一些常见的量子多体系统的理论模型,包括自旋链模型、玻色-爱因斯坦凝聚模型和费米气体模型等。

通过对这些模型的研究,我们可以深入了解量子多体系统的行为和性质。

自旋链模型自旋链模型是描述自旋之间相互作用的量子多体系统的模型。

在自旋链模型中,每个粒子可以处于自旋向上或向下的两种状态。

粒子之间通过自旋-自旋相互作用产生相互作用。

常见的自旋链模型包括Ising模型和Heisenberg模型。

Ising模型Ising模型是最简单的自旋链模型之一。

在一维Ising模型中,每个自旋可以取向上(+1)或向下(-1)。

自旋之间通过简单的相邻自旋相互作用来影响彼此的取向。

可以使用以下哈密顿量来描述一维Ising模型:$$H = -J\\sum_{i=1}^{N}s_is_{i+1}$$其中,J为相邻自旋之间的交换耦合常数,s i为第i个自旋的取向。

Heisenberg模型Heisenberg模型是描述自旋间相互作用的模型,与Ising模型不同的是,Heisenberg模型中的自旋可以沿任意方向取向。

常见的一维Heisenberg模型可以使用以下哈密顿量来描述:$$H = \\sum_{i=1}^{N} J\\mathbf{S}_i \\cdot \\mathbf{S}_{i+1}$$其中,$\\mathbf{S}_i$为第i个自旋的自旋算符,J为自旋间的交换耦合常数。

玻色-爱因斯坦凝聚模型玻色-爱因斯坦凝聚是一种量子多体系统的现象,它描述了玻色子统计的粒子在低温下向基态排列的行为。

玻色-爱因斯坦凝聚模型可以使用用薛定谔方程来描述:$$i\\hbar\\frac{\\partial}{\\partial t}\\Psi(\\mathbf{r},t) = -\\frac{\\hbar^2}{2m}\ abla^2\\Psi(\\mathbf{r},t) +V(\\mathbf{r})\\Psi(\\mathbf{r},t) +g|\\Psi(\\mathbf{r},t)|^2\\Psi(\\mathbf{r},t)$$其中,$\\Psi(\\mathbf{r},t)$是波函数,m是粒子的质量,$V(\\mathbf{r})$是外势场,g是粒子之间的相互作用常数。

简并 量子力学 英语

简并 量子力学 英语

简并量子力学英语English:In quantum mechanics, the concept of degeneracy refers to the situation where multiple different quantum states correspond to the same energy level. This can occur in systems such as atoms, where different orbital and spin configurations can result in the same total energy. Degeneracy is a crucial concept in quantum mechanics as it has far-reaching implications for the behavior and properties of quantum systems. For example, it can affect the spectral lines observed in atomic emission spectra and the fine structure of energy levels in atoms. Understanding and managing degeneracy is therefore essential for accurately predicting and describing the behavior of quantum systems.中文翻译:在量子力学中,简并性的概念指的是多个不同的量子状态对应相同的能级的情况。

这种情况可以出现在原子等系统中,不同的轨道和自旋配置可能会导致相同的总能量。

简并性是量子力学中一个至关重要的概念,因为它对量子系统的行为和性质有着广泛的影响。

量子力学英文名词

量子力学英文名词

第3页/共11页
普丰得系 玻尔量子 化条件级
Pfund series Bohr quantization condition Bohr hydrogen atom Bohr frequency condition Bohr radius energy level
第7页/共11页
势阱
potential well
对应原理 correspondence principle
隧道效应 tunneling effect
能量量子化 energy quantization
主量子数 principal quantum number
角动量量子化 angular quantization
第2页/共11页
康普顿效应 康普顿散射 康普顿波长 反冲电子 莱曼系 帕邢系 布拉开系
Compton effect Compton scattering Compton wavelength recoil electron Lyman series Paschen series Brackett series
第4页/共11页
能带 基态 激发态 弗兰克赫兹实验 德布罗意波 德布罗意波长
energy band ground state excitation state Franck-Hertz experiment
De Broglie wave De Broglie wavelength
第5页/共11页
德布罗意公式 物质波 戴维孙-革末实验
能量子 光电效应 光电子 光电流 遏止电势差 红限 波粒二象性
energy quantum photoelectric effect photo electron photocurrent cutoff potential difference red-limit wave-particle dualism

阿伦尼乌斯公式中指前因子的物理意义

阿伦尼乌斯公式中指前因子的物理意义

阿伦尼乌斯公式中指前因子的物理意义
阿伦尼乌斯公式是描述电子绕核运动轨道的一种数学公式,具体形式为:
mvr = nh/2π
其中m为电子的质量,v为电子的速度,r为电子运动轨道的半径,n为运动轨道的主量子数,h为普朗克常数,π为圆周率。

指前因子nh/2π在阿伦尼乌斯公式中扮演的角色是将角动量量子化。

在经典物理中,角动量可以取任意值;而根据量子力学的原理,角动量是量子化的,即只能取离散的特定值。

阿伦尼乌斯公式中的指前因子nh/2π就是量子化的角动量值。

物理上,角动量是物体围绕某个轴旋转产生的属性,其大小与转动物体的质量、速度和离轴距离有关。

对于电子绕核运动,阿伦尼乌斯公式描述了电子的角动量量化规律。

通过该公式,我们可以知道,对于给定的电子轨道,其角动量只能取离散的特定值。

这一量子化的角动量对于解释原子结构和化学性质具有重要意义。

总而言之,阿伦尼乌斯公式中的指前因子nh/2π用于量子化电子绕核运动的角动量。

凝聚态物理常用理论方法

凝聚态物理常用理论方法

凝聚态物理中的理论方法
凝聚态理论博大精深,研究中使用的方法不计其数。

限于研究者的能力和精力,不是每个人都能精通每种方法,肯定有的研究者从未用到某种方法。

这里抛砖引玉,列出常见的一些方法,请虫友们继续补充。

包含简单介绍更好。

对已有方法进一步介绍也是很有价值的
格林函数方法
• 平衡格林函数(EGF)、温度格林函数(Matsubara形式)
• 非平衡格林函数(NEGF):KB形式、Keldysh形式
• 格点格林函数(LGF)、递推格林函数(RGF)
量子主方程(QME)
• Liouville超算符形式
• 其它形式
密度泛函理论(DF)
重整化群
Kubo公式
路径积分
散射矩阵
传输矩阵、模式匹配
组态相互作用(CI)
数值对角化
Boltzmann方程
• 经典Boltzmann方程
• 半经典Boltzmann方程
•量子Boltzmann方程。

量子纠缠 双缝干涉 英语 范例

量子纠缠 双缝干涉 英语 范例

量子纠缠双缝干涉英语范例Engaging with the perplexing world of quantum entanglement and the double-slit interference phenomenon in the realm of English provides a fascinating journey into the depths of physics and language. Let's embark on this exploration, delving into these intricate concepts without the crutchesof conventional transition words.Quantum entanglement, a phenomenon Albert Einstein famously referred to as "spooky action at a distance," challengesour conventional understanding of reality. At its core, it entails the entwining of particles in such a way that the state of one particle instantaneously influences the stateof another, regardless of the distance separating them.This peculiar connection, seemingly defying the constraints of space and time, forms the bedrock of quantum mechanics.Moving onto the enigmatic realm of double-slit interference, we encounter another perplexing aspect of quantum physics. Imagine a scenario where particles, such as photons or electrons, are fired one by one towards a barrier with twonarrow slits. Classical intuition would suggest that each particle would pass through one of the slits and create a pattern on the screen behind the barrier corresponding tothe two slits. However, the reality is far more bewildering.When observed, particles behave as discrete entities, creating a pattern on the screen that aligns with the positions of the slits. However, when left unobserved, they exhibit wave-like behavior, producing an interferencepattern consistent with waves passing through both slits simultaneously. This duality of particle and wave behavior perplexed physicists for decades and remains a cornerstoneof quantum mechanics.Now, let's intertwine these concepts with the intricate fabric of the English language. Just as particles become entangled in the quantum realm, words and phrases entwineto convey meaning and evoke understanding. The delicate dance of syntax and semantics mirrors the interconnectedness observed in quantum systems.Consider the act of communication itself. When wearticulate thoughts and ideas, we send linguistic particles into the ether, where they interact with the minds of others, shaping perceptions and influencing understanding. In this linguistic entanglement, the state of one mind can indeed influence the state of another, echoing the eerie connectivity of entangled particles.Furthermore, language, like quantum particles, exhibits a duality of behavior. It can serve as a discrete tool for conveying specific information, much like particles behaving as individual entities when observed. Yet, it also possesses a wave-like quality, capable of conveying nuanced emotions, cultural nuances, and abstract concepts that transcend mere words on a page.Consider the phrase "I love you." In its discrete form, it conveys a specific sentiment, a declaration of affection towards another individual. However, its wave-like nature allows it to resonate with profound emotional depth, evoking a myriad of feelings and memories unique to each recipient.In a similar vein, the act of reading mirrors the double-slit experiment in its ability to collapse linguistic wave functions into discrete meanings. When we read a text, we observe its words and phrases, collapsing the wave of potential interpretations into a singular understanding based on our individual perceptions and experiences.Yet, just as the act of observation alters the behavior of quantum particles, our interpretation of language is inherently subjective, influenced by our cultural background, personal biases, and cognitive predispositions. Thus, the same text can elicit vastly different interpretations from different readers, much like the varied outcomes observed in the double-slit experiment.In conclusion, the parallels between quantum entanglement, double-slit interference, and the intricacies of the English language highlight the profound interconnectedness of the physical and linguistic worlds. Just as physicists grapple with the mysteries of the quantum realm, linguists navigate the complexities of communication, both realmsoffering endless opportunities for exploration and discovery.。

基于概率统计的单粒子多单元翻转信息提取方法

基于概率统计的单粒子多单元翻转信息提取方法

Vol. 55 ,No. 2Feb. 2021第55卷第2期2021年2月原子能科学技术Atomic Energy Science and Technology 基于概率统计的单粒子多单元翻转信息提取方法王 購罗尹虹,丁李利,张凤祁,陈伟,郭晓强,王坦(西北核技术研究院强脉冲辐射环境模拟与效应国家重点实验室,陕西西安710024)摘要:航空航天电子系统对电子器件选型评估时需考虑器件的多单元翻转(MCU)情况,而MCU 信息提取面临的最主要困难是缺少器件的版图信息。

本文提出一种基于概率统计的单粒子MCU 信息提取方法,其可在无版图信息条件下以较高精度提取单粒子翻转(SEU)实验数据中的MCU 信息。

该方法通过统计分析SEU 实验数据中不同翻转地址间的按位异或和汉明距离以提取MCU 模板,然后利用该模板提取MCU 信息。

采用一款位交错SRAM 器件的重离子实验数据对上述方法进行了验证,结果表明, 该方法能以较高的精度提取实验数据中的MCU 信息。

该方法可省去对器件进行逆向工程的时间和成本,提高科学研究和航空航天器件选型效率。

关键词:多单元翻转;多位翻转;单粒子翻转;单粒子效应;SRAM 中图分类号:TN407文献标志码:A 文章编号:1000-6931(2021)02-0353-07doi :10. 7538/yzk. 2020. youxian. 0105Statistical Method for Single Event Multiple Cell Upset ExtractionWANG Xun, LUO Yinhong, DING Lili, ZHANG Fengqi, CHEN Wei,GUO Xiaoqiang, WANG Tan(.State Key Laboratory of Intense Pulsed Radiation Simulation and Ef f ect ,North-west Institute of Nuclear Technology , Xi'an 710024 , China)Abstract : In the evaluation of electronic device for aerospace and avionics systems , themultiple cell upset (MCU) of the device should be considered. The main difficulty inMCU extraction is the lack of layout information. In this paper , a statistical method wasproposed to extract MCU from single event upset (SEU) without layout information.Firstly, a MCU template was extracted by means of statistical analysis of the binaryexclusive OR and the binary Hamming distance between the logical addresses of differ ­ent upsets. Then the MCU could be extracted by using the MCU template. Heavy iontest data of an interleaved SRAM were used to verify the method. The results show thatMCU can be extracted with a high accuracy. Using the proposed method, the time and收稿日期:2020-03-02;修回日期:2020-04-20基金项目:国家自然科学基金资助项目(11690043);强脉冲辐射环境模拟与效应国家重点实验室资助项目(SKLIPR1902Z);国防工业抗辐照应用技术创新中心创新基金资助项目(KFZC2019020308)作者简介:王 勋(1988-),男,河南永城人,助理研究员,博士,从事抗辐射加固技术研究354原子能科学技术第55卷cost of reverse engineering can be saved,and the efficiency of related scientific research can be significantly improved.Key words:multiple cell upset;multiple bit upset;single event upset;single event effect;SRAM空间环境中的带电粒子及大气环境中的中子通过引发单粒子效应(SEE)威胁航空航天电子系统的可靠性作为一种特殊的SEE,单粒子多单元翻转(MCU)是单个粒子入射存储器件时,通过在多个敏感单元中沉积能量导致多个存储单元同时发生翻转的现象⑸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :0807.2033v 1 [q u a n t -p h ] 13 J u l 2008Mean parity of single quantum excitation of some optical fields in thermal channelShang-Bin LiShanghai research center of Amertron-global,Zhangjiang High-Tech Park,299Lane,Bisheng Road,No.3,Suite 202,Shanghai,201204,P.R.ChinaThe mean parity (the Wigner function at the origin)of excited binomial states,excited coherent states and excited thermal states in thermal channel is investigated in details.It is found that the single-photon excited binomial state and the single-photon excited coherent state exhibit certain similarity in the aspect of their mean parity in the thermal channel.We show the negative mean parity can be regarded as an indicator of nonclassicality of single-photon excitation of optical fields with a little coherence,especially for the single-photon excited thermal states.PACS numbers:42.50.Dv,03.65.Yz,05.40.CaAmong various kinds of indicators of nonclassicality of optical fields,the partial negativity of the Wigner func-tion (PNWF)indicates the highly nonclassical character of the optical fields.Quantum excitation of general op-tical fields can always exhibit PNWF which will be de-stroyed and eventually completely disappear at the same decay time γt c =ln 2+nπTr[(ˆO e −ˆO o )ˆρ],(1)where ˆO e ≡ ∞k =0|2k 2k |and ˆO o ≡ ∞k =0|2k +1 2k +1|are the even and odd parity operators respectively.Therefore,the value of Wigner function at the origin equals the constant 2dt=γ(n +1)2(2a †ρa −aa †ρ−ρaa †),(2)where γrepresents dissipative coefficient and n denotes the mean thermal photon number of the thermal channel.In the thermal channel described by the master equation (2),the time evolution Wigner function satisfies the fol-lowing Fokker-Planck equation [6]∂2(∂∂pp )W (q,p,t )+γ(2n +1)∂q 2+∂21+c 2]1+n,(6)andγt c 1=ln[2|α|2(1+n )+2n2n =0.5,k =1,M =2,η=0qγt −−−W H q,0Ln=0.5,k =1,M =2,η=0.5qγt W H q,0L n =0.5,k =1,M =2,η=1qγt −−−W H q,0LFIG.1:The cross section W (q,0)of Wigner functions of the EBSs |1,0,2 ≡|1 ,|1,0.5,2 ,and |1,1,2 ≡|3 in thermal channel with n =0.5are plotted as the function of decay time γt .field can be generated by repeated application of the pho-ton creation operator on binomial states [10].The bino-mial states of optical fields can be generated in some non-linear processes [11,12,13].Then,by a scheme similar to that preparing the ECS [7],in which the excited atoms pass through a cavity and provide the field in the cavity is initially in a binomial state,one can produce the EBS.If a traveling optical field in the binomial state has been produced,one can also adopt the experimental scheme of Zavatta et al.[14]to generate the single-photon-excited binomial state.Let us briefly recall the definition of the EBS [10].Then =0.5,k =1,M =3ηγt −−−−0W H 0,0L FIG.2:The value W (0,0)of Wigner function at the originof the EBS with k =1,and M =3in thermal channel with n =0.5is plotted as the function of decay time γt and η.EBS is defined by|k,η,M =N (k,η,M )a †k |η,M ,(8),where|η,M =M l =0(C l M )1/2ηl(1−η2)(M −l )/2|l(9)is the binomial state [15].Here k ,l and M are integers.ηis real number with 0≤η≤1.|l is Fock state.a †(a )is the creation operator (annihilation operator)of the optical mode.N (k,η,M )is normalization constant of EBS,which is given by N (k,η,M )=[η2M (M +k )!η2)]−13n =0.5,k =1,M =4ηγt −−−−0W H 0,0L FIG.3:The value W (0,0)of Wigner function at the originof the EBS with k =1,and M =4in thermal channel with n =0.5is plotted as the function of decay time γt and η.ηγt −−−−0W H 0,0L FIG.4:The value W (0,0)of Wigner function at the origin ofthe EBS with k =2,and M =2in photon loss channel with n =0is plotted as the function of decay time γt and η.the threshold decay time γt c .For η(3)1≤η<1,W (0,0)is initially non-negative and then becomes negative until the threshold decay time γt c .As η=1,W (0,0)is al-ways non-negative.In Fig.3,W (0,0)of Wigner function at the origin of the single-photon EBS with M =4in thermal channel with n =0.5is plotted as the function of decay time γt and η.In this case,for small valuesof η<η(4)1≃0.4,W (0,0)is always negative before thethreshold decay time γt c .For η(4)1≤η<η(4)2≃√πξ3e γt ,ξ=2(¯n −n )+(1+2n )e γt ,κ=−8(¯n −n )(1+n )+2(1+2n )2e 2γt+4[¯n (1+2n )−(1+2n )2]e γt ,(11)where ¯n denotes the mean photon number of the ini-4 tial thermal state.Its mean parity is always negativebefore the threshold decay timeγt c=ln2+n。

相关文档
最新文档