【附20套中考模拟试题】陕西省西安市鄠邑区2019-2020学年中考数学模拟试卷含解析

合集下载

陕西省西安市2019-2020学年中考数学仿真第三次备考试题含解析

陕西省西安市2019-2020学年中考数学仿真第三次备考试题含解析

陕西省西安市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各数中,比﹣1大1的是( ) A .0 B .1 C .2 D .﹣32.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .3.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( ) A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)24.下表是某校合唱团成员的年龄分布. 年龄/岁 13 14 15 16频数515x10x -对于不同的x ,下列关于年龄的统计量不会发生改变的是( ) A .众数、中位数B .平均数、中位数C .平均数、方差D .中位数、方差5.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( ) A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣16.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.347.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A .(1,1)B .(2,1)C .(2,2)D .(3,1)8.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-9.已知a,b 为两个连续的整数,且a<11<b,则a+b 的值为() A .7B .8C .9D .1010.函数y =mx 2+(m+2)x+12m+1的图象与x 轴只有一个交点,则m 的值为( ) A .0B .0或2C .0或2或﹣2D .2或﹣211.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩12.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12B .18C .38D .111222++ 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,AB=AC ,BC=8. O e 是△ABC 的外接圆,其半径为5. 若点A 在优弧BC 上,则tan ABC ∠的值为_____________.14.如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C 在边DE 上,反比例函数ky x=(k≠0,x >0)的图象过点B ,E .若AB=2,则k 的值为________.15.如图,已知反比例函数y=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB的面积为1,则k=________________.16.如图,在▱ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF=_____17.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________. 18.已知一个多边形的每一个内角都是144o ,则这个多边形是_________边形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a 的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人? 20.(6分)正方形ABCD 中,点P 为直线AB 上一个动点(不与点A ,B 重合),连接DP ,将DP 绕点P 旋转90°得到EP ,连接DE ,过点E 作CD 的垂线,交射线DC 于M ,交射线AB 于N . 问题出现:(1)当点P 在线段AB 上时,如图1,线段AD ,AP ,DM 之间的数量关系为 ;题探究:(2)①当点P 在线段BA 的延长线上时,如图2,线段AD ,AP ,DM 之间的数量关系为 ; ②当点P 在线段AB 的延长线上时,如图3,请写出线段AD ,AP ,DM 之间的数量关系并证明; 问题拓展:(3)在(1)(2)的条件下,若AP=3,∠DEM=15°,则DM= .21.(6分)计算:2cos30°+27-33 -(12)-222.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型. (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ; (2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率. 23.(8分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程两个根均为正整数,求负整数m 的值.24.(10分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下 (1)样本中D 级的学生人数占全班学生人数的百分比是 ; (2)扇形统计图中A 级所在的扇形的圆心角度数是 ; (3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和. 25.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.26.(12分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.27.(12+(12)-2 - 8sin60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A.【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握:“先符号,后绝对值”.2.B【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a<0,∴抛物线的开口方向向下,故第三个选项错误; ∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上, 故第一个选项错误; ∵a <0、b >0,对称轴为x=2ba->0, ∴对称轴在y 轴右侧, 故第四个选项错误. 故选B . 3.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 4.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 5.B 【解析】 【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a 的取值范围.【详解】解:∵x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解, ∴整数解为1,0,-1, ∴-2≤a <-1. 故选B. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分. 6.B 【解析】 【分析】A 、根据众数的定义找出出现次数最多的数;B 、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C 、根据加权平均数公式代入计算可得;D 、根据方差公式计算即可. 【详解】解: A 、由统计表得:众数为3,不是8,所以此选项不正确;B 、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C 、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D 、S 2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确; 故选B . 【点睛】本题考查方差;加权平均数;中位数;众数. 7.B 【解析】 【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案. 【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.8.A【解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.9.A【解析】∵9<11<16,91116<<,即3114<<,∵a,b为两个连续的整数,且11a b<<,∴a=3,b=4,∴a+b=7,故选A.10.C【解析】【分析】根据函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+1 2m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(12m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.11.A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组111222,y k x by k x b=+⎧⎨=+⎩的解为2,4.xy=⎧⎨=⎩故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.试题解析:如图,作AD⊥BC,垂足为D,连接OB,∵AB=AC,∴BD=CD=12BC=12×8=4,∴AD垂直平分BC,∴AD过圆心O,在Rt△OBD中,OD=222254OB BD-=-=3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC=84ADBD==2,故答案为2.【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.14.6+25【解析】【详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),。

2019-2020西安市中考数学一模试题(附答案)

2019-2020西安市中考数学一模试题(附答案)

2019-2020西安市中考数学一模试题(附答案)一、选择题1.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 2.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D . 3.下表是某学习小组一次数学测验的成绩统计表: 分数/分70 80 90 100 人数/人 1 3 x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( )A .80分B .85分C .90分D .80分和90分 4.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣15.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .86.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A.40°B.50°C.60°D.70°7.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A.2B.3C.4D.8.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,159.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.10.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1B.0C.1或﹣1D.2或011.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .412.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________. 15.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 16.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)17.若a ,b 互为相反数,则22a b ab +=________.18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 三、解答题21.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明22.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0的解,tan ∠BAO=12. (1)求点A 的坐标;(2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.24.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.3.D解析:D【解析】【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解.【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分.故选D .【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.4.B解析:B【解析】【分析】由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】 解:A=11111x x ++-=111x x x +-=21x x - 故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键. 5.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键6.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.7.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.8.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁, 该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选D .9.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.A解析:A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k +k 2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.﹣2≤a <﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 在△DCF 中∵CD=4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =, ∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.(±)【解析】【详解】∵MN两点关于y轴对称∴M坐标为(ab)N为(-ab)分别代入相应的函数中得b=①a+3=b②∴ab=(a+b)2=(a-b)2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】 ∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴= 12AD BC =,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形.【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.22.(1)(-8,0)(2)k=-19225(3)(﹣1,3)或(0,2)或(0,6)或(2,6)【解析】【分析】(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;【详解】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=12 OBOA=,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴OA OB OE OD=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵12•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=12x+4,由28142y xy x--⎧⎪⎨+⎪⎩==,解得24585xy⎧-⎪⎪⎨⎪⎪⎩==,∴C(245,85),∵若反比例函数y=kx的图象经过点C,∴k=﹣192 25.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=2,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);【点睛】考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.24.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

陕西省西安市2019-2020学年第五次中考模拟考试数学试卷含解析

陕西省西安市2019-2020学年第五次中考模拟考试数学试卷含解析

陕西省西安市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( ) 年龄(岁) 12 13 14 15 16 人数 12252A .2,14岁B .2,15岁C .19岁,20岁D .15岁,15岁2.下列事件中是必然事件的是( ) A .早晨的太阳一定从东方升起 B .中秋节的晚上一定能看到月亮 C .打开电视机,正在播少儿节目 D .小红今年14岁,她一定是初中学生3.PM2.5是指大气中直径小于或等于2.5μm (0.0000025m )的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为( )米. A .25×10﹣7 B .2.5×10﹣6 C .0.25×10﹣5 D .2.5×10﹣54.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1B .2C .3D .45.如果t>0,那么a+t 与a 的大小关系是( ) A .a+t>a B .a+t<a C .a+t≥a D .不能确定 6.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >mx的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-7.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .1128.如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,若AB =6,EF =2,则BC 的长为( )A .8B .10C .12D .149.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( ) 用水量x (吨) 3 4 5 6 7 频数1254﹣xxA .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差10.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( ) A .0.69×10﹣6B .6.9×10﹣7C .69×10﹣8D .6.9×10711.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A .B .C .D .12.圆锥的底面半径为2,母线长为4,则它的侧面积为( ) A .8πB .16πC .43πD .4π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.14.如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于_____.15.关于x 的方程1101ax x +-=-有增根,则a =______. 16.点A(-2,1)在第_______象限.17.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 18.如图,点A 在反比例函数y=kx(x >0)的图像上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使CD=2AD ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E ,若△ABC 的面积为6,则k 的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组3122324xx x⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答: (I )解不等式(1),得 ; (II )解不等式(2),得 ;(III )把不等式(1)和(2)的解集在数轴上表示出来: (IV )原不等式组的解集为 .20.(6分)已知Rt △ABC 中,∠ACB =90°,CA =CB =4,另有一块等腰直角三角板的直角顶点放在C 处,CP =CQ =2,将三角板CPQ 绕点C 旋转(保持点P 在△ABC 内部),连接AP 、BP 、BQ .如图1求证:AP =BQ ;如图2当三角板CPQ 绕点C 旋转到点A 、P 、Q 在同一直线时,求AP 的长;设射线AP 与射线BQ 相交于点E ,连接EC ,写出旋转过程中EP 、EQ 、EC 之间的数量关系.21.(6分)重百江津商场销售AB 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 商品和5件B 种商品所得利润为1100元.求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A 、B 两种商品很快售完,重百商场决定再次购进A 、B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A 种商品? 22.(8分)已知2是关于x 的方程x 2﹣2mx+3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.23.(8分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.24.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里. (1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?25.(10分)如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF 的长.26.(12分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.27.(12分)如图,B、E、C、F在同一直线上,AB=DE,BE=CF,∠B=∠DEF,求证:AC=DF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1.故选D.【点睛】本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.A【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B、C、D选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A.【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.3.B【解析】【分析】由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.4.B【解析】【分析】先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.5.A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.6.B【解析】【分析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b>mx的解集为:-6<x<0或x>2,故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.7.C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.9.B【解析】【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.【详解】∵6吨和7吨的频数之和为4-x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6、7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,∵后两组频数和等于4,小于5,∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.故选B.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.10.B【解析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.11.A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图. 【详解】解:由主视图的定义可知A 选项中的图形为该立体图形的主视图,故选择A. 【点睛】本题考查了三视图的概念. 12.A 【解析】 【详解】解:底面半径为2,底面周长=4π,侧面积=12×4π×4=8π,故选A . 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1x <- 【解析】 【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答. 【详解】解:不等式()0kx b x a +-+>的解集是1x <-. 故答案为:1x <-. 【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.14. 【解析】 【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE 的长. 【详解】 由题意可得, DE=DB=CD=12AB , ∴∠DEC=∠DCE=∠DCB ,∵DE ∥AC ,∠DCE=∠DCB ,∠ACB=90°, ∴∠DEC=∠ACE ,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴∴故答案为.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.-1【解析】根据分式方程11axx+--1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.16.二【解析】【分析】根据点在第二象限的坐标特点解答即可.【详解】∵点A的横坐标-2<0,纵坐标1>0,∴点A在第二象限内.故答案为:二.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).17.-12【解析】【分析】令y=0,得方程24=0-+x x k ,1x 和2x 即为方程的两根,利用根与系数的关系求得12x x +和12x x ⋅,利用完全平方式并结合128x x -=即可求得k 的值.【详解】解:∵二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,令y=0,得方程24=0-+x x k ,则1x 和2x 即为方程的两根,∴124x x +=,12x x k ⋅=, ∵128x x -=,两边平方得:212()64-=x x ,∴21212()464+-⋅=x x x x ,即16464-=k ,解得:12k =-,故答案为:12-.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.18.1【解析】【分析】连结BD ,利用三角形面积公式得到S △ADB =13S △ABC =2,则S 矩形OBAD =2S △ADB =1,于是可根据反比例函数的比例系数k 的几何意义得到k 的值.【详解】连结BD ,如图,∵DC=2AD,∴S△ADB=12S△BDC=13S△BAC=13×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I)解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x>2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.20.(1)证明见解析(2)142-(3)EP+EQ= 2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求PQ=22,可得CH=2,根据勾股定理可求AH=14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴2∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,22-14AC CH∴PA=AH﹣PH= 142解:结论:2EC理由:如图 3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,2EN,∴2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.21.(1)200元和100元(2)至少6件【解析】【分析】(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由题意,得4600351100x y x y +=⎧⎨+=⎩,解得:200100x y =⎧⎨=⎩, 答:A 种商品售出后所得利润为200元,B 种商品售出后所得利润为100元.(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.由题意,得200a+100(34﹣a )≥4000,解得:a≥6答:威丽商场至少需购进6件A 种商品.22.11【解析】【分析】将x=2代入方程找出关于m 的一元一次方程,解一元一次方程即可得出m 的值,将m 的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x 2﹣8x+12=(x ﹣2)(x ﹣6)=0,解得:x 1=2,x 2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质23.(1)223y x x =--+;(2)30x -<<.【解析】【分析】(1)将()30A -,和()10B ,两点代入函数解析式即可; (2)结合二次函数图象即可.【详解】解:(1)∵二次函数23y ax bx =++与x 轴交于(3,0)A -和(1,0)B 两点, 933030a b a b -+=⎧∴⎨++=⎩ 解得12a b =-⎧⎨=-⎩∴二次函数的表达式为223y x x =--+.(2)由函数图象可知,二次函数值大于一次函数值的自变量x 的取值范围是30x -<<.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质. 24.(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】【分析】(1)先设山西省的平原面积为x 平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x 平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m 人,甲、乙旅行社的收费分别为y 甲元,y 乙元.由题意:y 甲=30×0.9m=27m , y 乙=30×0.8(m+2)=24m+48,当y 甲=y 乙时,27m=24m+48,m=16,当y 甲>y 乙时,27m >24m+48,m >16,当y 甲<y 乙时,27m <24m+48,m <16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.25.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.26.(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案.【详解】解:(1)①y=400(x ﹣5)﹣2.(5<x≤10),②依题意得:400(x ﹣5)﹣2≥800, 解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数, ∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣2,当y=1560时, (x ﹣5)[400﹣40(x ﹣10)]﹣2=1560,解得:x 1=11,x 2=14,为了保证净收入又能吸引顾客,应取x 1=11,即x 2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.27.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.。

2019-2020学年陕西省西安市中考数学监测试题

2019-2020学年陕西省西安市中考数学监测试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.2.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,203.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60°,∠α的补角∠β=120°,∠β>∠αB.∠α=90°,∠α的补角∠β=90°,∠β=∠αC.∠α=100°,∠α的补角∠β=80°,∠β<∠αD.两个角互为邻补角4.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°5.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-6.在下面的四个几何体中,左视图与主视图不相同的几何体是()A .B .C .D .7.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm8.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .9.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣510.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3πC .23π-D .223π-二、填空题(本题包括8个小题)11.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.12.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD 折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.13.若正六边形的内切圆半径为2,则其外接圆半径为__________.14.因式分解:9a2﹣12a+4=______.15.在△ABC中,点D在边BC上,BD=2CD,AB a=,AC b=,那么AD= .16.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.17.已知m=444153,n=44053,那么2016m﹣n=_____.18.函数2+1x中自变量x的取值范围是___________.三、解答题(本题包括8个小题)19.(6分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样(人数)小杰抽样(人数)0~1 6 221~2 10 10 2~3 16 6 3~482(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.20.(6分)如图①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数.如图②,在Rt △ABD 中,∠BAD=90°,AB=AD ,点M ,N 是BD 边上的任意两点,且∠MAN=45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连接NH ,试判断MN 2,ND 2,DH 2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD 的边长.21.(6分)如图,在直角坐标系xOy 中,直线y mx =与双曲线ny x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1.求m 、n 的值;求直线AC 的解析式.22.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?23.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢. 规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢. 小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.24.(10分)有A 、B 两组卡片共1张,A 组的三张分别写有数字2,4,6,B 组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A 组抽取一张,求抽到数字为2的概率;随机地分别从A 组、B 组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么? 25.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.26.(12分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.2.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.3.C【解析】熟记反证法的步骤,然后进行判断即可.解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误.故选C.4.C【解析】【详解】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.5.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x =100x,故选A.6.B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意; 故选B . 【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图. 7.D 【解析】 【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】解:设小长方形卡片的长为x ,宽为y , 根据题意得:x+2y=a ,则图②中两块阴影部分周长和是: 2a+2(b-2y )+2(b-x ) =2a+4b-4y-2x =2a+4b-2(x+2y ) =2a+4b-2a =4b . 故选择:D. 【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 8.C 【解析】 【分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 【详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx ﹣c 中,b <1,﹣c <1,∴一次函数图象经过第二、三、四象限.故选C.【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.9.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.10.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33,∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题(本题包括8个小题)11.1.【解析】试题解析:设俯视图的正方形的边长为a .∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22, ∴()22222a a +=,解得24a =,∴这个长方体的体积为4×3=1. 12.32或34【解析】试题分析:如图4所示;点E 与点C′重合时.在Rt △ABC 中,BC=22AB AC -=4.由翻折的性质可知;AE=AC=3、DC=DE .则EB=2.设DC=ED=x ,则BD=4﹣x .在Rt △DBE 中,DE 2+BE 2=DB 2,即x 2+22=(4﹣x )2.解得:x=32.∴DE=32.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC ﹣DC=4﹣3=4.∵DE ∥AC ,∴△BDE ∽△BCA .∴14DE DB AC CB ==,即134ED =.解得:DE=34.点D 在CB 上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题). 1343【解析】 【分析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA. 【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形, ∴OAB 是等边三角形,∴60OAB ∠=︒, ∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为243. 43. 【点睛】 本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.14.(3a ﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a 1-11a+4=(3a-1)1.故答案是:(3a ﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键. 15.1233a b +【解析】【分析】 首先利用平行四边形法则,求得BC 的值,再由BD=2CD ,求得BD 的值,即可求得AD 的值.【详解】∵AB a =,AC b =,∴BC =AC -AB =b -a ,∵BD=2CD ,∴BD =23BC =2()3b a -, ∴AD =AB +BD =2()3a b a +-=1233a b +.故答案为1233a b +. 16.1:1【解析】【分析】 根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可.【详解】∵S △BDE :S △CDE =1:3,∴BE :EC=1:3,∵DE ∥AC ,∴△BED ∽△BCA ,∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 17.1【解析】【分析】根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n ,再根据任何非零数的零次幂等于1解答.【详解】解:∵m=444153=4?444353=44053,∴m=n,∴2016m-n=20160=1.故答案为:1【点睛】本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.18.x≥﹣12且x≠1【解析】【详解】试题解析:根据题意得:2+10 {-10 xx≥≠解得:x≥﹣12且x≠1.故答案为:x≥﹣12且x≠1.三、解答题(本题包括8个小题)19.(1)小丽;(2)80【解析】【详解】解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.(2)8 4008040⨯=.答:该校全体初二学生中有80名同学应适当减少上网的时间.20.(1) 45°.(1) MN1=ND1+DH1.理由见解析;(3)11.【解析】【分析】(1)先根据AG⊥EF得出△ABE和△AGE是直角三角形,再根据HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出结论;(1)由旋转的性质得出∠BAM=∠DAH,再根据SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值.【详解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE 和△AGE 是直角三角形.在Rt △ABE 和Rt △AGE 中,AB AG AE AE =⎧⎨=⎩, ∴△ABE ≌△AGE (HL ),∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF=∠EAG+∠FAG=12∠BAD=45°. (1)MN 1=ND 1+DH 1.由旋转可知:∠BAM=∠DAH ,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN .在△AMN 与△AHN 中, AM AH HAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMN ≌△AHN (SAS ),∴MN=HN .∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH 1=ND 1+DH 1.∴MN 1=ND 1+DH 1.(3)由(1)知,BE=EG=4,DF=FG=2.设正方形ABCD 的边长为x ,则CE=x-4,CF=x-2.∵CE 1+CF 1=EF 1,∴(x-4)1+(x-2)1=101.解这个方程,得x 1=11,x 1=-1(不合题意,舍去).∴正方形ABCD 的边长为11.【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.21.(1)m =-1,n =-1;(2)y =-12x +12 【解析】【分析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.22.1人【解析】解:设九年级学生有x 人,根据题意,列方程得: 19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解.答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可. 23.(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析 【解析】【分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 24.(1)P (抽到数字为2)=13;(2)不公平,理由见解析. 【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.试题解析: (1)P=13; (2)由题意画出树状图如下:一共有6种情况,甲获胜的情况有4种,P=4263=, 乙获胜的情况有2种,P=2163=, 所以,这样的游戏规则对甲乙双方不公平.考点:游戏公平性;列表法与树状图法.25.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.26. (1)y 1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k 的取值范围是16≤k≤12或k =﹣1. 【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C 1:y 1=ax 2+2ax+a ﹣1即可求得a 的值;②根据对称的性质得出B 的坐标,然后分两种情况讨论即可求得;【详解】(1)y 1=ax 2+2ax+a ﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C 1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a =12; ②∵A(﹣3,1),对称轴为直线x =﹣1,∴B(1,1),当k >0时,二次函数C 2:y 2=kx 2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k ﹣3k ,解得k =16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次D .中奖次数不能确定2.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .3.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定4.如图,在平行线l 1、l 2之间放置一块直角三角板,三角板的锐角顶点A ,B 分别在直线l 1、l 2上,若∠l=65°,则∠2的度数是( )A .25°B .35°C .45°D .65°5.若55+55+55+55+55=25n ,则n 的值为( ) A .10B .6C .5D .36.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( ) A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<7.抛物线223y x +=(﹣)的顶点坐标是( ) A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)8.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A .B .C .D .9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④10.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B .5 C .25D .1010二、填空题(本题包括8个小题) 11.分解因式: 22a b ab b -+=_________.12.如图,在△ABC 中,AD 、BE 分别是BC 、AC 两边中线,则EDC ABCSS=_____.13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________. 14.因式分解:2m 2﹣8n 2= .15.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.16.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB 的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.17.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.18.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCED的面积四边形的面积=_____.三、解答题(本题包括8个小题)19.(6分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?20.(6分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)21.(6分)如图,在ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F .求证:△ADE ≌△BFE ;若DF 平分∠ADC ,连接CE .试判断CE 和DF 的位置关系,并说明理由.22.(8分)如图,直线y =﹣x+2与反比例函数ky x=(k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.23.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.∆关于y轴对称的请在如图所示的网格平面内作出平面直角坐标系;请作出ABCA B C∆;点'B的坐标为.ABC'''∆的面积为.25.(10分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.26.(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部 a 85 b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.2.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.3.B【解析】【分析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,。

【附20套中考模拟试题】陕西省西安市陕西师大附中学2019-2020学年中考数学模拟试卷含解析

【附20套中考模拟试题】陕西省西安市陕西师大附中学2019-2020学年中考数学模拟试卷含解析

陕西省西安市陕西师大附中学2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,一次函数1y ax b =+和反比例函数2ky x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >2.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F.已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .83.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE =AF ,AC 与EF 相交于点G ,下列结论:①AC 垂直平分EF ;②BE+DF =EF ;③当∠DAF =15°时,△AEF 为等边三角形;④当∠EAF =60°时,S △ABE =12S △CEF ,其中正确的是( )A .①③B .②④C .①③④D .②③④4.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣55.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为( ) A .1806x +=1206x - B .1806x -=1206x +C .1806x +=120xD .180x =1206x - 6.计算(ab 2)3的结果是( ) A .ab 5B .ab 6C .a 3b 5D .a 3b 67.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=kx(x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .28.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个9.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .10.已知一次函数y=ax ﹣x ﹣a+1(a 为常数),则其函数图象一定过象限( ) A .一、二B .二、三C .三、四D .一、四11.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同12.如图,CD 是⊙O 的弦,O 是圆心,把⊙O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,∠CAD=100°,则∠B 的度数是( )A .100°B .80°C .60°D .50°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,在同一平面内,∠ABC =50°,AD ∥BC ,∠BAD 的平分线交直线BC 于点E ,那么∠AEB 的度数为__________.14.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________15.若23a b =,则a b b +=_____.16.若点A(1,m)在反比例函数y =3x的图象上,则m 的值为________. 17.一个正多边形的每个内角等于150o ,则它的边数是____.18.若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG=90°,∠E=35°,求∠EFB 的度数.20.(6分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm 2时,裁掉的正方形边长多大?21.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.22.(8分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.23.(8分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C距守门员多少米?(取437=)运动员乙要抢到第二个落点D,他应再向前跑多少米?24.(10分)如图,AB是⊙O的直径,»»=,连结AC,过点C作直线l∥AB,点P是直线l上的AC BC一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.求∠BAC的度数;当点D在AB上方,且CD⊥BP时,求证:PC=AC;在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.25.(10分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.26.(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?27.(12分)如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 2.C 【解析】 【详解】解:∵AD ∥BE ∥CF ,根据平行线分线段成比例定理可得AB DEBC EF =, 即123EF=, 解得EF=6, 故选C. 3.C 【解析】 【分析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=a ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,设EC=x ,BE=y ,由勾股定理就可以得出x 与y 的关系,表示出BE 与EF ,利用三角形的面积公式分别表示出S △CEF 和S △ABE ,再通过比较大小就可以得出结论. 【详解】①四边形ABCD 是正方形, ∴AB═AD ,∠B=∠D=90°. 在Rt △ABE 和Rt △ADF 中,AE AFAB AD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ), ∴BE=DF∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正确).②设BC=a,CE=y,∴BE+DF=2(a-y)y,∴BE+DF与EF关系不确定,只有当y=()a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=x)2∴x2=2y(x+y)∵S△CEF=12x2,S△ABE=12y(x+y),∴S△ABE=12S△CEF.(故④正确).综上所述,正确的有①③④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.4.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.5.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.6.D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.7.A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键. 8.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.10.D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y 随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小. 11.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.12.B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.65°或25°【解析】【分析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ,∵AD∥BC,∴∠AEB=∠DAE=12DAB ∠,∠DAB=∠ABC, ∵∠ABC =50°,∴∠AEB= 12×50°=25°. 故答案为:65°或25°. 【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.1【解析】【分析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值.【详解】解:由题意可得,a 1=52+1=26,a 2=(2+6)2+1=65,a 3=(6+5)2+1=1,a 4=(1+2+2)2+1=26,…∴2019÷3=673,∴a 2019= a 3=1,故答案为:1.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a 2019的值.15.53【解析】2,3a b =Q a b b +∴=2511b 33a +=+=. 16.3【解析】试题解析:把A (1,m )代入y =3x得:m=3.所以m的值为3.17.十二【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.18.1【解析】【分析】根据根与系数的关系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整体代入的方法计算.【详解】解:∵m、n 是方程x2+2018x﹣1=0 的两个根,则原式=mn(m+n﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案为:1.【点睛】本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关系的合理应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.20°【解析】【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.21.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.22.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG ∥BC , ∴EG BF ED DF = , 由(1)知△DFD ∽△DFC ,∴BF DF DF CF= , ∴EG DF ED CF = , ∴EG·CF=ED·DF. 23.(1)21(6)412y x =--+.(或21112y x x =-++)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.【解析】【分析】(1)依题意代入x 的值可得抛物线的表达式.(2)令y=0可求出x 的两个值,再按实际情况筛选.(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD ,相当于将抛物线AEMFC 向下平移了2个单位可得解得x 的值即可知道CD 、BD .【详解】解:(1)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =.即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)令210(6)4012y x =--+=,. 212(6)48436134360x x x ∴-==≈=-<.,(舍去). ∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=≈.1361017BD ∴=-+=(米). 答:他应再向前跑17米.24.(1)45°;(2)见解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或10817. 【解析】【分析】(1)易得△ABC 是等腰直角三角形,从而∠BAC=∠CBA=45°;(2)分当 B 在PA 的中垂线上,且P 在右时;B 在PA 的中垂线上,且P 在左;A 在PB 的中垂线上,且P 在右时;A 在PB 的中垂线上,且P 在左时四中情况求解;(3)①先说明四边形OHEF 是正方形,再利用△DOH ∽△DFE 求出EF 的长,然后利用割补法求面积;②根据△EPC ∽△EBA 可求PC=4,根据△PDC ∽△PCA 可求PD •PA=PC 2=16,再根据S △ABP =S △ABC 得到92BD PD =,利用勾股定理求出k 2,然后利用三角形面积公式求解. 【详解】(1)解:(1)连接BC ,∵AB 是直径,∴∠ACB=90°.∴△ABC 是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵»»AC BC=, ∴∠CDB=∠CDP=45°,CB= CA ,∴CD 平分∠BDP又∵CD ⊥BP ,∴BE=EP ,即CD 是PB 的中垂线,∴CP=CB= CA ,(3)① (Ⅰ)如图2,当 B 在PA 的中垂线上,且P 在右时,∠ACD=15°;(Ⅱ)如图3,当B 在PA 的中垂线上,且P 在左,∠ACD=105°;(Ⅲ)如图4,A 在PB 的中垂线上,且P 在右时∠ACD=60°;(Ⅳ)如图5,A 在PB 的中垂线上,且P 在左时∠ACD=120°②(Ⅰ)如图6,69OH OD EF DF ==Q , 2.OH ∴= BDE BDH BEH S S S ∴=+V V V1122BH OD BH OF =⋅+⋅1186833622=⨯⨯+⨯⨯=.(Ⅱ)如图7,EPC EBA QV V ~ ,39PCEKAB EM ∴== ,4PC ∴= .PBC PCA ~QV V ,216PD PA PC ∴⋅== .1122AB OC PD PA ⋅=⋅Q ,92BDPD ∴= ,2293310BE =+=Q ,23102103BP ∴=⨯= .设BD=9k,PD=2k,2281440k k +=Q ,2817k ∴= ,172912217BPD S k k ∴=⨯⨯=V ,72310817217BED S ∴=⨯=V .【点睛】本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.25.(1)相切,理由见解析;(1)1.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(1)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即⊙O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC. 26.200名初中毕业生的视力情况200 60 0.05【解析】【分析】(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×706010200++=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.27.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.532=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题中考模拟数学试卷一.选择题(共15小题,满分45分,每小题3分)1.(3分)π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1083.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a74.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)已知一组数据1,5,6,5,5,6,6,6,则下列说法正确的是()A.众数是5 B.中位数是5 C.平均数是5 D.极差是46.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(3分)下列说法正确的是()A.x=4是不等式2x>﹣8的一个解B.x=﹣4是不等式2x>﹣8的解集C.不等式2x>﹣8的解集是x>4 D.2x>﹣8的解集是x<﹣48.(3分)某家庭搬进新居后又添置了新的电冰箱,电热水器等家用电器,为了了解用电量的大小,该家庭在6月份初连续几天观察电表的度数,电表显示的度数如下表:日期1日2日3日4日5日6日7日8日电表显示度数(度)115 118 122 127133136 140 143这个家庭六月份用电度数为()A.105度B.108.5度C.120度D.124度9.(3分)若方程=1有增根,则它的增根是()A.0 B.1 C.﹣1 D.1和﹣110.(3分)已知一组数据:x1,x2,x3,x4,x5,x6的平均数是2,方差是3,则另一组数据:3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均数和方差分别是()A.2,3 B.2,9 C.4,25 D.4,2711.(3分)在平面直角坐标系中,把直线y=2x+4绕着原点O顺时针旋转90°后,所得的直线1一定经过下列各点中的()A.(2,0)B.(4,2)C.(6,﹣1)D.(8,﹣1)12.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则BD等于()A.4 B.6 C.8 D.1213.(3分)如图,在Rt△ABC中,∠BAC=90°,D、E、F分别是边BC、AB、AC的中点,若EF=2,则AD长是()A.1 B.2 C.3 D.414.(3分)如图,将△ABC绕点A旋转到△ADE的位置,使点D落到线段AB的垂直平分线上,则旋转角的度数为()A.40°B.50°C.60°D.70°15.(3分)如图,等边△ABC中,BF是AC边上中线,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,∠CFE的大小是()A.30°B.45°C.60°D.90°二.填空题(共5小题,满分25分,每小题5分)16.(5分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.17.(5分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).18.(5分)如图,已知直线y=x+4与双曲线y=(x<0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=.19.(5分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是人.20.(5分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.三.解答题(共7小题,满分80分)21.(8分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.22.(8分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.23.(10分)在北海市创建全国文明城活动中,需要30名志愿者担任“讲文明树新风”公益广告宣传工作,其中男生18人,女生12人.(1)若从这30人中随机选取一人作为“展板挂图”讲解员,求选到女生的概率;(2)若“广告策划”只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲担任,否则乙担任.试问这个游戏公平吗?请用树状图或列表法说明理由.24.(12分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sin∠D=,求AF的长.25.(12分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?26.(14分)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD,求∠C.27.(16分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y 轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共15小题,满分45分,每小题3分)1.【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.2.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.3.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:把数据1,5,6,5,5,6,6,6,按从小到大排列为1,5,5,5,6,6,6,6,中位数==5.5,众数为6,平均数==5,极差为=6﹣1=5,故C正确,故选:C.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:因为2x>﹣8的解为x>﹣4,所以A、x=4是不等式2x>﹣8的一个解,正确;B、x=﹣4是不等式2x>﹣8的解集,错误;C、不等式2x>﹣8的解集是x>4,错误;D、2x>﹣8的解集是x<﹣4,错误.故选:A.8.【解答】解:这七天一共用电的度数=(143﹣115)÷7=4,月份用电度数=4×30=120(度),故选C.9.【解答】解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.10.【解答】解:由题知,x1+x2+x3+x4+x5+x6=2×6=12,S12= [(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2+(x5﹣2)2+(x6﹣2)2]= [(x12+x22+x32+x42+x52+x62)﹣4(x1+x2+x3+x4+x5+x6)+4×6]=3,∴(x12+x22+x32+x42+x52+x62)=42.另一组数据的平均数= [3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2+3x6﹣2]= [3(x1+x2+x3+x4+x5+x6)﹣2×5]= [3×12﹣12]=×24=4,另一组数据的方差= [(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+(3x3﹣2﹣4)2+(3x4﹣2﹣4)2+(3x5﹣2﹣4)2+(3x6﹣2﹣4)2]= [9(x12+x22+x32+x42+x52+x62)﹣36(x1+x2+x3+x4+x5+x6)+36×6]= [9×42﹣36×12+216]=×162=27.故选:D.11.【解答】解:直线y=2x+4与x轴的交点为(﹣2,0),与y轴的交点为(0,4);绕点O旋转90°后可得直线与x轴的交点为(4,0),与y轴的交点为(0,2);可设新直线的解析式为:y=kx+b,则:4k+b=0;b=2;∴k=﹣0.5,∴y=﹣0.5x+2,把所给点代入得到的直线解析式,只有选项C符合,故选:C.12.【解答】解:∵∠BAC=120°,AB=AC=4∴∠C=∠ABC=30°∴∠D=30°∵BD是直径∴∠BAD=90°∴BD=2AB=8.故选:C.13.【解答】解:∵D、E、F分别是边BC、AB、AC的中点,∴BC=2EF=4,∵在Rt△ABC中,∠BAC=90°,∴AD=BD=DC=BC=2,故选:B.14.【解答】解:连接BD,∵点D落到线段AB的垂直平分线上,∴AD=BD,∵AD=AB,∴△ABD是等边三角形,∴∠BAD=60°,∴旋转角的度数为60°;故选:C.15.【解答】解:如图,∵△ABC,△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,。

陕西省西安市2019-2020学年中考数学模拟试题(4)含解析

陕西省西安市2019-2020学年中考数学模拟试题(4)含解析

陕西省西安市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =2.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( ) A .3.9×1010B .3.9×109C .0.39×1011D .39×1093.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .4.估计3﹣2的值应该在( ) A .﹣1﹣0之间B .0﹣1之间C .1﹣2之间D .2﹣3之间5.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .436.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C7.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥9.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m10.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a211.16=()A.±4 B.4 C.±2 D.212.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x 之间的函数关系的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.14.因式分解:9x﹣x2=_____.15.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B,B C,C D,D E,E A通过小客车数量(辆)260 330 300 360 240 在,,,,A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________. 16.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为_____.17.已知关于x的不等式组521x ax f-≥⎧⎨-⎩只有四个整数解,则实数a的取值范是______.18.若式子2-x有意义,则实数x的取值范围是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.20.(6分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.21.(6分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.22.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?23.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.24.(10分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.25.(10分)如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°. (1)求证:CD ∥AB ; (2)填空:①当∠DAE = 时,四边形ADFP 是菱形; ②当∠DAE = 时,四边形BFDP 是正方形.26.(12分)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD .()1求此抛物线的解析式.()2求此抛物线顶点D 的坐标和四边形ABCD 的面积.27.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x 2+5x 2=2466x x ≠ ,本项错误;B.3256x x x x ⋅=≠ ,本项错误;C.236()x x = ,正确;D.3333()xy x y xy =≠,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则. 2.A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】39000000000=3.9×1. 故选A . 【点睛】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 3.A 【解析】利用平行线的性质以及相似三角形的性质一一判断即可.【详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴,故选项B正确,∵EF∥AB,∴,∴,故选项C,D正确,故选:A.【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A【解析】【分析】3【详解】解:∵13<2,∴1-232<2-2,∴-132<03在-1和0之间.故选A.【点睛】35.A【解析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.6.C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.8.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状9.B【解析】【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.10.D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.11.B【解析】16的算术平方根,为正数,再根据二次根式的性质化简.【详解】4=, 故选B . 【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个. 12.A 【解析】由题意可得:△APE 和△PCF 都是等腰直角三角形.∴AE=PE ,PF=CF ,那么矩形PEBF 的周长等于2个正方形的边长. 则y=2x ,为正比例函数. 故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.120° 【解析】 【分析】设扇形的半径为r ,圆心角为n°.利用扇形面积公式求出r ,再利用弧长公式求出圆心角即可. 【详解】设扇形的半径为r ,圆心角为n°.由题意:1816··233r ππ=, ∴r =4,∴24163603n ππ=∴n =120, 故答案为120° 【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识. 14.x (9﹣x ) 【解析】试题解析:()299x x x x -=-.故答案为()9x x -.点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.15.B【解析】【分析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A 、E 两个安全出口,与同时开放D 、E 两个安全出口,20分钟的通过数量发现得到D 疏散乘客比A 快;同理同时开放BC 与 CD 进行对比,可知B 疏散乘客比D 快;同理同时开放BC 与 AB 进行对比,可知C 疏散乘客比A 快;同理同时开放DE 与 CD 进行对比,可知E 疏散乘客比C 快;同理同时开放AB 与 AE 进行对比,可知B 疏散乘客比E 快;所以B 口的速度最快故答案为B .【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.16.1【解析】【分析】由∠ACD=∠B 结合公共角∠A=∠A ,即可证出△ACD ∽△ABC ,根据相似三角形的性质可得出ACD ABCS S ∆∆=(AD AC )2=14,结合△ADC 的面积为1,即可求出△BCD 的面积. 【详解】∵∠ACD =∠B ,∠DAC =∠CAB ,∴△ACD ∽△ABC , ∴ACD ABC S S ∆∆=(AD AC )2=(12)2=14, ∴S △ABC =4S △ACD =4,∴S △BCD =S △ABC ﹣S △ACD =4﹣1=1.故答案为1.【点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.17.-3<a≤-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围.详解:0521x a x ①②,-≥⎧⎨->⎩由不等式①解得:x a ≥;由不等式②移项合并得:−2x>−4,解得:x<2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.18.x≤2且x≠1【解析】【分析】根据被开方数大于等于1,分母不等于1列式计算即可得解.【详解】解:由题意得,20x -≥且x≠1,解得2x ≤且x≠1.故答案为2x ≤且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】先连接AC ,根据菱形性质证明△EAC ≌△FCA,然后结合中垂线的性质即可证明点G 在BD 上.【详解】证明:如图,连接AC.∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA, ∴△EAC≌△FCA,∴∠ECA=∠FAC, ∴GA=GC,∴点G在AC的中垂线上,∴点G在BD上.【点睛】此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.20.(1)y=12x2﹣3x+1;tan∠ACB=13;(2)m=163;(3)四边形ADMQ是平行四边形;理由见解析.【解析】【分析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=12x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得BGAG=OCOA,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得255.继而可得4551255(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=83,据此求得点K(1,83).待定系数法求出直线CK的解析式为y=-13x+1.设点P的坐标为(x,y)知x是方程12x2-3x+1=-13x+1的一个解.解之求得x的值即可得出答案;(3)先求出点D坐标为(6,1),设P(m,12m2-3m+1)知M(m,1),H(m,0).及PH=12m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知ONPH=OAAH.据此得ON=m-1.再证△ONQ∽△HMQ得ONHM=OQHQ.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.【详解】解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得4240{16440 a ba b++=++=,解得:123 ab⎧=⎪⎨⎪=-⎩;∴该抛物线的解析式为y=12x2﹣3x+1,过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴42BG OCAG OA===2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=255.∴BG=455,CG=AC+AG=25+255=1255.在Rt△BCG中,tan∠ACB═13BGCG=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=83,∴点K(1,83),设直线CK的解析式为y=hx+1,将点K(1,83)代入上式,得83=1h+1.解得h=﹣13,∴直线CK的解析式为y=﹣13x+1,设点P的坐标为(x,y),则x是方程12x2﹣3x+1=﹣13x+1的一个解,将方程整理,得3x2﹣16x=0,解得x1=163,x2=0(不合题意,舍去)将x1=163代入y=﹣13x+1,得y=209,∴点P的坐标为(163,209),∴m=163;(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=1,将y=1代入y=12x2﹣3x+1,得1=12x2﹣3x+1,解得x1=0,x2=6,∴点D(6,1),根据题意,得P(m,12m2﹣3m+1),M(m,1),H(m,0),∴PH=12m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①当1<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴ON OA PH AH,∴21342ON m m -+=22m -, ∴ON=2682m m m -+-=(4)(2)2m m m ---=m ﹣1, ∵△ONQ ∽△HMQ ,∴ON OQ HM HQ=, ∴4ON OQ m OQ=-, ∴44m OQ m OQ-=-, ∴OQ=m ﹣1,∴AQ=OA ﹣OQ=2﹣(m ﹣1)=6﹣m ,∴AQ=DM=6﹣m ,又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.②当m >6时,同理可得:四边形ADMQ 是平行四边形.综上,四边形ADMQ 是平行四边形.【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.21.(1)y 1=80x+4400;y 2=64x+4800;(2)当m=20时,w 取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w 与m 之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)得:;得:; (2),因为w 是m 的一次函数,k=-4<0,所以w 随的增加而减小,m 当m=20时,w 取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.22.(1)见解析;(2)A ;(3)800人.【解析】【分析】(1)用A 组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)∵被调查的学生人数为24÷40%=60人, ∴D 类别人数为60﹣(24+12+15+3)=6人,则D 类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A ,故答案为:A ;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,6,∵∠ADC=90°,∴22AC AD -2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴22CD DE +3∵C 为»BE的中点,∴3,∵AB 为⊙O的直径,∴∠ACB=90°,∴AB=22AC BC=2.∴半径为1.124.(1)13;(2)P(小宇“略胜一筹”)=19.【解析】分析:(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为13;(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.详解:(1)P(摸出标有数字是3的球)=1 3 .(2)小宇和小静摸球的所有结果如下表所示:小静小宇4 5 63 (3,4) (3,5) (3,6)4 (4,4) (4,5) (4,6)5 (5,4) (5,5) (5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P(小宇“略胜一筹”)=1 9 .点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.25.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.26.()1 21242y x x =-++;()212. 【解析】【分析】(1)由正方形的性质可求得B 、C 的坐标,代入抛物线解析式可求得b 、c 的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D 点坐标,再由S 四边形ABDC =S △ABC +S △BCD 可求得四边形ABDC 的面积.【详解】 ()1由已知得:()0,4C ,()4,4B ,把B 与C 坐标代入212y x bx c =-++得: 4124b c c +=⎧⎨=⎩, 解得:2b =,4c =, 则解析式为21242y x x =-++; ()2∵221124(2)622y x x x =-++=--+, ∴抛物线顶点坐标为()2,6, 则114442841222ABC BCD ABDC S S S =+=⨯⨯+⨯⨯=+=V V 四边形. 【点睛】二次函数的综合应用.解题的关键是:在(1)中确定出B 、C 的坐标是解题的关键,在(2)中把四边形转化成两个三角形.27.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可. ()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o , EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.。

陕西省西安市2019-2020学年中考数学考前模拟卷(4)含解析

陕西省西安市2019-2020学年中考数学考前模拟卷(4)含解析

陕西省西安市2019-2020学年中考数学考前模拟卷(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,平行四边形ABCD 的周长为12,∠A=60°,设边AB 的长为x ,四边形ABCD 的面积为y ,则下列图象中,能表示y 与x 函数关系的图象大致是( )A .B .C .D .2.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列方程中是一元二次方程的是( ) A .20ax bx c ++= B .2211x x += C .(1)(2)1x x -+=D .223250x xy y --=4.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 2s 0.51=甲,2s 0.62=乙,2s 0.48=丙,2s 0.45=丁,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁5.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表: 尺码/cm 21.5 22.0 22.5 23.0 23.5 人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm 的女式运动鞋,商店经理的这一决定应用的统计量是( ) A .平均数B .加权平均数C .众数D .中位数6.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥7.关于x 的一元二次方程x 2﹣23x+m=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m <3B .m >3C .m≤3D .m≥38.如果一组数据1、2、x 、5、6的众数是6,则这组数据的中位数是( ) A .1B .2C .5D .69.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A .3月份B .4月份C .5月份D .6月份10.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是011.抛物线y=–x 2+bx+c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示: x … –2 –1 0 1 2 … y…4664…从上表可知,下列说法错误的是A .抛物线与x 轴的一个交点坐标为(–2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x=0D .抛物线在对称轴左侧部分是上升的12.据国家统计局2018年1月18日公布,2017年我国GDP 总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )A .8.27122×1012B .8.27122×1013C .0.827122×1014D .8.27122×1014二、填空题:(本大题共6个小题,每小题4分,共24分.)13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_____.14.如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____.15.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m+2016的值为_____.16.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.17.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .18.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程:+=1.20.(6分)(1)计算:(1﹣3)0﹣|﹣2|+18;(2)如图,在等边三角形ABC 中,点D ,E 分别是边BC ,AC 的中点,过点E 作EF ⊥DE ,交BC 的延长线于点F ,求∠F 的度数.21.(6分)如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且BC =2.7米,CD =11.5米,∠CDE =120°,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度.(结果保留根号)22.(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m ,楼间距为AB ,冬至日正午,太阳光线与水平面所成的角为32.3o ,女生楼在男生楼墙面上的影高为CA ;春分日正午,太阳光线与水平面所成的角为55.7o ,女生楼在男生楼墙面上的影高为DA ,已知42CD m =.()1求楼间距AB ;()2若男生楼共30层,层高均为3m ,请通过计算说明多少层以下会受到挡光的影响?(参考数据:sin32.30.53≈o ,cos32.30.85≈o ,tan32.30.63≈o ,sin55.70.83≈o ,cos55.70.56≈,tan55.7 1.47)≈o23.(8分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?24.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.25.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.26.(12分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.27.(12分)如图,直线y=﹣x+2与反比例函数kyx(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】过点B 作BE ⊥AD 于E ,构建直角△ABE ,通过解该直角三角形求得BE 的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像. 【详解】如图,过点B 作BE ⊥AD 于E.∵∠A =60°,设AB 边的长为x ,∴BE =AB∙sin60°∵平行四边形ABCD 的周长为12,∴AB =12(12-2x )=6-x ,∴y =AD∙BE =(6-x )2x +0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C 符合题意.故选C. 【点睛】本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键. 2.A 【解析】试题分析:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限. 故选A .考点:一次函数图象与系数的关系. 3.C 【解析】 【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可. 【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误; B 、2211x x +=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确; D 、223250x xy y --=是二元二次方程,故本选项错误;本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.4.D【解析】【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.5.C【解析】【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.7.A【解析】分析:根据关于x的一元二次方程x2有两个不相等的实数根可得△=(2-4m>0,求出m的取值范围即可.详解:∵关于x的一元二次方程x2有两个不相等的实数根,∴△=(2-4m>0,∴m<3,故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.9.B【解析】【分析】【详解】解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.10.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.11.C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.12.B【解析】【分析】由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为10na⨯(1n≤<10且n为整数). 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5210 258 x yx y+=⎧⎨+=⎩【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用14.﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.15.2.【解析】【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m 是方程2x 2﹣3x ﹣2=0的一个根,∴代入得:2m 2﹣3m ﹣2=0,∴2m 2﹣3m =2,∴6m 2﹣9m+2026=3(2m 2﹣3m )+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m 2﹣3m =2.16.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=2b a = 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE=12AD=12BC , ∴12AF CF =,即CF=2AF , ∴CF=2AF ,故②正确;作DM ∥EB 交BC 于M ,交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=222ba=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.17.1【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060=1(米).故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.18.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-3【解析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.20.(1)﹣1+32;(2)30°.【解析】【分析】(1)根据零指数幂、绝对值、二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平行线的性质可得∠EDC=∠B=o60,根据三角形内角和定理即可求解;【详解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等边三角形,∴∠B=60°,∵点D,E分别是边BC,AC的中点,∴DE ∥AB ,∴∠EDC=∠B=60°,∵EF ⊥DE ,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.21.DE 的长度为63+1.【解析】【分析】根据相似三角形的判定与性质解答即可.【详解】解:过E 作EF ⊥BC ,∵∠CDE =120°,∴∠EDF =60°,设EF 为x ,DF =33x , ∵∠B =∠EFC =90°,∵∠ACB =∠ECD ,∴△ABC ∽△EFC ,∴BC CF AB EF=, 即1.82.7311.5x =+, 解得:x =3∴DE (23923+3,答:DE 的长度为63+1.【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.22.(1)AB 的长为50m ;(2)冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【解析】【分析】()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设.AB CM DN xm ===想办法构建方程即可解决问题.()2求出AC ,AD ,分两种情形解决问题即可.【详解】解:()1如图,作CM PB ⊥于M ,DN PB ⊥于.N 则AB CM DN ==,设AB CM DN xm ===. 在Rt PCM V 中,()tan32.30.63PM x x m =⋅=o, 在Rt PDN V 中,()tan55.7 1.47PN x x m =⋅=o, 42CD MN m ==Q ,1.470.6342x x ∴-=,50x ∴=,AB ∴的长为50m .()2由()1可知:31.5PM m =,()904231.516.5AD m ∴=--=,9031.558.5AC =-=,16.53 5.5Q ÷=,58.5319.5÷=,∴冬至日20层(包括20层)以下会受到挡光的影响,春分日6层(包括6层)以下会受到挡光的影响.【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】【分析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得.【详解】(1)840÷35%=2400(人),∴该区抽样调查的人数是2400人;(2)2400×25%=600(人),∴该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:144×360°=21.6°,2400∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.24.(1)见解析;(2)CD =233;(3)见解析;(4)23【解析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;(2)结论:CD=3AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=3 2AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得HFBF=cos30°,由此即可解决问题.试题解析:迁移应用:(1)证明:如图2,∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,DA=EA,∠DAB=∠EAC,AB=AC,∴△DAB≌△EAC,(2)结论:CD=3AD+BD.理由:如图2-1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=32AD,∵AD=AE,AH⊥DE,∴DH=HE,∵333.拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,(4)∵AE=4,EC=EF=1,∴AH=HE=2,FH=3,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴3 325.(1)见解析;(2)见解析.【解析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.26.(1)32;(2)1.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123n-,0)或(331n+0).【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.。

2019-2020年西安市初三中考数学一模模拟试题【含答案】

2019-2020年西安市初三中考数学一模模拟试题【含答案】

2019-2020年西安市初三中考数学一模模拟试题【含答案】一、选择题(本大题共12小题,共48分)1.若分式的值为零,则x的值是()A. 1B.C.D. 22.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.3.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差6.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.7.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.8.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.10.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化11.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)13.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>14.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.16.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.17.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.18.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.三、解答题(本大题共7小题,共78分)19.先化简,再求值:(-)÷(-1),其中a为不等式组的整数解.20.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C 位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上是否存在点E,使|AE-BE|有最大值?如果存在,请求出点E坐标;若不存在,请说明理由.22.为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(2)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?23.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.24.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.25.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.答案和解析1.【答案】A【解析】解:∵分式的值为零,∴|x|-1=0,x+1≠0,解得:x=1.故选:A.直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.此题主要考查了分式的值为零,正确把握相关定义是解题关键.2.【答案】A【解析】解:0.00000156m,这个数据用科学记数法可表示为1.56×10-6m.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:()-1+tan30°•sin60°=2+=2+=故选:C.根据实数的运算,即可解答.本题考查了实数的运算,解决本题的关键是熟记实数的运算.4.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1-)2+(x2-)2+…+(x n-)2]进行计算即可.此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.6.【答案】A【解析】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4-3=1,∴在直角△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.7.【答案】C【解析】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6-,BM=6-,∵△OMN的面积为10,∴6×6-×6×-6×-×(6-)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N (,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.本题考查了反比例函数的系数k的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.8.【答案】C【解析】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°-50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选:C.根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.9.【答案】D【解析】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.10.【答案】C【解析】解:连接CD,∵∠ACB=90°,CA=CB,∴DC=BD=2,∠BDC=90°,∠B=∠DCA=45°,∴∠BDH=∠CDG,在△BDH和△CDG中,,∴△BDH≌△CDG,∴图中阴影部分的面积=-×2×2=2π-4,故选:C.连接CD,证明△BDH≌△CDG,利用扇形面积公式、三角形面积公式计算即可.本题考查的是扇形面积的计算、全等三角形的判定和性质、等腰直角三角形的性质,债务扇形面积公式是解题的关键.11.【答案】C【解析】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=BD=,①当P在OB上时,即0≤x≤,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•BP=×2x×x=x2;②当P在OD上时,即<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2-x):,∴EF=2(2-x),∴y=EF•BP=×2(2-x)×x=-x2+2x,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.所以由此图我们会发现,EF的取值,最大是AC.当在AC的左边时,EF=2BP;所以此抛物线开口向上,当在AC的右边时,抛物线就开口向下了.故选:C.分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.此题的关键是利用三角形的面积公式列出二次函数解析式解决问题.12.【答案】B【解析】解:(1)-=2,∴4a+b=0,所以此选项不正确;(2)由图象可知:当x=-3时,y<0,即9a-3b+c<0,9a+c<3b,所以此选项不正确;(3)∵抛物线开口向下,∴a<0,∵4a+b=0,∴b=-4a,把(-1,0)代入y=ax2+bx+c得:a-b+c=0,a+4a+c=0,c=-5a,∴5a+7b+2c=5a-7×(-4a)+2×(-5a)=-33a>0,∴所以此选项正确;(4)由对称性得:点C(,y3)与(0.5,y3)对称,∵当x<2时,y随x的增大而增大,且-3<-<0.5,∴y1<y2<y3;所以此选项正确;(5)∵a<0,c>0,∵方程a(x+1)(x-5)=c的两根为x1和x2,故x1>-1或x2<5,所以此选项不正确;∴正确的有2个,故选:B.(1)根据抛物线的对称轴为直线x=-=2,则有4a+b=0;(2)观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;(3)由(1)得b=-4a,由图象过点(-1,0)得:c=-5a,代入5a+7b+2c中,根据a的大小可判断结果是正数还是负数,(4)根据当x<2时,y随x的增大而增大,进行判断;(5)由方程a(x+1)(x-5)=c的两根为x1和x2,由图象可知:x>-1或x<5可得结论.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线是轴对称图形,明确抛物线的增减性与对称轴有关,并利用数形结合的思想综合解决问题.13.【答案】m≥0且m≠1【解析】解:根据题意得m-1≠0且△=(-2)2-4(m-1)×(-1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)×(-1)≥0,然后解不等式求出它们的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【答案】10【解析】解:分式方程+=4的解为且x≠1,∵关于x的分式方程=4的解为正数,∴且≠1,∴a<6且a≠2.解不等式①得:y<-2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<-2,∴a≥-2.∴-2≤a<6且a≠2.∵a为整数,∴a=-2、-1、0、1、3、4、5,(-2)+(-1)+0+1+3+4+5=10.故答案为:10.根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<-2,即可得出a≥-2,找出-2≤a<6且a≠2中所有的整数,将其相加即可得出结论.本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<-2,找出-2≤a<6且a≠2是解题的关键.15.【答案】9+9【解析】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.16.【答案】【解析】解:连接OD,作EH⊥BC,如图,∵EF为直径,∴∠A=90°,∵∠B+∠C=90°,∠B+∠BEH=90°,∴∠BEH=∠C,∵直线l与⊙相切于点D,∴OD⊥BC,而EH⊥BC,EF∥BC,∴四边形EHOD为正方形,∴EH=OD=OE=HD=5,∴BH=BD-HD=7,在Rt△BEH中,tan∠BEH==,∴tan∠ACB=.故答案为.连接OD,作EH⊥BC,如图,先利用圆周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接着根据切线的性质得到OD⊥BC,易得四边形EHOD为正方形,则EH=OD=OE=HD=5,所以BH=7,然后根据正切的定义得到tan∠BEH=,从而得到tan∠ACB的值.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了正切的定义.17.【答案】①②③④【解析】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为:①②③④.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.18.【答案】5×()4030【解析】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2015B2015=()2015,∴S第2016个正方形的面积=S正方形C2015C2015B2015A2015=[()2015]2=5×()4030,故答案为5×()4030先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2015B2015=()2015,即可.此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.19.【答案】解:原式=[-]=•=,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.20.【答案】解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A 作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12海里,∠BCE=30°,∴BE=6海里,EC=6≈10.2海里,∴CD=20.4海里,∵20海里<20.4海里<21.5海里,∴轮船不改变航向,轮船可以停靠在码头.【解析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出∠BAC=30°,属于中考常考题型.21.【答案】解:(1)过点A作AD⊥x轴于点D,如图1所示.∵点A的坐标为(n,6),点C的坐标为(-2,0),∴AD=6,CD=n+2.又∵tan∠ACO=2,∴==2,∴n=1,∴点A的坐标为(1,6).∵点A在反比例函数的图象上,∴m=1×6=6,∴反比例函数的解析式为y=.将A(1,6),C(-2,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=2x+4.(2)联立一次函数及反比例函数解析式成方程组,得:,解得:,,∴点B的坐标为(-3,-2).(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,此时|AE-BE|取得最大值,如图2所示.∵点B的坐标为(-3,-2),∴点B′的坐标为(-3,2).设直线AB′的解析式为y=ax+c(a≠0),将A(1,6),B′(-3,2)代入y=ax+c,得:,解得:,∴直线AB′的解析式为y=x+5.当y=0时,x+5=0,解得:x=-5,∴在x轴上存在点E(-5,0),使|AE-BE|取最大值.【解析】(1)过点A作AD⊥x轴于点D,由点A,C的坐标结合tan∠ACO=2可求出n的值,进而可得出点A的坐标,根据点A的坐标利用反比例函数图象上点的坐标特征可求出m的值,进而可得出反比例函数解析式,再根据点A,C的坐标,利用待定系数法可求出一次函数的解析式;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组可求出点B的坐标;(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,利用两边之差小于第三边可得出此时|AE-BE|取得最大值,由点B的坐标可得出点B′的坐标,根据点A,B′的坐标,利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征可求出当|AE-BE|取得最大值时点E的坐标.本题考查了解直角三角形、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的三边关系,解题的关键是:(1)通过解直角三角形求出点A的坐标;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组求出点B的坐标;(3)利用三角形三边关系,确定当|AE-BE|取得最大值时点E的位置.22.【答案】解:(1)由题意得销售量=700-20(x-45)=-20x+1600,P=(x-40)(-20x+1600)=-20x2+2400x-64000=-20(x-60)2+8000,∵x≥45,a=-20<0,∴当x=60时,P最大值=8000元即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(2)由题意,得-20(x-60)2+8000=6000,解得x1=50,x2=70.∵每盒售价不得高于58元,∴x2=70(舍去),∴-20×50+1600=600(盒).答:如果超市想要每天获得6000元的利润,那么超市每天销售月饼600盒.【解析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量与每盒售价x(元)之间的函数关系式,然后根据利润=1盒月饼所获得的利润×销售量列式整理,再进行配方从而可求得答案;(2)先由(1)中所求得的P与x的函数关系式,根据这种月饼的每盒售价不得高于58元,且每天销售月饼的利润等于6000元,求出x的值,再根据(1)中所求得的销售量与每盒售价x(元)之间的函数关系式即可求解.本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒月饼所获得的利润×销售量,求得销售量与x之间的函数关系式是解题的关键.23.【答案】解:(1)∵CG⊥AB,∴∠AGC=∠CGB=90°,∵BG=1,BC=,∴CG==3,∵∠ABF=45°,∴BG=EG=1,∴CE=2,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,∴CF=CE=2,∴EF=CE=2;(2)如图,延长AE交BC于H,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠AHB=∠HAD,∵AE⊥AD,∴∠AHB=∠HAD=90°,∴∠BAH+∠ABH=∠BCG+∠CBG=90°,∴∠GAE=∠GCB,在△BCG与△EAG中,∠∠°∠∠,∴△BCG≌△EAG(AAS),∴AG=CG,∴AB=BG+AG=CE+EG+BG,∵BG=EG=BE,∴CE+BE=AB.【解析】(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.24.【答案】解:(1)由题意可得,解得,∴抛物线解析式为y=-x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(-1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=-x+,联立直线l和抛物线解析式可得,解得或,∴F(-,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,-t2+2t+3),M(t,-t+),∴PM=-t2+2t+3-(-t+)=-t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(-t2+t+)(3+)=-(t-)2+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=-t2+2t+3-3,即-t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=-t2+2t+3,AQ=t,KE=3-t,PQ=-t2+2t+3-3=-t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2-t-1=0,解得t=或t=<-(舍去),综上可知存在满足条件的点P,t的值为1或.【解析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM 的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、二次函数的性质、三角形的面积、直角三角形的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数示的应用,在(2)中用t表示出△PEF的面积是解题的关键,在(3)中分两种情况,分别利用等腰直角三角形和相似三角形的性质得到关于t的方程是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.25.【答案】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到==,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到=,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到结论.本题考查了相似三角形的判定与性质,全等三角形的判定中学数学一模模拟试卷一、选择题(本大题共12小题,共48分)26.若分式的值为零,则x的值是()A. 1B.C.D. 227.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.28.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.29.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.30.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差31.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.32.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.33.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.34.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.35.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化36.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.37.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A (-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)38.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>39.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.40.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.41.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.42.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省西安市鄠邑区 2019-2020 学年中考数学模拟试卷
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.) 1.小手盖住的点的坐标可能为( )
A. 5, 2
B. 3,4
C. 6,3
D. 4,6
2.一次函数 y1 kx b 与 y2 x a 的图象如图所示,给出下列结论:① k 0 ;② a 0 ;③当 x 3 时, y1 y2 .其中正确的有( )
A.﹣10
B.10
C.﹣6
D.2
8.已知:如图,AD 是△ ABC 的角平分线,且 AB:AC=3:2,则△ ABD 与△ ACD 的面积之比为( )
A.3:2
B.9:4
C.2:3
D.4:9
9.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买 10 本以上,超
过 10 本的那部分书的价格将打折,并依此得到付款金额 y(单位:元)与一次性购买该书的数量 x(单位:
A.0 个
B.1 个
C.2 个
D.3 个
3.如图,在矩形 ABCD 中,O 为 AC 中点,EF 过 O 点且 EF⊥AC 分别交 DC 于 F,交 AB 于点 E,点
G 是 AE 中点且∠AOG=30°,则下列结论正确的个数为( )DC=3OG;(2)OG= 1 BC;(3)△ OGE 2
是等边三角形;(4) SAOE
求出抛物线的解析式;如图 1,点 M 为线
段 BD 上不与 B、D 重合的一个动点,过点 M 作 x 轴的垂线,垂足为 N,设点 M 的横坐标为 x,四边形 OCMN 的面积为 S,求 S 与 x 之间的函数关系式,并求 S 的最大值;点 P 为 x 轴的正半轴上一个动点,
过 P 作 x 轴的垂线,交直线 y=﹣ 3 x+m 于 G,交抛物线于 H,连接 CH,将△ CGH 沿 CH 翻折,若点 4
二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分.)
D. 5
13.如图所示,点 C 在反比例函数 y k (x 0) 的图象上,过点 C 的直线与 x 轴、y 轴分别交于点 A、B, x
且 AB BC ,已知 AOB 的面积为 1,则 k 的值为______.
14.如图,⊙O 的半径为 2,AB 为⊙O 的直径,P 为 AB 延长线上一点,过点 P 作⊙O 的切线,切点为 C.若
1 6 S矩形ABCD .
A.1
B.2
C.3
D.4
4.如图,在同一平面直角坐标系中,一次函数 y1=kx+b(k、b 是常数,且 k≠0)与反比例函数 y2= c (c x
是常数,且 c≠0)的图象相交于 A(﹣3,﹣2),B(2,3)两点,则不等式 y1>y2 的解集是( )
A.﹣3<x<2
B.x<﹣3 或 x>2 C.﹣3<x<0 或 x>2 D.0<x<2
求证:△ ACD∽△CBD;求∠ACB 的大小.
21.(6 分)计算:|﹣ 2 |﹣ 8 ﹣(2﹣π)0+2cos45°.
解方程: 3x =1﹣ 1
x3
3 x
22.(8 分)顶点为 D 的抛物线 y=﹣x2+bx+c 交 x 轴于 A、B(3,0),交 y 轴于点 C,直线 y=﹣ x+m 经
过点 C,交 x 轴于 E(4,0).

A.20°
B.35°
C.40°
D.70°
11.如果数据 x1,x2,…,xn 的方差是 3,则另一组数据 2x1,2x2,…,2xn 的方差是( )
A.3
B.6
C.12
D.5
12.如图,直角坐标平面内有一点 P(2, 4) ,那么 OP 与 x 轴正半轴的夹角 的余切值为( )
A.2
B. 1 2
C. 5 5
5.已知△ ABC,D 是 AC 上一点,尺规在 AB 上确定一点 E,使△ ADE∽△ABC,则符合要求的作图痕
迹是( )
A.
B.
C.
D.
6.若 2< a 2 <3,则 a 的值可以是( )
A.﹣7
B. 16 3
C. 13 2
D.12
7.已知关于 x 的一元二次方程 x2+mx+n=0 的两个实数根分别为 x1=2,x2=4,则 m+n 的值是( )
PC=2 3 ,则 BC 的长为______.
15.如图,10 块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为 x 厘米,则依题意列方程为 _________.
16.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为 2 的“等边扇形”的面积


x 2 0
17.不等式组
一个不透明的口袋中.求从袋中随机摸出一球,标号是 1 的概率;从袋中随机摸出一球后放回,摇匀后再
随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则
乙胜;试分析这个游戏是否公平?请说明理由.
20.(6 分)如图,△ ABC 中,CD 是边 AB 上的高,且 AD CD . CD BD
本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过 10 本时,销售价格为 20 元/本 B.a=520 C.一次性购买 10 本以上时,超过 10 本的那部分书的价格打八折 D.一次性购买 20 本比分两次购买且每次购买 10 本少花 80 元 10.如图,AD,CE 分别是△ ABC 的中线和角平分线.若 AB=AC,∠CAD=20°,则∠ACE 的度数是( )
G 的对应点 F 恰好落在 y 轴上时,请直接写出点 P 的坐标.
23.(8 分)在一个不透明的盒子中装有大小和形状相同的 3 个红球和 2 个白球,把它们充分搅匀.“从中
任意抽取 1 个球不是红球就是白球”是
事件,“从中任意抽取 1 个球是黑球”是
事件;从中
x
1 2
x
的最大整数解是__________.
18.已知二次函数 y=ax2+bx(a≠0)的最小值是﹣3,若关于 x 的一元二次方程 ax2+bx+c=0 有实数根,则
c 的最大值是_____. 三、解答题:(本大题共 9 个小题,共 78 分,解答应写出文字说明、证明过程或演算步骤. 19.(6 分)甲乙两名同学做摸球游戏,他们把三个分别标有 1,2,3 的大小和形状完全相同的小球放在
相关文档
最新文档