C6-thermodynamics of phase transformation(1)
正极相变和石墨相变

正极相变和石墨相变英文回答:Positive phase transition and graphite phase transition are two different types of phase transitions that occur in different materials. Positive phase transition refers to the transition from a solid phase to a liquid phase, while graphite phase transition refers to the transition from a graphite phase to a different phase, such as diamond or amorphous carbon.Positive phase transition, also known as melting, occurs when a solid material is heated to a certain temperature, known as the melting point. At this temperature, the intermolecular forces holding the solid together weaken and the solid starts to transform into a liquid. This transition is characterized by an increase in entropy and a decrease in the lattice structure of the material. An example of positive phase transition is the melting of ice into water when heated.Graphite phase transition, on the other hand, occurs when graphite, a form of carbon consisting of layers of hexagonal rings, undergoes a structural transformation into a different phase. This can happen under high pressure or high temperature conditions. One example of graphite phase transition is the transformation of graphite into diamond, which occurs under extreme pressure and temperature conditions deep within the Earth's crust. Another example is the transformation of graphite into amorphous carbon, which occurs when graphite is heated to high temperatures in the absence of oxygen.Both positive phase transition and graphite phase transition are important in various fields of study. Positive phase transition is of great significance in materials science, as it affects the properties and behavior of materials. For example, the melting point of a substance determines its ability to be used as a solid or a liquid in various applications. Graphite phase transition, on the other hand, is important in understanding the properties and behavior of carbon-based materials. Thetransformation of graphite into diamond, for instance, results in a material with very different properties, such as increased hardness and thermal conductivity.In conclusion, positive phase transition and graphite phase transition are two different types of phasetransitions that occur in different materials. Positive phase transition refers to the transition from a solidphase to a liquid phase, while graphite phase transition refers to the transformation of graphite into a different phase. Both types of phase transitions have significant implications in materials science and the study of carbon-based materials.中文回答:正极相变和石墨相变是发生在不同材料中的两种不同类型的相变。
CALPHAD软件介绍

Abstract
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. c 2007 Elsevier Ltd. All rights reserved.
Thermodynamics培训课件.ppt

Gibbs free energy for a phase:
G = H - TS
Where:
G = Gibbs Free Energy H = Enthalpy (heat content) T = Temperature in Kelvins S = Entropy (can think of as randomness)
Thermodynamics
Begin with a brief review of Chapter 5
Natural systems tend toward states of minimum energy
Energy States
• Unstable: falling or rolling
Stable: at rest in lowest energy state
Gas Pressure-Volume Relationships
Since
z GP2 - GP1 =
P2
VdP
P1
z we can substitute RT/P for V (for a single mole of gas), thus:
G P2 - G P1 =
P2 RT dP
P P1
z and, since R and T are certainly independent of P:
The form of this equation is very useful
GP, T - GTo = RT ln (P/Po)
For a non-ideal gas (more geologically appropriate) the same form is used, but we substitute fugacity ( f ) for P
MolecularThermodynamicsPDF:分子热力学的PDF

Molecular ThermodynamicsBy John SimonMolecular Thermodynamics Details:Molecular Thermodynamics: Donald A. McQuarrie, John D. Simon ...Evolved from McQuarrie and Simon's best-selling textbook, Physical Chemistry: A Molecular Approach, this text focuses in on the thermodynamics portion of the course. Thermodynamics - Wikipedia, the free encyclopediaThermodynamics is a branch of natural science concerned with heat and its relation to energy and work. It defines macroscopic variables (such as temperature, internal energy, entropy, and pressure) that characterize materials and radiation, and explains how they are related and by what laws they ...Molecular Thermodynamics - Johns Hopkins UniversityMolecular Thermodynamics. The explosion in structural data on bio-molecules provides new opportunities to understand their function in terms of their structure. Thermochemistry - Wikipedia, the free encyclopediaThermochemistry is the study of the energy and heat associated with chemical reactions and/or physical transformations. A reaction may release or absorb energy, and a phase change may do the same, such as in melting and boiling. Thermochemistry focuses on these energy changes, particularly on ...Molecular Thermodynamics, Donald A. McQuarrie and John D. SimonMolecular Thermodynamics, by Donald McQuarrie and John Simon, published in 1999 by University Science Books.Statistical Molecular Thermodynamics | CourseraStatistical Molecular Thermodynamics is a free online class taught by Dr. Christopher J. Cramer of University of MinnesotaMolecular Thermodynamics - Donald Allan McQuarrie, John ...Evolved from McQuarrie and Simon's best-selling Physical Chemistry: A Molecular Approach, this text follows a similar path by first covering the principles of quantum mechanics before engaging those ideas in the subsequent development of thermodynamics. Although many of the chapters are similar ...Introduction to Molecular ThermodynamicsIntroduction to Molecular Thermodynamics. by Robert M. Hanson and Susan Green, St. OlafCollege.enquiries:******************.Publisher'swebsiteforthisbookMolecular Thermodynamics (Physical chemistry monograph series ...Molecular Thermodynamics (Physical chemistry monograph series) [Richard E. Dickerson] on . *FREE* shipping on qualifying offers.Molecular Thermodynamics — ITQB - Universidade Nova de LisboaMolecular Thermodynamics of Liquids and Liquid Solutions, in particular, studies of Ionic Liquids and ionic liquid-containing systems constitute the main activity.Molecular thermodynamics of fluid-phase equilibria - J. M ...Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of ...Molecular thermodynamics - definition of Molecular ...ther·mo·chem·is·try (thûr m-k m-str) n. The chemistry of heat and heat-associated chemical phenomena. ther mo·chem i·cal (--k l) adj. ther mo·chem ist n.Prausnitz Group Home Page - University of California, BerkeleyMolecular Thermodynamics John M. Prausnitz. Professor, University of California, Berkeley Faculty Senior Scientist, Lawrence Berkeley National LaboratorymThermoWait for more... ... The website is going through major upgrade ,, wait for the new look soon :)Molecular thermodynamics - HmolpediaAn encyclopedia of topics on the thermodynamics, chemistry, and physics of human existence.Molecular Thermodynamics of Fluid-Phase Equilibria / Edition ...The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase ...Molecular Thermodynamics of Fluid-Phase EquilibriaThermodynamics Home - Chemical Engineering - Thermodynamics: Molecular Thermodynamics of Fluid-Phase Equilibria by Rudiger N. Lichtenthaler, Edmundo Gomes De Azevedo, John M. Prausnitz, Edmundo G. De AzevedoMolecular thermodynamics definition of Molecular ...thermochemistry [¦th?r·m??kem·?·str?] (physical chemistry) The measurement, interpretation, and analysis of heat changes accompanying chemical reactions and changes in state.Molecular Thermodynamics by Donald A. McQuarrie — Reviews ...Molecular Thermodynamics has 7 ratings and 1 review. Jacob said: This books is incredible. It's extremely comprehensive. If you love physical chemistry a...Introduction to Molecular Thermodynamics, by Robert M. Hanson ...Introduction to Molecular Thermodynamics, by Robert M. Hanson and Susan Green , University Science Books, copyright 2008Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2Molecular Thermodynamics of Fluid Phase Equilibria - 3rd Edition2 - Free ebook download as PDF File (.pdf), Text file (.txt) or read book online for free.Molecular thermodynamics (Book, 1999) []Get this from a library! Molecular thermodynamics. [Donald A McQuarrie; John D Simon]Molecular Thermodynamics - Download for freeMolecular Thermodynamics download from FileSnail - 3188189138905X pdf, Thermodynamics Processes an rar, FilePost DepositFiles and RapidShare files. Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz ...Molecular Thermodynamics of Fluid Phase Equilibria (Prausnitz- 2th Edition ) - Free ebook download as Text file (.txt), PDF File (.pdf) or read book online for free. k Molecular thermodynamics (Open Library)Molecular thermodynamics by Richard Earl Dickerson, 1969,W. A. Benjamin edition, in EnglishMolecular thermodynamics - definition of Molecular ...Molecular thermodynamics. Molecular Time Scale Generalized Langevin Equation Molecular Typing by Reverse Dot-Blotting Molecular Typing Working Group Molecular Unit Cell Approximation molecular velocity Molecular vibration Molecular Vibrational SpectrometerCenter for Molecular & Engineering ThermodynamicsThe University of Delaware’s Thomas H. Epps, III, is one of 30 early-career engineers nationwide invited to attend the 2013 European Union-United States Frontiers of Engineering Symposium to be held Nov. 21-23 in Chantilly, France.ChemE | Thermodynamics and Molecular ComputationsThermodynamics and Molecular Computations. Thermodynamics governs processes as diverse as chemical production, bioreaction, creation of advanced materials, protein separation, and environmental treatment.Molecular Thermodynamics Mcquarrie : ?g Rt K Q. Molecular ...pdf document tagged with molecular thermodynamics mcquarrie : ?G RT K Q. user guide pdf categorized in molecular thermodynamics mcquarrieMolecular Thermodynamics of Fluid-Phase Equilibria by John M ...Molecular Thermodynamics of Fluid-Phase Equilibria has 7 ratings and 1 review. Theclassic guide to mixtures, completely updated with new models, theorie...。
一种热解炭在金属钠中的相变

一种热解炭在金属钠中的相变徐子颉*吉涛王玮衍夏炳忠马超甘礼华(同济大学化学系,上海200092)摘要:通过酚醛树脂的裂解和碳化所形成的热解炭与金属钠在氩气保护气氛中加热,得到一种无定形碳在常压和较低温度下进行石墨化的方法,并研究了热解炭在金属钠熔体中的相变.对所得样品用X 射线粉末衍射(XRD)、光散射拉曼光谱、透射电子显微镜(TEM)以及Brunauer-Emmett-Teller (BET)法氮气吸附进行表征与分析.结果表明:热解炭在金属钠熔体中于800°C 加热24h,发生明显的石墨化;于900°C 加热24h,所得样品的石墨化度为40%,石墨化碳的平均厚度约为40nm,孔结构由微孔转变为介孔.探讨了金属钠在无定形碳中的渗透扩散导致其相变的原因.关键词:酚醛树脂;热解炭;石墨化;金属钠;相变中图分类号:O642;O792Phase Transformation of Pyrocarbon in Molten Sodium MetalXU Zi-Jie *JI TaoWANG Wei-YanXIA Bing-ZhongMA ChaoGAN Li-Hua(Department of Chemistry,Tongji University,Shanghai 200092,P .R.China )Abstract :A method to graphitize amorphous carbon was carried out by annealing pyrocarbon from crackedphenolic resin in molten sodium metal at a lower temperature and ambient pressure and the phase transformation of pyrocarbon from amorphous carbon to crystallized carbon was studied.X-ray diffraction (XRD),Raman scattering spectroscopy,transmission electron microscopy (TEM),and nitrogen gas physisorption by the Brunauer-Emmett-Teller (BET)method were used to probe the prepared samples for carbon composition,particle size,and morphology.The graphitization of amorphous carbon was obvious when being annealed in molten sodium metal in argon atmosphere at 800°C for 24h.For the sample annealed at 900°C for 24h,the degree of graphitization was 40%and the average thickness of the graphitized carbon layers was about 40nm.The effect of sodium metal infiltration into the matrix of amorphous carbon on the graphitization is also discussed.Key Words :Phenol resin;Pyrocarbon;Graphitization;Sodium metal;Phase transformation[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .,2011,27(1):262-266JanuaryReceived:August 9,2010;Revised:September 12,2010;Published on Web:November 15,2010.∗Corresponding author.Email:xuzijie-tj@;Tel:+86-21-65982654-8430ⒸEditorial office of Acta Physico ⁃Chimica Sinica炭/炭复合材料是一种多相非均质混合物,因其具有高比强度、高比模量等显著的材料结构性能,逐渐成为新一代航空航天材料的发展方向.然而炭/炭复合材料的石墨化,会影响该类材料的力学性能、物理性能和化学性能,是最重要的结构控制因素之一,通过调整该类材料的石墨化状态,可改善其综合性能,从而满足不同的使用要求.因此,开展无定形碳材料在较低温度下的石墨化研究对炭/炭复合材料的应用具有重要的意义.无定形碳的石墨化就是在一定的二维平面范围内有序的乱层结构碳的残片进行定向重排的相变过程.由于在该相变过程中,无定形碳容易形成亚稳态,使得这种相变的阻力增大,因此商品化石墨的生产一般都在2700°C 左右进行.但是,在如此高温条件下进行石墨化,使得材料的力学和电学性能受到损害,如无定形碳材料在2700°C 经石墨化262No.1徐子颉等:一种热解炭在金属钠中的相变所得样品的放电容量为74mAh·g-1,而在1000℃温度条件下石墨化后,所得样品的放电容量为250 mAh·g-1[1].目前,基于溶解再析出和碳化物转化机理的催化石墨化方法可以有效地降低石墨化温度,具体方法主要有两类:其一,在碳基质中加入过渡金属及其氧化物,如Fe、Mn、Cr等过渡金属及其氧化物[2-3];其二,在碳基质中形成三组分的插层化合物,如Tanaike等[4]将金属Li、Na和K溶于四氢呋喃中,获得相应的有机金属化合物,结果表明所得材料的石墨化度很低.Rojas-Cervantes[5]和Oya[6]等合成了分别含有金属Na、K、Mg和Zr的碳的干凝胶,在1000°C氮气气氛中烧结,没有发现这些金属的催化活性,得到的仍然是无定形碳.由于酚醛树脂产碳量高,常被用作制备先进碳材料的先驱物.选用酚醛树脂类物质作为碳源,经热解后得到热解炭,开展其石墨化的研究近年来已引起人们的重视.张福勤等[7]研究了化学气相沉积热解炭的可石墨化性;王永刚等[8]采用化学气相渗透对泡沫碳进行复合处理,在2500°C得到石墨化泡沫碳;周德凤等[9]报道了在酚醛树脂中加入氯化锌,可以改变热解炭的微观结构及石墨化程度;Chen等人[10-11]使用硝酸镨作催化剂研究其对酚醛树脂热解炭的石墨化作用,在催化剂含量为15%(w)以及2400°C时获得最优化的石墨化条件,他们还用含量为29%(w)的石墨氧化物作催化剂在2400°C时获得较完整的石墨结构;Cai等[12]使用含量为5%(w)的铁镍催化剂,在外加磁场以及1200°C时实现酚醛树脂的石墨化.除此之外,还有文章报道[13]使用金属钇作催化剂研究酚醛树脂的催化石墨化.本文通过将酚醛树脂裂解和碳化后形成的热解炭与金属钠在氩气保护下加热,开展无定形碳在金属钠熔体中的相变研究.采用X射线粉末衍射(XRD)以及激光散射拉曼光谱技术,对所得样品碳组成的相态以及层内、层间碳原子的状态进行表征;通过透射电子显微镜(TEM)观察碳组成的形貌,通过比表面积分析研究热解炭在石墨化前后孔结构特征的变化.探讨了金属钠在无定形碳基质中的渗透与扩散对无定形碳相变产生的影响.该方法可用于新型结构的炭/炭复合材料的石墨化研究中.1实验1.1热解炭的制备将市售酚醛树脂(2130型,无锡久耐防腐材料有限公司)放入烘箱(102A-2型,上海试验仪器总厂)中,调节温度到80°C,保温10h,再升温至120°C,保温10h,继续升温至140°C并保温24h,使酚醛树脂完全固化.将固化后的酚醛树脂放入管式炉(SK2-15-13T型,上海实验电阻炉厂)中,通入氩气保护,以10°C·min-1的升温速率升温至200°C,保温3 h,再以相同的升温速率升温至800°C并保温4h,得到热解炭.1.2石墨化方法称取5g按上述方法制备的热解炭,放入带盖的坩埚中,在充有氩气的手套箱(ZKX1型,南京南大仪器厂)内切割金属钠块,并称取3g放置其表面,再将坩埚置于管式炉(SK2-15-13T型,上海实验电阻炉厂)中并通入氩气保护,以10°C·min-1的升温速率升温至所设定温度并保温24h,本实验所设定的温度分别是600、700、800和900°C;将所得样品用蒸馏水超声清洗,直至洗液的pH值为7,再将清洗后的用品在烘箱(102A-2型,上海试验仪器总厂)内于120℃干燥.1.3表征方法使用D8FOCUS型X射线粉末衍射仪(德国, Bruker AXS)对样品进行XRD表征,测试条件为40 kV,40mA,Cu Kα射线;使用Renishaw inVia激光拉曼光谱仪(英国,Renishaw)对所得样品进行拉曼光谱分析;使用S-TWIN F20型场发射透射电镜(荷兰, FEI)对样品进行TEM形貌表征;使用Micromeritics Tristar3000比表面积测定仪(美国,Micromeritics),采用Brunauer-Emmett-Teller(BET)法分析样品的比表面积、孔径分布以及孔结构特征.2结果与讨论选用酚醛树脂作为碳源,经800°C热解、碳化后得到热解炭,用以研究无定形碳材料在金属钠熔体中的相变.由于残存于样品中的金属钠在样品的后处理中遇到空气被氧化,形成的氧化钠成分在XRD检测时会产生很强的衍射峰,干扰了对碳组成的表征,因此,样品在表征前必须经蒸馏水洗涤,去除氧化钠组分.2.1不同温度条件下热解炭在金属钠中的相变图1是热解炭在不同温度条件下进行热处理所得样品的XRD谱.图谱(1)为在没有金属钠存在的条件下,将热解炭在900°C保温24h,所得样品的碳组成仍然是典型的无定形碳,表明无定形碳在此温263Vol.27Acta Phys.⁃Chim.Sin.2011度时没有发生相变.当热解炭与金属钠在600°C 加热24h,得到谱(2),根据文献[6]的解释,表明金属粒子已经渗透和扩散在无定形碳的基质中,使得其中的乱碳结构残片开始在局部进行重新取向,导致2θ分别在25°和45°附近出现较为明显的漫衍射峰.当热解炭与金属钠中的加热温度为700°C 时,得到谱(3),从中可见其特征衍射峰已经明显锐化,表明此时热解炭中的无定形碳已经晶格化.当加热温度升高至900°C ,得到谱(4),显示石墨化碳的特征衍射峰更加锐化.当样品的加热温度从700°C 升高至900°C 时,样品的衍射数据也相应发生变化,其中2θ值从25.9°增加至26.3°,相应的d 002值从0.3433nm 变为0.3406nm.根据Mering 和Maire 公式[14],样品的石墨化度可由G =((0.3440-d 002)/(0.3440-0.3354))×100%计算得到,当加热温度从700°C 升高至900°C 时,所得样品的石墨化度分别从8.5%增加至40%.对一系列样品的XRD 表征结果的分析表明,在金属钠熔体中,无定形碳的碳组成发生明显的变化,随着加热温度的升高,热解炭的石墨化特征愈加明显.图2是所选样品的拉曼谱图.在1350、1570和2700cm -1处的谱峰被分别称为D 、G 和G ′峰.图谱中D 峰是发生于相同碳原子间的拉曼振动模式,G 峰则表示两种不同碳原子之间的光子振动模式,而G ′峰表示一种源自晶面之间的碳原子所发生的光子振动模式,是一种二阶拉曼散射过程.谱图(1)是酚醛树脂裂解碳在没有金属钠存在的条件下,经过900°C 加热后所得样品的拉曼谱图,图谱中D 峰强度高于G 峰并且两峰没有完全分离,另外,图谱中无G ′峰,表明样品对激光的漫散射分别在乱碳结构残片内部的碳原子以及乱碳结构残片间进行,这种光子振动模式证明了热解炭中的无定形碳含有二维有序的乱碳结构而且呈现杂乱无章地堆积.图谱(2)是热解炭在金属钠中,经过700°C 加热所得样品的拉曼谱图,此时D 峰强度降低,G 峰强度增加并呈现两峰分离的迹象,表明激光在样品中不同碳原子间的光子振动模式加强.另外,图谱中同时呈现一个明显的G ′峰,表明光子振动发生在石墨化层间的碳原子之间,进一步说明乱碳结构残片在此时已经发生明显的定向重排.图谱(3)是热解炭在金属钠中,经过900°C 加热所得样品的拉曼谱图,此时D 峰强度明显降低,G 峰强度明显增加而且两峰完全分离,表明光子的振动模式主要发生在晶面之间的碳原子中,说明该样品中的碳原子已经转变为石墨结构.2.2金属钠在无定形碳中的渗透与扩散对其相变的影响根据对所得样品进行的XRD 和拉曼谱分析知,在没有金属钠存在时,热解炭在900°C 加热条件下没有发生相变,而有金属钠存在的条件下,无定形碳在700°C 加热24h 后,观察到无定形碳开始向结晶态碳转化,随着加热温度的升高,这种相态转化更加明显.因此,金属钠的存在是导致热解炭在加热条件下发生相变的必要因素.虽然目前对金属钠与碳组成的相互作用机制进行原位的实时表征和分析还比较困难,但是,根据XRD 和拉曼的表征结果,不仅证实了这种相变的发生,而且揭示金属钠对该相变的重要影响,即金属钠原子在无定形碳中的渗透与扩散引起了其中乱碳结构残片的重排与取向.当金属图1热解炭在不同条件下退火24h 的XRD 图谱Fig.1XRD patterns of pyrocarbons annealed at differentconditions for 24h(1)900°C without sodium metal;(2)600°C,(3)700°C,and(4)900°C in molten sodiummetal2热解炭在900°C (1)以及在金属钠中于700°C (2)和900°C (3)加热24h 的拉曼图谱Fig.2Raman spectra of pyrocarbons annealed at 900°Cwithout sodium metal (1)and at 700°C (2),900°C(3)in molten sodium metal for 24hNo.1徐子颉等:一种热解炭在金属钠中的相变钠原子渗入到乱碳结构残片间,钠原子外层电子的高活泼性,影响了残片中碳原子周围的电场环境,同时渗透与扩散在其中的钠原子可以形成金属钠的连续相,并充当优良的导热介质,使得无定形碳在石墨化过程中的结晶潜热能够通过导热介质及时地向周围环境释放,从而有利于无定形碳在较低温度条件下发生相变.金属钠在无定形碳中的渗透、扩散与加热温度密切相关.随着加热温度的升高,对所得样品的XRD 和拉曼表征结果都表现出了高度的一致性,即石墨化度增加.无定形碳在金属钠中的相变过程示意图如图3所示.对样品形貌学的观察进一步证实了金属钠对热解炭在其中发生相变的影响.图4(a)是热解炭与金属钠在700°C 加热24h 所得样品的TEM 照片,图中“A ”所在区域为无定形碳,“T ”所在区域显现出湍流碳的形貌特征,“G ”区域则显现出石墨化碳的形貌特征.通过对样品不同区域进行TEM 观察,发现湍流碳总是出现在无定形碳和石墨化碳的过渡区域,其形貌特征显示出无定形碳中的乱碳结构残片已在有限范围内进行了定向重排,但不够完整.在700°C 加热条件下,金属钠在无定形碳中的渗透与扩散不完全,没有形成均匀的金属钠连续相,使得乱碳结构残片的定向重排过程不能在长程范围内连续进行.湍流碳的出现使得无定形碳向石墨化碳转化的阻力增加,这也是商品化石墨必须在高温条件下生产的主要原因.图4(b)是热解炭与金属钠在900°C 加热24h 所得样品的TEM 照片,随着加热温度的升高,石墨化碳的厚度与长度显著增加,所得样品中石墨化碳的平均厚度约为40nm,显然升高温度加速了金属钠在碳基质中的渗透与扩散,有利于无定形碳向石墨化碳的转化.2.3在金属钠作用下热解炭中孔结构特征的变化图5是热解炭在金属钠中发生相变前后样品的对氮气的吸附-脱附等温线.从图中可见,热解炭样品的吸附-脱附等温线属于类型I,插图所示的孔分布曲线表明热解炭中存在大量孔径小于2nm 的微孔,等温线中很小的滞后环表明热解炭中的微孔对氮气的吸附与脱附具有良好的可逆性,这些孔结构特征反映出热解炭中的微孔分布在无定形的乱碳结构残片之间并具有良好的连通性.然而当热解炭与金属钠在900°C 加热24h 所得石墨化热解炭样品的氮气吸附-脱附等温线出现一个较大的滞后环(如等温线2所示),插图中的孔分布曲线显示样品中的孔径尺寸主要集中在4-5nm 之间,属于介孔尺寸,表明热解炭在石墨化前后孔结构发生由微孔向介孔发生转变.导致孔结构转化的原因是由于热解炭中图3无定形碳在金属钠中的相变过程示意图Fig.3Sketch map of the phase transformation of amorphous carbons in molten sodium metalThe conditions of (1)-(4)are the same as those inFig.1.图4热解炭与金属钠在700(a)和900°C (b)加热24h 所得样品的TEM 照片Fig.4TEM image of pyrocarbons annealed in molten sodium metal at 700°C (a)and 900°C (b)for 24hArea A denotes amorphous carbons,aera T denotes turbostraticcarbons,and area G denotes graphitic carbons.图5样品的氮气吸附-脱附等温线Fig.5Nitrogen adsorption desorption isotherms ofselected samplesIsotherm 1represents the sample of pyrocarbon and isotherm 2represents the sample of graphitized pyrocarbon.Inset is pore sizedistributioncurve.265Vol.27 Acta Phys.⁃Chim.Sin.2011的乱碳结构残片在金属钠原子的作用下定向重排,使得原先分布在其中的相互连通的微孔发生合并增大,形成了分布在石墨化碳层间的插层状孔,由于此时毛细管作用力的增强,导致样品对氮气的脱附滞后.另外,从图中可见,热解炭发生石墨化后,随着乱碳结构残片的定向重排使得石墨化热解炭样品的比表面积有所下降.酚醛树脂热解炭在金属钠作用下,其孔结构特征的改变是碳组成发生相变的结果,同时也进一步证实了金属钠原子在乱碳结构残片间的渗透与扩散有利于其发生定向重排,从而导致热解炭能够在较低的温度条件下实现石墨化.催化石墨化是通过在碳基质中引入催化剂,以降低石墨化温度,但是,目前的方法对于一些新型碳材料的石墨化显现出一定的缺陷.首先,在材料的制备阶段必须将催化剂加到碳材料的基质中,这势必增加了材料制备的难度,甚至对材质特性产生不良影响.例如,对碳气凝胶材料的石墨化,如果采用现有的催化石墨化方法,就需要在碳气凝胶制备所必经的溶胶-凝胶过程中加入催化剂,它可能改变胶体离子的微环境,继而影响了碳气凝胶的结构特性.其次,目前所采用的催化剂多数是过渡金属的氧化物,在碳材料石墨化以后,很难将催化剂从碳材料的基质中去除干净,这可能对转型后碳材料的电学特性或电化学催化特性等产生影响.再者,现有催化石墨化方法[4-6]对于碳气凝胶的石墨化效果仍不理想.酚醛树脂热解炭在金属钠作用下发生相变进行石墨化,该方法不仅具有操作简单的特点,而且可以避免在碳基质中加入催化剂给材质纯度、特性带来的不利影响并且可以降低材料的制备难度.另外,该方法有利于一些新型多孔性碳材料的石墨化,因为多孔性结构十分有利于金属钠在碳基质中的渗透与扩散.而实现这类材料的低温石墨化,可以使无定形碳材料的多孔特性与石墨晶体材料的材质特性相结合,有助于扩展碳材料在传感器、探测器、航天以及新能源电池等领域的应用范围.我们以自制的碳气凝胶通过文中方法进行石墨化研究,初步结果表明在800°C实现了碳气凝胶的石墨化,相关研究工作正在进行中.3结论由酚醛树脂经过裂解碳化后得到的热解炭,通过与金属钠一起在氩气保护下,在800°C加热24h 可以观察到明显的石墨化现象.金属钠在无定形碳中的渗透与扩散引起乱碳结构残片的定向重排,湍流碳的形成是金属钠在其中的渗透与扩散不均匀所致,是无定形碳向石墨化碳转化的中间相态,通过升高加热温度,可以改善金属钠在其中的扩散,从而提高了石墨化程度.热解炭在金属钠作用下发生石墨化使得样品中的孔结构由微孔转化为介孔,在900°C时石墨化度达到40%,样品中石墨化碳层的平均厚度达到40nm.致谢:本文实验研究过程中的部分分析测试工作得到同济大学化学系实验中心的支持.References1Skowroński,J.M.;Knofczyński,K.;Inagaki,M.Solid State Ionics,2007,178:1372Oya,A.;Otani,S.Carbon,1979,17:1313Curtis,B.J.Carbon,1966,4:4834Tanaike,O.;Inagaki,M.Carbon,1997,35:8315Rojas-Cervantes,M.L.;Alonso,L.;Díaz-Terán,J.;López-Peinado,A.J.;Martín-Aranda,R.M.;Gómez-Serrano,V.Carbon,2004,42:15756Oya,A.;Mochizuki,M.;Otani,S.;Tomizuka,I.Carbon,1979, 17:717Zhang,F.Q.;Huang,Q.Z.;Zou,L.H.;Huang,B.Y.;Xiong,X.;Zhang,C.F.Journal of Inorganic Materials,2004,19(5):1118[张福勤,黄启忠,邹林华,黄伯云,熊翔,张传福.无机材料学报,2004,19(5):1118]8Wang,Y.G.;Lin,X.C.;Yang,H.J.;Zhang,J.S.;Xu,D.P.Journal of Materials Science&Engineering,2008,26(3):365[王永刚,林雄超,杨慧君,张江松,许德平.材料科学与工程学报,2008,26(3):365]9Zhou,D.F.;Xie,H.M.;Zhao,Y.L.;Wang,R.S.Journal of Functional Material,2005,36(1):83[周德凤,谢海明,赵艳玲,王荣顺.功能材料,2005,36(1):83]10Yi,S.J.;Chen,J.H.;Xiao,X.;Liu,L.;Fan,Z.J.Rare Earths, 2010,28(1):6911Yi,S.J.;Chen,J.H.;Li,H.Y.;Liu,L.;Xiao,X.;Zhang,X.H.Carbon,2010,48:91212Xu,S.H.;Zhang,F.Y.;Kang,Q.;Liu,S.H.;Cai,Q.Y.Carbon, 2009,47:323313Ni,Z.C.;Li,Q.T.;Yan,L.;Gong,I.L.;Zhu,D.Z.Carbon,2008, 46:36514Zou,L.H.;Huang,Q.Z.;Zou,Z.Q.Carbon(China),1998,93(1): 8[邹林华,黄启忠,邹志强.炭素,1998,93(1):8]266。
C6-thermodynamics of phase transformation(1)概述

G G
i i
G G P T P T G V T T
G G T p T p G s T p
6.1 相变分类(按原子迁移特征分类) (3)按原子迁移特征分类 扩散型相变:依靠原子扩散进行 •原有的原子邻居关系被破坏; •溶体成分发生变化。 无扩散型相变:无原子扩散,或虽存在扩散,但不是 相变所必需的或不是主要过程。 •相邻原子的移动距离不超过原子间距,不 破坏邻居关系; •不改变溶体成分。 马氏体相变
铁磁-顺磁转变(Ferromagnetic-paramagnetic transition) Fe、Ni、Co及其合金,各种铁氧体,Mn-Al合物,稀土过渡族元素化合物等 反铁磁(Anti-ferromagnetic)-顺磁转变 Fe、Mn、Cr及部分稀土元素等 超导-常导转变(Superconduct-generally conduct transition) In、Sn、Ta、V、Pb、Nb等纯金属和Nb-Ti、Nb-Zr、 V3Ga、Nb3Sn、Nb3AlGe、Nb3Ge等金属间化合物以及Y-BaCu-O等氧化物超导体等 合金中有序-无序的转变 Au-Cu、Ti-AI、AI-Mn、Cr-AI、Cu-Zn、Cu-Pd、Cu-Pt、 Fe-Co、Fe-AI、Fe-Si、Fe-Ni、Fe-Pt、Ni-V等合金系
Maxwell 方程
V , S p T p T
V V
V V , S S
表现:体积和熵(焓)的突变
二级相变(Second order phase transitions)
在相变过程中,化学势对T,P的一阶偏微分相等,而 二阶偏微分在相变过程中发生突变的相变称为二级相 变。属于二级相变的有:
耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析

第 12 卷第 12 期2023 年 12 月Vol.12 No.12Dec. 2023储能科学与技术Energy Storage Science and Technology耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统热力学分析尹航1,王强1,朱佳华2,廖志荣2,张子楠1,徐二树2,徐超2(1中国广核新能源控股有限公司,北京100160;2华北电力大学能源动力与机械工程学院,北京102206)摘要:先进绝热压缩空气储能是一种储能规模大、对环境无污染的储能方式。
为了提高储能系统效率,本工作提出了一种耦合光热发电储热-有机朗肯循环的先进绝热压缩空气储能系统(AA-CAES+CSP+ORC)。
该系统中光热发电储热用来解决先进绝热压缩空气储能系统压缩热有限的问题,而有机朗肯循环发电系统中的中低温余热发电来进一步提升储能效率。
本工作首先在Aspen Plus软件上搭建了该耦合系统的热力学仿真模型,随后本工作研究并对比两种聚光太阳能储热介质对系统性能的影响,研究结果表明,导热油和太阳盐相比,使用太阳盐为聚光太阳能储热介质的系统性能更好,储能效率达到了115.9%,往返效率达到了68.2%,㶲效率达到了76.8%,储电折合转化系数达到了92.8%,储能密度达到了5.53 kWh/m3。
此外,本研究还发现低环境温度、高空气汽轮机入口温度及高空气汽轮机入口压力有利于系统储能性能的提高。
关键词:先进绝热压缩空气储能;聚光太阳能辅热;有机朗肯循环;热力学模型;㶲分析doi: 10.19799/ki.2095-4239.2023.0548中图分类号:TK 02 文献标志码:A 文章编号:2095-4239(2023)12-3749-12 Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycleYIN Hang1, WANG Qiang1, ZHU Jiahua2, LIAO Zhirong2, ZHANG Zinan1, XU Ershu2, XU Chao2(1CGN New Energy Holding Co., Ltd., Beijing 100160, China; 2School of Energy Power and Mechanical Engineering,North China Electric Power University, Beijing 102206, China)Abstract:Advanced adiabatic compressed-air energy storage is a method for storing energy at a large scale and with no environmental pollution. To improve its efficiency, an advanced adiabatic compressed-air energy storage system (AA-CAES+CSP+ORC) coupled with the thermal storage-organic Rankine cycle for photothermal power generation is proposed in this report. In this system, the storage of heat from photothermal power generation is used to solve the problem of limited compression heat in the AA-CAES+CSP+ORC, while the medium- and low-temperature waste heat generation in the organic Rankine cycle power收稿日期:2023-08-18;修改稿日期:2023-09-18。
热动力学英语

热动力学英语Thermodynamics: The Fundamental Science of Energy TransformationThermodynamics is a branch of physics that deals with the study of energy, its transformation, and its relationship with matter. It is a fundamental science that underpins our understanding of various natural phenomena and the functioning of many technological devices. Thermodynamics is a complex and multifaceted field, but it can be broadly divided into four main laws that govern the behavior of energy and its interactions with the physical world.The First Law of Thermodynamics states that energy can neither be created nor destroyed, but it can be transformed from one form to another. This means that the total energy of an isolated system is constant; it cannot be created or destroyed, but it can be changed in form. For example, when you burn a piece of wood, the chemical energy stored in the wood is converted into heat and light energy. The total amount of energy before and after the burning process remains the same, but its form has changed.The Second Law of Thermodynamics, on the other hand, deals withthe direction and efficiency of energy transformations. It states that energy transformations are not perfectly efficient, and that some energy is always lost as heat during the process. This heat is often referred to as "waste heat" or "entropy," and it cannot be fully recovered or used to do useful work. The Second Law also states that heat naturally flows from hotter objects to cooler objects, and that the entropy of an isolated system always increases over time.The Third Law of Thermodynamics deals with the behavior of matter at extremely low temperatures, near absolute zero. It states that as a system approaches absolute zero, its entropy approaches a constant, usually zero. This means that at absolute zero, a system has the lowest possible energy and disorder, and its properties become increasingly well-defined and predictable.The Fourth Law of Thermodynamics, also known as the Zeroth Law, establishes the concept of temperature and its relationship to the thermal equilibrium of systems. It states that if two systems are in thermal equilibrium with a third system, then they are also in thermal equilibrium with each other. This law is the foundation for the measurement of temperature and the development of thermometers.Thermodynamics has numerous applications in various fields, including physics, chemistry, engineering, and even biology. In physics, it is used to understand the behavior of gases, the efficiencyof engines and refrigeration systems, and the properties of materials at different temperatures and pressures. In chemistry, it is used to study chemical reactions, the stability of compounds, and the behavior of solutions. In engineering, it is used to design and optimize a wide range of systems, from power plants and refrigeration systems to aerospace and automotive technologies.In biology, thermodynamics is used to understand the energy transformations that occur in living organisms, such as the process of photosynthesis, the production of ATP in cellular respiration, and the regulation of body temperature in warm-blooded animals. The principles of thermodynamics also underlie the functioning of many biological systems, such as the transport of molecules across cell membranes and the folding of proteins.One of the key applications of thermodynamics is in the field of energy conversion and storage. The efficiency of energy conversion processes, such as the conversion of chemical energy to electrical energy in a battery or the conversion of thermal energy to mechanical energy in a steam turbine, is governed by the principles of thermodynamics. Understanding these principles is crucial for the development of more efficient and sustainable energy technologies, which are essential for addressing the global challenges of climate change and resource depletion.Another important application of thermodynamics is in the study of the Earth's climate and the global carbon cycle. The greenhouse effect, which is responsible for the warming of the Earth's atmosphere, is a direct consequence of the principles of thermodynamics. The absorption and emission of infrared radiation by greenhouse gases, such as carbon dioxide and methane, are governed by the laws of thermodynamics, and understanding these processes is crucial for predicting and mitigating the effects of climate change.In conclusion, thermodynamics is a fundamental science that underpins our understanding of a wide range of natural and technological phenomena. Its four laws provide a comprehensive framework for understanding the behavior of energy and its interactions with matter, and its applications span a diverse range of fields, from physics and chemistry to engineering and biology. As we continue to face global challenges related to energy, climate, and resource sustainability, the principles of thermodynamics will remain crucial for the development of innovative and sustainable solutions.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1 相变分类(按原子迁移特征分类) (3)按原子迁移特征分类 扩散型相变:依靠原子扩散进行 •原有的原子邻居关系被破坏; •溶体成分发生变化。 无扩散型相变:无原子扩散,或虽存在扩散,但不是 相变所必需的或不是主要过程。 •相邻原子的移动距离不超过原子间距,不 破坏邻居关系; •不改变溶体成分。 马氏体相变
6.2 新相的形成和形核驱动力
第二相β的形核驱动力Δ*Gm的计算:
Gm Gm F Gm E
dG m Gm x Gm x0 ( x x0 ) dx x0 dGm G x G x ( x x ) m 0 0 m dx x
a a A ( xa ) B ( xa ) RT 1 x ln x ln a A( x0 ) aB ( x0 )
i 0Gi RT ln ai
6.2 新相的形成和形核驱动力
6.2 新相的形成和形核驱动力
d 2G 0 2 dX B
,固溶体自由能升高
d 2G 0 2 dX B
,固溶体自由能降低
6.2 新相的形成和形核驱动力
亚稳区(Metastable range) : 单相固溶体的自由能高于 两相混合物的白由能。
固溶体要发生分解, 不能以失稳分解的机制 发生,而要通过普通的形 核长大机制进行。
dG G n G G x x n x P x O OQ 2 2 dx x 2 n OP OQ n QP 2 2
如果出现浓度为xβ的核胚,其 ΔG/n2=-QP,如界面能很小,核胚 就会在驱动力QP的作用下发展成 为β相的临界核心.
Maxwell 方程
V , S p T p T
V V
V V , S S
表现:体积和熵(焓)的突变
二级相变(Second order phase transitions)
在相变过程中,化学势对T,P的一阶偏微分相等,而 二阶偏微分在相变过程中发生突变的相变称为二级相 变。属于二级相变的有:
6.2 新相的形成和形核驱动力
G1 G x2 x G n1 G1 G n2 G2 G n2 G2 G x x 1 以n2代表核胚的摩尔数,设xl很接近x,核胚 只占整个体系中很小的部分,即n1远大于n2.
Thermodynamics of Materials
Lecture 6
Thermodynamics of Phase Transformation
第 6章
相变热力学
6.1 相变分类 6.2 新相的形成和形核驱动力 6.3 第二相析出的相变驱动力 6.4 析出相的表面张力效应 6.5 晶间偏析 6.6 固溶体的磁性转变自由能 6.7 有序-无序转变自由能 6.8 二级相变对相平衡的影响
6.2 新相的形成和形核驱动力
固溶体稳定性: 如果将自由能曲线分成若干段,则每个成分段固溶体的性质与 这段曲线的形状有关。
d 2G 0 2 dX B
d 2G 0 2 dX B
固溶体稳定 固溶体将发生失稳分解 (Spinodal decomposition)
原因: 发生浓度起伏(Concentration undulate) 时,
6.2 新相的形成和形核驱动力 热力学指明某一新相的形成是否可能。 材料发生相变时,在形成新相前往往出现浓度起伏, 形成核胚,再成为核心、长大。 在相变过程中,所出现的核胚,不论是稳定相或亚稳 相,只要符合热力学条件,都可能成核长大,因此相变中 可能会出现一系列亚稳定的新相。 这些亚稳定的过渡相在—定的条件下再向稳定相转化
第 6章
相变热力学
Phase Transformation
Melt
Crystal
Melt
Lowering Temp.
相变: 在均匀单相内, 或在几个混合相中,出现了不同成分或不 同结构(包括原子、离子或电子位置位向的改变)、不同 组织形态或不同性质的相。
6.1 相变分类 相变种类繁多,可按不同方式分类: (1)按热力学分类 •一级相变 •二级相变 (2)按相变方式分类 •不连续相变 •连续相变 (3)按原子迁移特征分类 •扩散型相变 •无扩散型相变
二级相变中,定压热容Cp、膨胀系数与压缩系数发生突变。
Cp Cp
C C p p
6.1 相变分类(按相变方式分类) (2)按相变方式分类 不连续相变(形核长大型):形核、长大型两阶段进行, 新相和母相有明显相界面。 (小范围原子发生强烈重排的涨落) 连续型相变(无核型):原子较小的起伏,经连续扩展 而进行,新相和母相无明显相界面。(大范围原子发生 轻微重排的涨落) 发生在转变前后晶体结构都相同的系统中。 特点:发生区域大;无形核位垒;上坡扩散 例:调幅分解;有序/无序转变
铁磁-顺磁转变(Ferromagnetic-paramagnetic transition) Fe、Ni、Co及其合金,各种铁氧体,Mn-Al合物,稀土过渡族元素化合物等 反铁磁(Anti-ferromagnetic)-顺磁转变 Fe、Mn、Cr及部分稀土元素等 超导-常导转变(Superconduct-generally conduct transition) In、Sn、Ta、V、Pb、Nb等纯金属和Nb-Ti、Nb-Zr、 V3Ga、Nb3Sn、Nb3AlGe、Nb3Ge等金属间化合物以及Y-BaCu-O等氧化物超导体等 合金中有序-无序的转变 Au-Cu、Ti-AI、AI-Mn、Cr-AI、Cu-Zn、Cu-Pd、Cu-Pt、 Fe-Co、Fe-AI、Fe-Si、Fe-Ni、Fe-Pt、Ni-V等合金系
如果不考虑相界面能,此时体系 总自由能增量为:
n1 G1 G n2 G2 G n1 x1 n2 x2 n1 n2 x 根据质量守恒: n1 x x1 n2 x2 x
G n1G1 n2G2 n1 n2 G
H C p ( ) p T ( 2 ) p T T
2
Cp 2 2 T T p 2 V T p T 2 2 V p T
Cp Cp
二级相变
6.2 新相的形成和形核驱动力 For example: 材料凝固时往往出现亚稳相,甚至得到非晶态。
自由能最低的相最稳定(稳定相) 相对稳定相(亚稳相)具有较高的自由能,但只要亚稳相的 形成会使体系的自由能降低,亚稳相的形成也是可能的。
液相L、稳定相α、亚 稳定相β、γ和δ
如过冷至Tmγ以下,由液相 凝固为α、β和γ都是可能的, 都引起自由能的下降。
O
6.2 新相的形成和形核驱动力
※ 如果浓度起伏小区的自由能为过x点切线上的一点
dG G n2 G2 G x2 x dx x
Nucleation Driving Force 图解法确定形核驱动力的方法: 过α相自由能曲线上相应母相的 成分点作切线; 过相应析出新相核胚的成分点 作垂线; 垂线与切线的交点到垂线与新 相自由能曲线的交点间线段的长 度为新相形核驱动力。
V V , S S
表现:体积和熵(焓)的突变
一级相变(First-order phase transformations)
G G
i i
S S
i i i i , p p T T T p T p
6.2 新相的形成和形核驱动力
原始亚稳α固溶体的浓度为x,其相应的自由能为G。当均匀的α固 溶体出现较大的浓度起伏时,起伏也可作为新相的核胚。
For example: 在浓度为x的α固溶 体出现: 由n1摩尔组成的、浓度为x1的 原子集团,其自由能为G1; 由n2摩尔组成的、浓度为x2的原 子集团,其自由能为G2.
G n2 Ax2 Bx2 BE n2 AB BE n2 AE
G n2 AE
摩尔自由能的变化(形核驱动力)Leabharlann 6.2 新相的形成和形核驱动力
形核驱动力(Nucleation Driving Force) :由起伏或核胚形成新相核 心的自由能变化 。 程度较小的浓度起伏,引起的自由能变化使体系的自由能提 高→无形核驱动力 → 这种浓度起伏是不稳定的。 当浓度起伏很强,即偏离x很大,而新相的自由能又较低时, 则ΔG就变成负值 →具有形核驱动力 → 形成新相。
0
OR,
Gm Gm F Gm E
1 x x 1 x x A ( xa ) B ( xa ) A( x0 ) B ( x0 )
1 x A( xa ) A( x0 ) x B ( xa ) B ( x0 )
二级相变(Second order phase transitions)
G G
i i
i i i i , p p T T T p T p
V V , S S
G1 G dG dx x x1 x
dG G n2 G2 G x2 x dx x G2 Ax2 G Bx2
dG x2 x BE dx x