超声波透射法检测基桩混凝土完整性

合集下载

基桩的声波透射法检测

基桩的声波透射法检测

基桩的声波透射法检测1.基本原理及方法混凝土是由多种材料组成的多相非匀质体。

对于正常的混凝土,声波在其中传播的速度是有一定范围的,当传播路径遇到混凝土有缺陷时,如断裂、裂缝、夹泥和密实度差等,声波要绕过缺陷或在传播速度较慢的介质中通过,声波将发生衰减,造成传播时间延长,使声时增大,计算声速降低,波幅减小,波形畸变,利用超声波在混凝土中传播的这些声学参数的变化,来分析判断桩身混凝土质量。

声波透射法检测桩身混凝土质量,是在桩身中预埋2~4根声测管。

将超声波发射、接收探头分别置于2根导管中,进行声波发射和接收,使超声波在桩身混凝土中传播,用超声仪测出超声波的传播时间t、波幅A及频率f等物理量,就可判断桩身结构完整性。

2.适用范围声波透射法适用于检测桩径大于0.6m混凝土灌注桩的完整性,因为桩径较小时,声波换能器与检测管的声耦合会引起较大的相对测试误差。

其桩长不受限制。

3.仪器设备(1)试验装置声波透射法试验装置包括超声检测仪、超声波发射及接收换能器(亦称探头)、预埋测管等,也有加上换能器标高控制绞车和数据处理计算机。

其装置见图37-21。

(2)超声检测仪的技术性能应符合下列规定:接收放大系统的频带宽度宜为5~50kHz,增益应大于100dB,并带有0~60(或80)dB的衰减器,其分辨率应为1dB,衰减器的误差应小于1dB,其档间误差应小于1%。

发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩形脉冲。

显示系统应同时显示接收波形和声波传播时间,其显示时间范围宜大于300μs,计时精度应大于1μs,仪器必须稳定可行,2h中声时漂移不得大于±0.2μs。

(3)换能器应采用柱状径向振动的换能器,将超声仪发出的电脉冲信号转换成机械振动信号,其共振频率宜为25~50kHz,外形为圆柱形,外径Φ30mm,长度200mm。

换能器宜装有前置放大器,前置放大器的频带宽度宜为5~50kHz。

声波透射法检测混凝土灌注桩桩身完整性

声波透射法检测混凝土灌注桩桩身完整性
5. 混凝土灌注近桩顶时,灌注压力不够,易使混凝土局部不密实和夹渣。 6. 正循环法清孔时,应根据孔的深浅,控制洗孔时间或孔口泥浆比重,清
孔时间过短,孔底沉渣太厚,将影响桩端承载力发挥。 7. 水下混凝土必须具备良好的和易性,否则易产生离析现象。 8. 导管连接密封要好,一旦漏水将形成断桩。
灌注方式2 — 干孔灌注
桩在工作时要承受上部结构的竖向荷载,以及上部结 构因风力、水流、撞击等横向推力产生的侧向荷载或 弯矩,承受在地震状态下的复杂应力
一、桩式基础与分类
桩质量对建筑结构物的安全起决定性作用
工程桩—隐蔽工程,不确定因素很多:复杂地 层,技 术水平、施工中人为因素等造成桩身完 整性难于保证,桩基工程质量影响建筑结构正 常安全使用
声波透射法检测混凝土灌 注桩桩身完整性
目录
第一部分 桩基检测技术综述 第二部分 声波透射法检测桩身完整性检测仪器 第三部分 判断桩身完整性的声学参量与测试 第四部分 现场检测技术 第五部分 数据处理技术与判定方法 第六部分 声波透射法检测桩身完整性工程实例 第七部分 桩基完整性声波三维测试方法 第八部分 桩基的相关声波检测技术
按成桩工艺分: 预制桩、原地灌注桩
按桩土相互作用形式: 摩擦桩、端承桩、摩擦-端承桩
二、 灌注桩的承载模式
竖向抗压承载力:竖向受压荷载作用下的最大荷载, 决定于桩身材料强度和地基对桩的极限支承力(主要 因素) 端承桩—桩尖嵌入基岩,将上部压力通过桩身传 入基岩,一般不考虑桩侧摩阻力 摩擦桩—依靠桩壁与土层的摩擦力,将上部压力 逐渐分散传递给土层,桩尖部分承受荷载很小,一 般不超过10% 端承摩擦桩—侧壁摩擦力先发挥,先达到极限, 桩端阻力后发挥,后达到极限,最常见
钻(冲)孔灌注桩-机械成孔,泥浆护壁,放置钢筋笼,灌注混凝土 人工挖孔灌注桩—人工成孔,砖护壁或不护壁,放置钢筋笼,短粗桩 其他方式(静压桩、碎石桩、搅拌桩等)

声波透射法检测公路基桩完整性

声波透射法检测公路基桩完整性

声波透射法检测公路基桩完整性摘要:目前,声波透射法是国内用来检测基桩工程的常用方法之一,也是进行无损检测规范当中最为可靠的手段,经过检测后所得结果,通过分析可以了解到基桩完整性。

通过声波透射法对基桩进行检测,操作起来比较方便,同时检测数据更加直观与可靠,若检测方式本身精度以及可靠度可以进一步提高,将促使声波透射法在基桩检测领域中得到进一步推广。

关键词:声波透射法检测公路基桩完整性1检测原理和检测要求灌注桩成孔之后,再开始浇筑,工作者需要开展被测桩的声测管工作,并固定于钢筋笼之上,将声波发射与接收换能器放在对应的声测管内。

在具体的监测过程中,需要确保在管当中,将清水作为耦合剂注满,对发射换能器检测,发射脉冲,当信号穿透桩体混凝土到达接收换能器后,对信号可进行读取,读出其接收波的频率、声速等内容。

混凝土中所穿入的声波脉冲信号在传播时,可能会出现折、反、多次绕射等情况,造成信号的部分参数发生变化,如波形频率、振动幅度等,在这样的情况下,所接收的信号里会带有相关传播介质密实缺陷、完整度缺陷等。

通过相应的检测设备,分析接收的信号中不同的声参量,并判断出混凝土桩身是否完整,以此更好地了解基桩所存在的问题。

2基桩常见缺陷类型2.1夹泥在进行基桩浇灌的过程中,当地层的稳定性差或者由于泥浆比重配备不当时,易使孔壁坍塌,土体进入混凝土,导致桩身局部夹泥,严重的可能出现断桩现象。

2.2断桩断桩主要表现为声速、波幅和频率急剧下降,波形严重畸变或无接收波形,往往是成片出现,且多个剖面的大致深度范围均存在上述异常情况。

2.3混凝土离析当混凝土和易性不好、搅拌不均匀、水灰比过大或者灌注过程中导管漏水等原因都会产生混凝土离析。

2.4桩顶混凝土疏松桩顶混凝土疏松的产生主要是因为混凝土的浇筑的超灌量不足,桩顶部位的混凝土与泥浆混合在一起,形成桩顶浮浆,导致桩顶部位混凝土强度降低。

2.5沉渣桩底沉渣是在基桩检测中常见的一个问题,导致该问题的主要原因是清孔不够彻底。

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析某高速公路桥梁工程桩,桩径:1600 mm;桩长:43.5 m,桩型钻孔灌注桩。

桩基验收检测方案为超声波透射法检测,分别对次桩依次采用:超声波透射法检测,低应变反射波法检测,钻孔取芯完整性检测,钻孔电视检测四种检测方法对其进行完整性判定。

一、超声波透射法检测检测目的:基桩的完整性仪器型号:RSM-SY7(F)采用四只45KHz超声波跨孔探头,一次提升同时完成四管,六剖面的测试,从超声波测试结果来看,发现有五个剖面在6.8-7.0米处,出现幅值超判据情况。

再对该桩6.9米处异常点波形观察,异常点信号首波幅值和后续谐振波信号都偏弱,但其声速正常。

由于是在同深度,多剖面信号异常,在与施工方沟通排除声测管焊接因素的影响,在做钻孔取芯前,使用低应变反射波法检测进一步查明缺陷情况。

二、低应变反射波法检测检测目的:基桩的完整性仪器型号:RSM-PRT(M)采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

第一次采集结果:信号在6.8米处有较小幅值的同相反射。

第二次采集结果:变换传感器安装位置信号在 6.8米处有较大幅值的同相反射,并可见第二次、第三次缺陷反射。

第三次采集结果:采用频率较高的钢筋敲击,提高缺陷位置精度,同相缺陷反射幅值较小,但也很清晰,可见微弱第二次缺陷反射。

最终低应变检测核定其缺陷位置在距桩顶 6.8米处,与超声波投射法检测缺陷深度相符,因低应变数据缺陷较为严重,怀疑桩大面积断桩,决定采用钻孔取芯进一步验证其缺陷情况。

三、钻孔取芯完整性检测检测目的:基桩的完整性仪器型号:钻孔取芯机采用钻机对该桩进行钻孔取芯检测,着重观察该桩 6.9米处混凝土完整性情况,但通过对芯样的目测观察,在 6.9 米处未取出连续较完整的芯样,以钻孔取芯检测结果出具报告也很难判定该桩缺陷情况。

5、2013年超声波桩基检测技术培训

5、2013年超声波桩基检测技术培训

所以入射角等于反射角(i=β )。
折射定律:入射角(i)的正弦与折射角(θ )
的正弦之比等于入射波与折射波速度之比,即:
Sini v1
Sin v2
(1.16)
图1-11 流体界面上声波的反射与折射 图1-12 固体界面上声波的反射与折射
以上情况可以在流体(气体、液体)的分 界面看到。在这种情况下,介质中只有单一的 波-纵波出现。
增大入射波的入射角,则折射波的折射角亦随之
增大。如果入射波是纵波,且ν 1p<ν 2p则由(1.15)
式可知,θ p>ip,即折射角大于入射角。当ip增大,
θ p也增大,当θ p=90°时,此时的入射角叫第一临 界角,用符号i 1;表示。显然,当入射角大于第一 临界角时,第二种介质中只有折射横波存在,如图
在固体介质分界面的情况则复杂一些。当 一种波(例如纵波)入射到固体分界面时,不 仅波方向发生变化且波型也发生变化,分离为 反射纵波、反射横波,折射纵波和折射横波。 各类波的传播方向(即反射角与折射角)各不 相同,如图1-12所示。
各种类型波的传播方向的变化亦符合几何光 学中的反射定律和折射定律。其数学表达式如 下:
鉴于目前高重建筑、公路桥梁工程大量使用大 直径桩和超长桩,该方法将越来越多的使用在基桩 的检测中。
分四个部分讲解:
声学理论 检测技术 测试方法 工程实例
第一部分 基本原理
波动与声波的概念 声波在介质中的传播速度 声波在介质界面上的反射与透射 声波在传播过程中的衰减 混凝土中的声波特性
固体材料中声波衰减主要有以下几个方面的原因: (1)吸收衰减:声波在固体介质中传播时,由于介质的粘滞 性而造成质点之间的内摩擦,从而使一部分声能转变为热能。 (2)散射衰减:当介质中存在颗粒状结构(如固体介质中的 颗粒、缺陷、掺杂物等)而导致声波能量的衰减。如在混凝土 中一方面其中的粗骨料构成许多声学界面,使声波在这些界面 上产生多次反射、折射和波型转换;另一方面微小颗粒在超声 波的作用下产生新的震源,向四周发射声波,使声波能量的扩 散到达最大。 (3)扩散衰减:声波发射器发出的超声波束都有一定的扩散 角。波束的扩散,导致能量的逐渐分散,从而使单位面积的能 量随传播距离的增加而减弱。

超声波透射法检测桩身完整性解析

超声波透射法检测桩身完整性解析

超声波透射法检测桩身完整性解析摘要:随着我国经济水平的不断提升和建筑工程发展速度的持续提升,在许多混凝土工程中通过超声波透射法检测桩身完整性的方法得到了越来越广泛的应用。

关键词:超声波透射法;灌注桩桩身质量;完整性解析近年来随着我国建筑工程建设事业整体的蓬勃发展,在这一过程中桩基础也开始得到了广泛采用,并且已经开始成为我国建筑工程建设过程中最为重要的一种基础形式。

由于桩基工程的造价在建筑工程中通常占有很大的份额,并且其质量通常也会也直接关系到整个工程的安危。

因此在这一前提下对超声波透射法检测桩身完整性解析就具有极为重要的经济意义和现实意义。

1 超声波透射法简析对超声波透射法进行分析是一项系统性的工作,其主要内容包括了技术原理、使用设备、常用参数等内容的分析。

以下从几个方面出发,对超声波透射法进行了简析。

1.1 技术原理众所周知建筑工程的桩基础通常处于地下位置或者水下位置,大多数属于隐蔽性较强的工程,并且其具有工序繁杂、技术要求高、施工难度大等工程特点,在这些特点的影响下导致了其很容易出现质量问题。

因此可见对于桩基础工程质量检测的研究非常重要。

而声波可以根据其自身波动频率的将其分为次声波、可闻声波、超声波特超声波等不同的声波种类,而人能够听到的声波频率范围通常是20~20000Hz,这一区间内的声波通常也被称为可闻声波,但是当声波的频率超过20000Hz时,人的耳朵无法听到这些声波,这种声波就被称之为超声波。

另外,如果声波在物体中传播时当物体中各质点均进行连续不歇的振动时,这种波就会被称之为连续波,这一连续波就是建筑过程中混凝土检测中常用的脉冲波。

1.2 使用设备在超声波透析法的应用过程中,超声波检测往往需要能够解决声能和电能相互转换的问题,因此这意味着通常会需要使用声波换能器来解决这一问题。

除此之外,工作人员在使用换能器时通常会需要对换能器进行有效的祸合,而祸合的主要目的是在于尽可能的让更多的声波能量能够迅速的进入被测介质中,并且在另一方面能够促使经介质传播后的声波信号最大限度的被测试系统迅速接收,从而在此基础上提升测试系统的工作效率和工作精度。

超声波法检测桩身完整性

超声波法检测桩身完整性

超声波法检测桩身完整性1、适用范围本方法适用于直径不小于800mm的混凝土灌注桩的完整性检测~它包括跨孔透射法和单孔折射法。

2、检测仪器与设备信号放大器、数据采集及处理存储器、径向振动换能器等。

3、现场检测技术3.1检测前的准备应符合下列规定:,1,被检桩的混凝土龄期应大于14d,2,声测管内应灌满清水~且保证通畅。

,3,标定超声波检测仪发射至接收的系统延迟时间t。

0,4,准确量测声测管的内径、外径和两相邻声测管外壁间的距离~量测精度为?1mm。

,5,取芯孔的垂直度误差不应大于0.5%~检测前应进行孔内清洗。

,6,声测管的布置以路线前进方向为起始点~按顺时针旋转方向进行编号和分组~每两根编为一组。

3.2检测方法应符合下列要求:,1,测点间距不宜大于250mm。

发射与接收换能器应以相同标高同步升降~其累计相对高差不应大于20mm~并随时校正。

,2,在对同一根桩的检测过程中~声波发射电压应保持不变。

,3,对于声时值和波幅值出现异常的部位~应采用水平加密、等差同步或扇形扫测等方法进行细测~结合波形分析确定桩身混凝土缺陷的位置及其严重程度。

5、检测数据分析与判定5.1声时修正值按下式计算:=式中——声时修正值,μs,~,t为声波在混凝土中的传播时间~简称声时,,D ——声测管外径,mm,——声测管内径,mm,——换能器外径,mm,——声测管壁厚度方向声速值,km/s,——水的声速值,km/s,5.2声时值按下式计算:t=t-t- i0式中 t——声时值,μs,t——超声波第i测点声时值,μs, it——声波检测系统延迟时间,μs, 0——声时修正值,μs,6、桩身完整性类别判定:?类桩:各声测剖面每个测点的声速、波幅均大于临界值~波形正常。

?类桩:某一声测剖面个别测点的声速、波幅略小于临界值~但波形基本正常。

?类桩:某一声测剖面连续多个测点或某一深度桩截面处的声速、波幅值小于临界值~PSD 值变大~波形畸变。

超声波法检测桩身完整性现场注意事项及实例分析

超声波法检测桩身完整性现场注意事项及实例分析

超声波法检测桩身完整性现场注意事项及实例分析摘要:随着我国科学技术的不断发展,超声波技术得到应用的范围也越来越广,超声探伤、超声测距、超声流量计、超声开关等技术在我国越来越成熟。

超声波技术在桩基完整性检测中的应用,不仅能分析判断基桩的缺陷程度(不能定性夹层、孔洞、断层、缩颈等内部问题)及位置、范围,还可检测混凝土的强度和混凝土的结构质量。

基桩桩身完整性的检测评判方法有很多,如:低应变法、高应变法、声波透射法、钻芯法、孔内摄像法等,各种方法有各自的局限性,判断桩身完整性应根据实际情况进行多种方法互补验证。

由于检测数据的采集处置与现场检测人员的专业素养、技术经验有很大的影响因素,采集过程遇到的各项情况多变,如没有规范的操作和数据异常情况的现场初步判定排查更正记录,极易对采集的数据造成不够科学严谨、真实可靠,也会对数据分析造成很大的影响,造成桩身完整性的误判。

鉴于此,本文阐述了超声波透射法的工作原理以及通过实例分析如何避免现场操作影响超声波透射法检测结果准确度。

关键词:超声波;现场桩身检测;完整性分析引言随着我国建筑行业的飞速发展,建筑工程地基结构的最重要形式就是桩基。

桩基工程的质量检测也就成为了工程建造中最关键的环节,桩基结构的完整性和桩基的承载力对上层建筑结构的安全及稳定起到了决定性的作用。

因而,桩基的监测是整个建设环节中必不可少的,只有桩基的质量检测工作和数据分析结果精准,桩基建设的质量才能得到牢靠的保障。

一、基桩超声波透射法的检测原理超声波透射法适用于桩径在0.8m以上的钢筋混凝土桩基完整性检测。

超声波属于机械波,其传播方式为纵波,检测中将混凝土介质看作是弹性体,声波在桩基内部传播可以看作是弹性波传播。

超声波通过发射换能器,通过水的耦合作用传递到声测管,进一步传递到混凝土介质中,最后到达声测管的接收端。

通过接受换能器接受声波信号,转化为电信号,最后将电信号传递到超声检测装置。

如果混凝土内部缺陷,产生的不连续界面会阻碍声波的传递,从而产生发生绕射与散射,造成声波能量损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接收波主频的变化虽然能反映声波在混凝土中的衰减状况,从而间接反映混凝土 质量的好坏,但声波主频的变化也受测距、仪器设备状态等非缺陷因素的影响, 因此在不同剖面以及不同桩之间的可比性不强,只用于同一剖面内各测点的相对 比较,其测试值也没有声速稳定。因此,目前主频漂移指标仅作为声速、波幅的 辅助判据。
若桩身缺陷太多,不能获得反映桩身混凝土正常波动下测值的平均值、 标准差时,应扩大检测范围或参考同一工程质量较稳定的桩的声速临界 值,来评定多缺陷桩。
采用概率法计算桩身混凝土声速临界值,只考虑了单边情况,即“小值 异常”情况,其原因如下:一方面环境条件恶劣或人为失误造成的过失 误差一般只会引起混凝土质量的恶化,即声速降低,而使测点的声速向 小值方向偏离正态分布;另一方面,即使出现“大值异常”,这样的偏 离是有利于工程结构安全的,不应判为异常点。
声速异常时的临界值判据为:
vi ≤vc0
(5)
当式(5)成立时,声速可判定为异常。
概率法判据应注意的几个问题
以一个剖面的所有测点测值为统计样本,且测点总数不少于20个点,当 桩长很短时,可减小测点间距,加大测试点数。
由于临界值的计算是以正常混凝土的声速分布服从正态分布为前提,统 计计算正常波动下可能出现的最低值。因此参与统计的测点都是正常波 动散测度点增,大异(常sv变点大不)应,该平参均与值统降计低计(算vvmm变和小sv,)否,则影,响将 临使界计值算的统合计理的取离值。
横波
介质质点的振动方向与波的传播方向垂直的波称为 横波,又称为S波。是依靠使介质产生剪切变形引起的 剪切力变化而传播的,它和介质的剪切弹性相关。由 于液体、气体无一定形状,不具备切变弹性,不能承 受剪切应力,所以横波只能在固体介质中传播。
表面波
固体介质表面受到交替变化的表面张力作用,介质表面 质点发生相应的纵向振动和横向振动,结果使质点做这 两种振动的合成运动,即绕其平衡位置作椭圆运动,该 质点的运动又波及相邻质点,而在介质表面传播,这种 波称为表面波,又称R波。表面波传播时,质点振动的振 幅随深度的增加迅速减少,当深度超过2倍的波长时,振 幅已很小了。表面波也只能在固体中传播。
按照《规范》要求,安排检测工作程序。 按照《规范》要求,调查、收集待检工程及受检桩
的相关技术资料和施工记录。 将伸出桩顶的声测管切割到同一标高,测量管口标
高,作为计算各测点高程的基准。 向管内注入清水,封口待检。 在放置换能器前,先用直径与换能器略同的圆钢作
吊绳。检查声测管的通畅情况。 用钢卷尺测量桩顶面各声测管之间外壁净距。
(2) (3) (4)
n-k
20
22
24
26
28
30
32
34
36
38
λ1
1.64
1.69
1.73
1.77
1.80
1.83
1.86
1.89
1.91
1.94
n-k
40
42
44
46
48
50
52
54
56
58
λ1
1.96
1.98
2.00
2.02
2.04
2.05
2.07
2.09
2.10
2.11
n-k
60
62
64
145
λ1
2.33
2.34
2.36
2.38
2.39
2.41
2.42
2.43
2.45
2.46
n-k
150
160
170
180
190
200
220
240
260
280
λ1
2.47
2.50
2.52
2.54
2.56
2.58
2.61
2.64
2.67较,当vn-k≤v0时,vn-k及 其以后的数据均为异常,去掉vn-k及其以后的异常数据; 再用数据v1~vn-k-1并重复式(2)至(4)的计算步骤,直 到vi序列中余下的全部数据满足: vi v0
超声波透射法检测基桩混凝土完整性 授课人:
第一讲
超声波的基本理论
声波透射法的基本原理
基桩成孔后,灌注混凝土之前,在桩内预埋若干根 声测管作为声波发射和接收换能器的通道,在桩身 混凝土灌注若干天后开始检测,用声波检测仪沿桩 的纵轴方向以一定的间距逐点检测声波穿过桩身各 横截面的声学参数, 然后对这些检测数据进行处理、 分析和判断,确定桩身混凝土缺陷的位置、范围、程 度,从而推断桩身混凝土的连续性、完整性和均匀 性状况,评定桩身完整性等级。
66
68
70
72
74
76
78
λ1
2.13
2.14
2.15
2.17
2.18
2.19
2.20
2.21
2.22
2.23
n-k
80
82
84
86
88
90
92
94
96
98
λ1
2.24
2.25
2.26
2.27
2.28
2.29
2.29
2.30
2.31
2.32
n-k
100
105
110
115
120
125
130
135
140
将同一检测面各测点的声速值vi由大到小依次排序,即
v1 v2 ... vi ... vnk ...vn1 vn (1)
式中 vi——按序列排列后的第i个测点的声速测量值; n——某检测剖面的测点数;
k——逐一去掉(1)式vi序列尾部最小数值的数据个数。 对逐一去掉vi序列中最小值后余下的数据进行统计计算,
第二讲
检 测 技术
桩内跨孔透射法
桩内单孔透射法
桩外孔透射法
混凝土内部缺陷对声波波速的影 响
接收声波波幅与混凝土质量
接收声波波幅是表征声波穿过混凝土后能量衰减程度的指标 之一。接收波幅值越低,混凝土对声波的衰减就越大。根据 混凝土中声波衰减的原因可知,当混凝土中存在低强度区、 离析区以及存在夹泥、蜂窝等缺陷时,吸收衰减和散射衰减 增大,使接收波波幅明显下降。幅值可直接在接收波上观察 测量,也可用仪器中的衰减器测量,测量时通常以首波(即 接收信号的前面半个周期)的波幅为准。
波幅的测量是用某种指标来度量接收波首波波
峰的高度,并将它们作为比较多个测点声波信
号强弱的一种相对指标。目前在波幅测量中一
般都采用分贝(dB)表示法,即将测点首波信
号峰值a与某一固定信号量值a0的比值取对数 后的量值定为该测点波幅的分贝(dB)值,表
示为
AP
20
lg
a a0

频率检测
数字式声波仪都配有频域分析软件,可用频 谱分析的方法更精确地测试接收声波信号的 主频。 计算方法为FFT(傅立叶变换)。
零声时问题
电延迟时间:从声波仪电路原理可知,发出触发电脉冲并开 始计时的瞬间到电脉冲开始作用到压电体的时刻,电路中有 些触发、转换过程。这些电路转换过程有短暂延迟的响应。
电声转换时间:在电脉冲加到压电体瞬间到产生振动发出声 波瞬间有电声转换的延迟。接收换能器也类似。
声延迟:换能器中压电体辐射出的声波并不是直接进入被测 体,而是先通过换能器壳体或夹心式换能器的辐射体,再通 过耦合介质层,然后才进入被测体。
接收声波幅值与混凝土质量紧密相关,它对缺陷区的反应比 声时值更为敏感,所以它也是缺陷判断的重要参数之一。
频率变化与混凝土质量
声波脉冲是复频波,具有多种频率成分。当 它们穿过混凝土后,各频率成分的衰减程度 不同,高频部分比低频部分衰减严重,因而 导致接收信号的主频率向低频端漂移。其漂 移的多少取决于衰减因素的严重程度。所以, 接收波主频率实质上是介质衰减作用的一个 表征量,当遇到缺陷时,由于衰减严重,使 接收波主频率明显降低。
正常声波
畸变声波
几种声学参数的比较
声速的测试值较为稳定,结果的重复性较好,受非缺陷因素的影响小,在同一桩 的不同剖面以及同一工程的不同桩之间可以比较,是判定混凝土质量的主要参数, 但声速对缺陷的敏感性不及波幅。
接收波波幅(首波幅值)对混凝土缺陷很敏感,它是判定混凝土质量的另一个重 要参数。但波幅的测试值受仪器系统性能、换能器耦合状况、测距等诸多非缺陷 因素的影响,它的测试值没有声速稳定,目前只能用于相对比较,在同一桩的不 同剖面或不同桩之间往往无可比性。
声波在固体传播过程中的衰减
吸收衰减:声波在介质中传播时,部分机械能被 介质转换成其他形式的能量(如热能)而散失, 这种衰减现象称为吸收衰减。
散射衰减:声波在一种介质中传播时,因碰到另 一种介质组成的障碍物而向不同方向产生散射, 从而导致声波减弱(即声传播的定向性减弱)的 现象称为散射衰减。
扩散衰减:声波发射器发出的超声波波束都有一 定的扩散角。波束的扩散,导致能量的逐渐分散, 从而使单位面积的能量随传播距离的增加而减弱。
平测步骤
将多根声测管以两根为一个检测剖面进行全组合, 剖面编码。
将发、收换能器分别置于某一剖面的两声测管中, 并放至桩的底部,保持相同标高。
自下而上将发、收换能器以相同的步长(一般不宜 大于250mm)向上提升。
在同一桩的各检测剖面的检测过程中,声波发射电 压和仪器设置参数应保持不变。
测试方法
波形的变化与混凝土质量
由于声波脉冲在缺陷界面的反射和折射,形成波线 不同的波束,这些波束由于传播路径不同,或由于 界面上产生波形转换而形成横波等原因,使得到达 接收换能器的时间不同,因而使接收波成为许多同 相位或不同相位波束的叠加波,导致波形畸变。实 践证明,凡超声脉冲在传播过程中遇到缺陷,其接 收波形往往产生畸变,所以波形畸变程度可作为判 断缺陷程度的参考依据。
相关文档
最新文档