有理数加法(2)数学两单
1.3.1 有理数的加法(2)

解法2 解法2 解:我们以每袋小麦以90千克为标准, 我们以每袋小麦以90千克为标准, 90千克为标准 10袋小麦可记为 袋小麦可记为: 则10袋小麦可记为: 1.5, 1.2,1.3, 1.3, 1,1,1.5,-1,1.2,1.3,-1.3, -1.2,1.8,1.1 1.2,1.8, 它们的和为:1+1+1.5-1+1.2+1.3-1.3它们的和为:1+1+1.5-1+1.2+1.3-1.31.2+1.8+1.1=5.4(千克) 1.2+1.8+1.1=5.4(千克) 90×10+5.4=905.4(千克) 90×10+5.4=905.4(千克) 10袋小麦一共905.4千克 10袋小 袋小麦一共905.4千克, 故:10袋小麦一共905.4千克,10袋小 麦总计超过5.4千克 麦总计超过5.4千克 5.4
1.3.1 有理数的加法 有理数的加法(2)
有理数加法法则
1、同号两数相加,取相同的符号,并 同号两数相加,取相同的符号, 把绝对值相加。 把绝对值相加。 异号两数相加, 2、异号两数相加,取绝对值较大的加 数的符号, 数的符号,并用较大的绝对值减去 较小的绝对值。 较小的绝对值。 互为相反数的两个数相加得0 3、互为相反数的两个数相加得0。 一个数同0相加,仍得这个数。 4、一个数同0相加,仍得这个数。
2. 蚂蚁从某点 出发在一条直线上来回爬行, 蚂蚁从某点O出发在一条直线上来回爬行 出发在一条直线上来回爬行,
假定向右爬行的路程为正数, 假定向右爬行的路程为正数,向左爬行的路程 为负数,爬过的各段路程依次为(单位:厘米) 为负数,爬过的各段路程依次为(单位:厘米) +6,-3,+10,-5,-7,+13,-10 , , , , , , (1)蚂蚁最后是否回到了出发点? )蚂蚁最后是否回到了出发点? +4 最远是多少厘米? (2)蚂蚁离开出发点 最远是多少厘米? )蚂蚁离开出发点O最远是多少厘米 13厘米 厘米 (3)在爬行过程中,如果爬行 厘米奖励一粒 )在爬行过程中,如果爬行1厘米奖励一粒 芝麻,则蚂蚁一共得到多少粒芝麻? 芝麻,则蚂蚁一共得到多少粒芝麻? 54粒 粒
初一数学有理数的加减法2

例6
计算
化零为整法
(1) -74-795-7 996 -79 997-799 998-7 999 999
(2) 899 994+89 995+8 996+897+88+8
例7
计算
同和结合法
(1) -1+3-5+7-…-17+19 (2) 1+2-3-4+5+67-8+…+2 001+2 002-2 003-2 004
同分母结合法
例4
计算
1 3 5 7 1 (1) 2 + 3 -1 - 2 4 4 6 18 18
(2)
1 2 3 1 1 +(- ) 4 3 7 12 14
同形结合法
例5
计算:
2 1 (1) -2.1+ - 2 + 0.5 – 5 +(-
1 ) 8
- 3 - (-2)-(-1.32)
有理数的加减法
有理数加法法则
1.同号两数相加,取相同的符号,并把绝对值相加.
2.绝对值不相等的异号两数相加,取绝对值较大的
加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.
运算步骤
1.先判断加法类型(同号异号等); 2.再确定和的符号; 3.最后进行绝对值的加减运算.
有理数减法法则
减去一个数等于加上这个数的相反数.
判断正误
(1)两个负数相加绝对值相减; (2)正数加负数,和为负数; × ×
(3)负数加正数,和为正数;
(4)两个有理数的和为负数时, 这两个有理数都是负数.
有理数的加减混合运算(第2课时)课件

新课讲授
–140 +290 + 400 + 600–220 + 300–190 + 480 =–140–220–190+29+400+600+ 300+480 =–550 +2070 = 1520 答:每吨汽油上升了1520元.
新课讲授
典例分析
例3.某汽车制造厂计划前半年内每月生产汽车20辆,由于另有任 务,每月上班人数有变化,1月至6月实际每月生产量和计划每月 生产量相比,变化情况如下(增加为正,减少为负,单位:辆): +3,-2,-1,+4,+2,-5.(1)生产量最多的一个月比生产 量最少的一个月多生产多少辆?
课堂小结
有理数加减法混合运算的步骤为: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起;3.进行加减运算.
= 16
(2) 12
5 6
8
7 10
= 12 5 8 7 6 10
= 12 8 5 7 6 10
= 20 1 2
还可以怎样计算?
= 39 2
新课讲授
有理数加减混合运算的步骤:
(1)将减法转化为加法运算. (2)省略加号和括号. (3)运用加法交换律和结合律,将同号两数相加. (4)按有理数加法法则计算.
当堂小练
1.计算 -1434 --1014 +12 的结果为( B )
A.-3
B.-4
C.-7
D.-8
当堂小练
2.若a= -2,b=3,c= -4 ,则a-(b-c)的值为 -9 .
有理数的加法

有理数的加法有理数的加法是数学中一种基本的运算方法。
在数学中,有理数是可以用整数表示的数,包括正整数、负整数和0。
有理数的加法是指将两个或多个有理数相加得到一个和的过程。
有理数的加法可以用以下几种方式进行。
1. 原理法原理法是指根据有理数的定义,将两个有理数的分子和分母进行相应的运算,然后将结果归纳为一个有理数。
例如,对于两个有理数a/b 和c/d,其中a、b、c、d为整数且b和d不为0,可以将它们的分子相加得到分子的和,分母相加得到分母的和,即(a+b)/(b+d)。
2. 十进制法十进制法是将有理数转化为十进制小数后进行相加的方法。
首先将有理数表示为一个整数部分和一个小数部分,然后对整数部分进行相加,对小数部分进行相加,最后将整数部分和小数部分的和合并得到一个新的有理数。
3. 图形法图形法是通过在数轴上绘制表示有理数的点,并将相应的点进行相加,得到一个新的有理数。
在数轴上,正数表示向右移动,负数表示向左移动,0表示原点。
通过将两个有理数的点进行移动和合并,可以得到它们的和。
有理数的加法满足以下几个基本性质。
1. 交换律对于任意两个有理数a和b,它们的和a+b和b+a相等。
2. 结合律对于任意三个有理数a、b和c,它们的和(a+b)+c和a+(b+c)相等。
3. 加法逆元对于任意有理数a,存在一个有理数-b,使得a+(-b)=0。
4. 加法单位元0是加法的单位元,对于任意有理数a,a+0=a。
有理数的加法在日常生活中广泛应用。
例如,在购物中,我们需要将商品的价格相加得到总价;在账户余额中,我们需要将收入和支出相加得到最新的余额;在时间计算中,我们需要将时、分、秒相加得到总的时间等等。
总之,有理数的加法是一种基本且实用的数学运算方法。
通过不同的计算方式和性质,我们可以灵活地进行有理数的相加运算,解决各种实际问题。
有理数加法(2)[上学期]
![有理数加法(2)[上学期]](https://img.taocdn.com/s3/m/f2dd0e01aaea998fcc220e21.png)
+(
2 3
)+
4 5
+(
1 2
)+(
1 3
)
需要更完整的资源请到 新世纪教 育网 -
2、某日小明在一条南北方向的公路上 跑步。他从A地出发,每隔10分钟记录 下自己的跑步情况(向南为正方向,单 位:米):
-1008,1100,-976,1010,-827, 946 1小时后他停下来休息,此时他在A地 的什么方向?距A地多远?小明共跑了 多少米?
听号 质量 听号 质量 1 444 6 454 2 459 7 449 3 454 8 454 4 459 9 459 5 454 10 464
这10听罐头的总质量是多少?
需要更完整的资源请到 新世纪教 育网 -
如果把上题中超过标准质量的克数用正数表 示,不足的用负数表示,请同学们填出10听 罐头与标准质量的差值表(单位:克):
听号 差值 听号 差值 1 6 2 7 3 8 4 9 5 10
你能根据差值表求出这10听罐头的总质量 吗?请你试一试。
需要更完整的资源请到 新世纪教 育网 -
随堂练习
1、计算:
(1)23+(-17)+6+(-22) (2)(-8)+10+2+(-1) (3)(-18.6)+(-6.15)+18.15+6.15 ( 4)
需要更完整的资源请到 新世纪教 育网 -
有理数加法则
同号两数相加,取相同的符号,并把 绝对值相加。 异号两数相加,绝对值相等时和为0; 绝对值不等时,取绝对值较大的数的符号, 并用较大的绝对值减去较小的绝对值 一个数同0相加,仍得这个数 互为相反数的两个数相加得零
需要更完整的资源请到 新世纪教 育网 -
有理数的加法

有理数的加法有理数是指可以表示为两个整数的比例形式的数,包括正数、负数和零。
加法是数学中最基本的运算之一,用来表示两个数的总和。
在有理数的加法中,我们需要注意一些规则和技巧。
一、有理数的加法规则1. 正数加正数:两个正数相加,结果仍然是正数。
例如,2 + 3 = 5。
2. 负数加负数:两个负数相加,结果仍然是负数。
例如,-2 + (-3) = -5。
3. 正数加负数:正数加上一个负数,结果的符号由它们的绝对值的大小决定。
绝对值大的数的符号决定结果的符号。
例如,5 + (-2) = 3。
4. 零的加法:任何数与零相加,结果仍然是原来的数。
例如,4 + 0 = 4。
二、有理数的加法运算技巧1. 数字的相反数:每一个数都有它的相反数,它的相反数与原数相加的结果为零。
例如,3的相反数是-3,3 + (-3) = 0。
2. 加法交换律:两个有理数相加,可以改变它们的位置而不改变结果。
例如,2 + 3 = 3 + 2。
3. 结合律:三个或更多个有理数相加,可以改变它们的位置而不改变结果。
例如,(2 + 3) + 4 = 2 + (3 + 4)。
4. 合并同类项:有理数相加时,可以合并同类项,即带有相同符号和绝对值的数进行加法运算。
例如,2 + (-3) + 4 + (-2) = 2 + 4 + (-3) + (-2) = 6 + (-5) = 1。
三、实例演练1. 正数加正数:例如,计算9 + 5。
解:9 + 5 = 142. 负数加负数:例如,计算-5 + (-7)。
解:-5 + (-7) = -123. 正数加负数:例如,计算6 + (-3)。
解:6 + (-3) = 34. 零的加法:例如,计算0 + 8。
解:0 + 8 = 8四、有理数的加法应用有理数的加法在日常生活中有许多应用,例如:1. 温度计:温度的上升和下降可以用有理数的加法来表示。
正数代表上升的温度,负数代表下降的温度。
2. 钱的计算:在买东西或计算零钱时,有理数的加法可以帮助我们得到正确的总金额。
有理数加法2-

6.35+(-0.6)+3.25+(-5.4)
4.
1+(-2)+3+(-4)+ …+2003+(-2004)
让数学走进生活 相信你一定能行!
1. 10筐苹果,以每筐30千克为准,超过的 千克数记为正数,不足的千克数记为负数, 记录如下:
有理数的加法(2)
1、同号两数相加,取相同的符号,并把绝对值相加. 2、绝对值不相等的异号两数相加,取绝对值较大加 数的符号,并用较大的绝对值减去较小的绝对值. 3、互为相反数的两个数相加得0. 4、一个数同0相加,仍得这个数.
情景创设:
3 -5
活动1:
﹢
﹢
-5
﹦ -2
﹦ -2
_ _
3
你们能再举一些数字也符合这样的 结论吗?试试看!
规律探究:相信你能行! 加法的交换律: a+b=b+a
情景创设:
( 3 3
﹢ -5 )﹢ -7
﹢(
﹦
﹦ -5 ﹢ -7 )
_ -9 _ -9
活动2: 你们能再举一些数字也符合这样的 结论吗?试试看!
规律探究:相信你能行!
加法的交换律: a+b=b+a 加法的结合律: (a+b)+c=a+(b(-5)+9+(-6)+7 _ _ ____ 0 2. 绝对值小于5的所有整数的和为_ _ ____
3. 在括号里填写每步运上算的根据:
(-8)+(-5)+8 加法交换律 加法结合律
人教版七年级上数学:1.3.1《有理数的加法(2)》学案(附模拟试卷含答案)

数学:1.3.1《有理数的加法(2)》学案(人教版七年级上)【学习目标】:掌握加法运算律并能运用加法运算律简化运算;【重点难点】:灵活运用加法运算律简化运算;【导学指导】一、温故知新1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:、2、计算⑴ 30 +(-20)= (-20)+30=⑵ +(-4)= 8 + +(-4)]=思考:观察上面的式子与计算结果,你有什么发现?二、自主探究1、请说说你发现的规律2、自己换几个数字验证一下,还有上面的规律吗3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和 .式子表示为三个数相加,先把前两个数相加,或者先把后两个数相加,和用式子表示为想想看,式子中的字母可以是哪些数?例1 计算: 1)16 +(-25)+ 24 +(-35)2)(—2.48)+(+4.33)+(—7.52)+(—4.33)例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【课堂练习】课本P20页练习 1、2【要点归纳】:你会用加法交换律、结合律简化运算了吗?【拓展训练】 1.计算:(1)(-7)+ 11 + 3 +(-2); (2)).31()41(65)32(41-+-++-+2.绝对值不大于10的整数有 个,它们的和是 .3、填空:(1)若a >0,b >0,那么a +b 0. (2)若a <0,b <0,那么a +b 0.(3)若a >0,b <0,且│a │>│b │那么a +b 0. (4)若a <0,b >0,且│a │>│b │那么a +b 0.3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元.问这个储蓄所这一天,共增加多少元?4、课本P20实验与探究【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如果∠A 的补角与∠A 的余角互补,那么2∠A 是 A .锐角 B .直角 C .钝角 D .以上三种都可能2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( ) A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.下列各图形是正方体展开图的是( )A.B.C. D.4.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( )A .81B .90C .108D .2165.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为( ) A.2B.2-C.1D.1-6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.若一个代数式与代数式2ab 2+3ab 的和为ab 2+4ab-2,那么,这个代数式是( ) A .3ab 2+7ab-2 B .-ab 2+ab-2 C .ab 2-ab+2 D .ab 2+ab-28.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2k n F n =(其中k 是使得2kn为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( ) A.1B.4C.2019D.201949.下列计算结果中等于3的数是( ) A.74-++B.()()74-++C.74++-D.()()73---10.数轴上点A ,B 表示的数分别是5,-3,它们之间的距离可以表示为( ) A.-3+5B.-3-5C.|-3+5|D.|-3-5|11.有理数a 、b 在数轴上的位置如图所示,则下列各式中错误的是( )A.b <aB.|b|>|a|C.a+b >0D.a-b >012.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若设甲、乙共用x 天完成,则符合题意的是( )A.151513040x -+= B.151513040x ++= C.1513040x x++= D.1513040x x-+= 二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____ 14.一个角的余角是它的23,则这个角的补角等于____. 15.方程320x -+=的解为________.16.已知a ,b ,c 在数轴上的位置如图所示,化简:|a ﹣b|+|b+c|+|c ﹣a|=_____.17.若1314a =-,2111a a =-,3211a a =-,......,则2019a =________18.如果一个零件的实际长度为a ,测量结果是b ,则称|b ﹣a|为绝对误差,b a a-为相对误差.现有一零件实际长度为5.0cm ,测量结果是4.8cm ,则本次测量的相对误差是_____. 19_____.20.关于x 的一元一次方程ax+3=4x+1的解为正整数,则整数a 的值为__________. 三、解答题21.已知:如图,直线AB 、CD 相交于点O ,OE ⊥OC ,OF 平分∠AOE. (1)若,则∠AOF 的度数为______; (2)若,求∠BOC 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、说出有理数加法运算的法则
请用字母表示加法的交换律、结合律
加法的交换律:_____________________________________________
加法的结合律:_________________________________________________
2、计算下列各题:
(1)-13+0 (2)-3.5+(-6.1)
(3)26+(-83)(4)-3/7+1/5
3、计算:31+(-28)+28+9(提示:你能找到简便的计算方法吗?说明你的理由)
我的问题:
同学们根据刚才的初步尝试,大家可能会遇到很多不同问题,请将你的问题写在横线上:自我评价:小组评价:教师评价
当堂检测:
1、计算下列各题:
(1)-0.7+(-0.4)+1+(-0.3)+0.5
(2)-3.8+(+2.7)+(-0.43)+(+1.3)+(-0.2)
3)+15+(-20)+(+28)+(-10)+(-5)+(-7)
2、红新中学一星期的收入和支出情况如下:
+853.5元+237.2元-325元+138.5元–280元-520元+103元
这一星期红新小学是盈余还是亏损,并算出盈余或亏损了多少元
中考链接:
(呼和浩特2006年中考试题)
某一次区级的数学竞赛中某校8名参赛学生的成绩与全区参赛学生数学平均分80分对比,分别为5 -2 8 14 7 5 19 -6则该学校参赛学生的数学平均成绩是()
A、80分
B、84分
C、85分
D、88分
我的收获:
自我评价:小组评价:教师评价
自我评价:小组评价:教师评价。