【导与练】2010-2012年高考数学 试题汇编 第二节 矩阵与变换(选修4-2) 理(含解析)
高考数学压轴专题最新备战高考《矩阵与变换》经典测试题附答案解析

高考数学《矩阵与变换》练习题一、151.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程. 【答案】(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =- 【解析】 【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程. 【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩,所以2130M ⎡⎤=⎢⎥⎣⎦; (2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''',则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+, 所以曲线C 的方程为292y x x =-. 【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.2.已知关于x 、y 的二元一次方程组()4360260x y kx k y +=⎧⎨++=⎩的解满足0x y >>,求实数k的取值范围.【答案】5,42⎛⎫⎪⎝⎭【解析】 【分析】由题意得知0D ≠,求出x D 、y D 解出该方程组的解,然后由00x y D >>⎧⎨≠⎩列出关于k 的不等式组,解出即可. 【详解】由题意可得()4238D k k k =+-=+,()601x D k =-,()604y D k =-.由于方程组的解满足0x y >>,则0D ≠,该方程组的解为()()60186048x y k D x D k D k y D k ⎧-==⎪⎪+⎨-⎪==⎪+⎩,由于00D x y y ≠⎧⎪>⎨⎪>⎩,即()()()806016048860408k k k k k k k ⎧⎪+≠⎪--⎪>⎨++⎪⎪->⎪+⎩,整理得802508408k k k k k ⎧⎪+≠⎪-⎪>⎨+⎪-⎪<⎪+⎩,解得542k <<. 因此,实数k 的取值范围是5,42⎛⎫⎪⎝⎭. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,考查运算求解能力,属于中等题.3.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.4.用行列式方法解关于x y 、的方程组:()()1R 214ax y a x a y a -=⎧∈⎨--=⎩,并对解的情况进行讨论.【答案】1a =时无解;12a =-时无穷解;12a ≠-且1a ≠时有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩【解析】 【分析】本题先求出相关行列式D 、x D 、y D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,得到本题结论. 【详解】Q 关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,()()1R 214ax y a x a y a-=⎧∈⎨--=⎩ ∴21||1(1)(1)1a D a a a a==-=+-,21||(12)121(1)(21)112a D a a a a a a a-==-+=-++=--+-211||(1)2x a D a a a a a a +==-=-,1||124124121x D a a a a a==-+=+-- 21||21(21)(1)12y a a D a a a a a +==--=+-,21||41(21)(21)14y a D a a a a==-=+-.(1)当12a ≠-且1a ≠时,有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,(2)当1a =时,无解; (3)当12a =-,时无穷解. 【点睛】本题考查了用行列式法求方程组的解,本题难度不大,属于基础题.5.用行列式法解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩,并对解的情况进行讨论.【答案】见解析 【解析】 【分析】写出,,x y D D D ,讨论2m ≠±,2m =-,2m =时的三种情况得到答案. 【详解】22242244,2,211y x m m m m D m D m m D m m mmmm++==-==-++==-当2m ≠±时,0D ≠,原方程组有唯一组解212m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩; 当2m =-时,0D =,80x D =≠,原方程组无解; 当2m =时,0D =,0x D =,0y D =,原方程组有无穷组解.综上所述:2m ≠±是,有唯一解;2m =-时,无解;2m =时,无穷组解. 【点睛】本题考查了利用行列式计算二元一次方程组,意在考查学生对于行列式的应用能力.6.已知圆C 经矩阵332aM ⎡⎤=⎢⎥-⎣⎦变换后得到圆22:13C x y '+=,求实数a 的值. 【答案】2a = 【解析】【分析】设圆C 上任一点(,)x y ,经M 变换后得到(),x y '',则332x ax yy x y=+⎧⎨=-''⎩,代入计算得到答案.【详解】设圆C 上任一点(,)x y ,经M 变换后得到(),x y '',则332x a x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦, 则332x ax y y x y=+⎧⎨=-''⎩,由(),x y ''在22:13C x y '+=上, 可得22(3)(32)13ax y x y ++-=,即()22292(36)1313a x a xy y ++-+=,由方程表示圆,可得2913a +=,2(36)0a -=,则2a =. 【点睛】本题考查了圆的矩阵变换,意在考查学生的应用能力.7.设函数()271f x x ax =-++(a 为实数). (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x ax +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)8{|3x x ≤或6}x ≥;(2)[5,)-+∞;(3)[4,)-+∞ 【解析】 【分析】(1)代入1a =-直接解不等式即可; (2)由01xx>-解得01x <<,故可将()1f x ≥化为(2)70a x -+≥,从而求出a 的范围; (3)化简()g x ,故可将题设条件变为:存在x 使1|27||22|a x x -≥---成立,因此求出2722x x ---的最小值即可得出结论.【详解】(1)若1a =-,则()271f x x x =-+- 由()0f x ≥得|27|1x x -≥-,即270271x x x ->⎧⎨-≥-⎩或270721x x x -≤⎧⎨-≥-⎩, 解得6x ≥或83x ≤,故不等式的解集为8{|3x x ≤或6}x ≥; (2)由01xx>-解得01x <<, 由()1f x ≥得|27|0x ax -+≥,当01x <<时,该不等式即为(2)70a x -+≥, 设()(2)7F x a x =-+,则有(0)70(1)50F F a =>⎧⎨=+≥⎩解得5a ≥-,因此实数a 的取值范围为[5,)-+∞; (3)21()1x g x ax +=--2|1|(1)x a x =-++, 若存在x 使不等式()()f x g x ≤成立,即存在x 使271x ax -++2|1|(1)x a x ≤-++成立, 即存在x 使1|27||22|a x x -≥---成立, 又272227(22)5x x x x ---≤---=, 所以527225x x -≤---≤, 所以15a -≥-,即4a ≥-, 所以a 的取值范围为:[4,)-+∞ 【点睛】本题主要考查了绝对值不等式,结合了恒成立,能成立等问题,属于综合应用题.解决恒成立,能成立问题时,常将其转化为最值问题求解.8.变换T 1是逆时针旋转2π角的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=1101⎡⎤⎢⎥⎣⎦. (1)点P(2,1)经过变换T 1得到点P',求P'的坐标;(2)求曲线y =x 2先经过变换T 1,再经过变换T 2所得曲线的方程. 【答案】(1)P'(-1,2).(2)y -x =y 2. 【解析】试题分析:(1)先写出旋转矩阵M 1=0110-⎡⎤⎢⎥⎣⎦,再利用矩阵运算得到点P'的坐标是P'(-1,2).(2)先按序确定矩阵变换M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦,再根据相关点法求曲线方程:即先求出对应点之间关系,再代入已知曲线方程,化简得y -x =y 2.试题解析:解:(1)M 1=0110-⎡⎤⎢⎥⎣⎦, M 121⎡⎤⎢⎥⎣⎦=12-⎡⎤⎢⎥⎣⎦.所以点P(2,1)在T 1作用下的点P'的坐标是P'(-1,2). (2)M =M 2⋅M 1=1110-⎡⎤⎢⎥⎣⎦, 设x y ⎡⎤⎢⎥⎣⎦是变换后图象上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦, 则M 00x y ⎡⎤⎢⎥⎣⎦=x y ⎡⎤⎢⎥⎣⎦,也就是000{x y x x y -==即00{y y x x y =-=所以,所求曲线的方程是y -x =y 2. 考点:旋转矩阵,矩阵变换9.证明:(1)11122212a b a a a b b b =; (2)1212112222a kab kb a b a b a b ++=. 【答案】(1)证明见解析(2)证明见解析【解析】 【分析】(1)根据行列式的运算,分别化简得11121222a b a b b a a b =-,12122112a aa b a b b b =-,即可求解;(2)根据行列式的运算,分别化简得1212122122a ka b kb a b a b a b ++=-,11122122a b a b a b a b =-,即可求解. 【详解】(1)根据行列式的运算,可得11121222a b a b b a a b =-,12122112a aa b a b b b =-, 所以11122212a b a a a b b b =. (2)根据行列式的运算,可得121212212222()()a ka b kb a ka b b kb a a b ++=+-+122221221221()()a b ka b a b ka b a b a b =+-+=-,又由11122122a b a b a b a b =-,所以1212112222a kab kb a b a b a b ++=. 【点睛】本题主要考查了行列式的运算及其应用,其中解答中熟记行列式的运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.10.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题主要考查矩阵的乘法运算及逆矩阵的求解.11.已知a ,b R ∈,点()1,1P -在矩阵13a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()1,3Q . (1)求a ,b 的值;(2)求矩阵A 的特征值和特征向量;(3)若向量59β⎡⎤=⎢⎥⎣⎦u r,求4A βu r .【答案】(1)20a b =⎧⎨=⎩;(2)矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦;(3)485489⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用矩阵的乘法运算即可; (2)利用特征多项式计算即可;(3)先计算出126βαα=-+u r u u ru u r ,再利用()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r 计算即可得到答案. 【详解】 (1)由题意知,11113133a a b b -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 则1133a b -=⎧⎨-=⎩,解得2a b =⎧⎨=⎩. (2)由(1)知2130A ⎡⎤=⎢⎥⎣⎦,矩阵A 的特征多项式()()21233f λλλλλ--==---, 令()0f λ=,得到A 的特征值为11λ=-,13λ=. 将11λ=-代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得3y x =-,所以矩阵A 的属于特征值1-的一个特征向量为113α⎡⎤=⎢⎥-⎣⎦u u r. 再将13λ=代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得y x =,所以矩阵A 的属于特征值3的一个特征向量为211α⎡⎤=⎢⎥⎣⎦u u r.综上,矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦.(3)设12m n βαα=+u ru u r u u r ,即5119313m n m n m n +⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, 所以539m n m n +=⎧⎨-+=⎩,解得16m n =-⎧⎨=⎩,所以126βαα=-+u r u u r u u r ,所以()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r()441148516331489⎡⎤⎡⎤⎡⎤=--+⨯=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.12.矩阵与变换:变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M 变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦求曲线221x y +=的图象依次在12,T T 变换的作用下所得曲线的方程.【答案】22221x xy y -+= 【解析】 【分析】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦,求出211110M M M -⎡⎤==⎢⎥⎣⎦,设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,得到00x y y y x =⎧⎨=-⎩,即得解.【详解】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦记21110111011010M M M --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y⎡⎤⎢⎥⎣⎦,面积00x x M y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,也就是000x x y y x =-⎧⎨=⎩,即00x y y y x =⎧⎨=-⎩,代入22001x y +=,得22()1y y x +-=,所以所求曲线的方程是22221x xy y -+= 【点睛】本题主要考查矩阵和变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.选修4-2:矩阵与变换(本小题满分10分) 已知矩阵A =01a k ⎡⎤⎢⎥⎣⎦ (k≠0)的一个特征向量为α=1k ⎡⎤⎢⎥-⎣⎦, A 的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a ,k 的值.【答案】解:设特征向量为α=1k ⎡⎤⎢⎥-⎣⎦对应的特征值为λ,则01a k ⎡⎤⎢⎥⎣⎦ 1k ⎡⎤⎢⎥-⎣⎦=λ1k ⎡⎤⎢⎥-⎣⎦,即1ak k kλλ-=⎧⎨=⎩ 因为k≠0,所以a =2. 5分因为13111A -⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,所以A 11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦,即201k ⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=31⎡⎤⎢⎥⎣⎦, 所以2+k =3,解得 k =1.综上,a =2,k =1. 10分 【解析】试题分析:由 特征向量求矩阵A, 由逆矩阵求k 考点:特征向量, 逆矩阵点评:本题主要考查了二阶矩阵,以及特征值与特征向量的计算,考查逆矩阵.14.已知矩阵120A x -⎡⎤=⎢⎥⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦,B 的逆矩阵1B -满足17177AB y --⎡⎤=⎢⎥-⎣⎦. (1)求实数x ,y 的值;(2)求矩阵A 的特征值和特征向量.【答案】(1)1,3x y ==;(2)特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)计算()1AB B -,可得12514721y y -⎡⎤⎢⎥--⎣⎦,根据()1A AB B -=,可得结果. (2)计算矩阵A 的特征多项式()121fλλλ+-=-,可得2λ=-或1λ=,然后根据Ax x λ=r r,可得结果.【详解】(1)因为17177AB y --⎡⎤=⎢⎥-⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦所以()17175712723514721AB B y y y ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦由()1A AB B -=,所以12120514721x y y --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦所以514172103y x x y y -==⎧⎧⇒⎨⎨-==⎩⎩(2)矩阵A 的特征多项式为:()()()()1212211f λλλλλλλ+-==+-=+--令()0f λ=,解得2λ=-或1λ= 所以矩阵A 的特征值为2-和1. ①当2λ=-时,12222102x x x y xy y x y--+=-⎡⎤⎡⎤⎡⎤⎧=-⇒⎨⎢⎥⎢⎥⎢⎥=-⎣⎦⎣⎦⎣⎦⎩ 令1y =,则2x =-,所以矩阵M 的一个特征向量为21-⎡⎤⎢⎥⎣⎦.②当1λ=时,12210x x x y xy y x y--+=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥=⎣⎦⎣⎦⎣⎦⎩ 令1y =,则1x =所以矩阵M 的一个特征向量为11⎡⎤⎢⎥⎣⎦. 因此,矩阵A 的特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦.【点睛】本题考查矩阵的应用,第(1)问中,关键在于()1A ABB -=,第(2)问中,关键在于()1201f λλλ+-==-,考验分析能力以及计算能力,属中档题.15.已知矩阵12A c d ⎡⎤=⎢⎥⎣⎦(c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为21⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦,求矩阵A 的逆矩阵1A -.【答案】121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦【解析】 【分析】根据特征值的定义可知A αλα=,利用待定系数法建立等式关系,求出矩阵A ,即可求出逆矩阵1A -. 【详解】解:由题意知,122422121c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,12131311c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦, 所以223c d c d +=⎧⎨+=⎩,解得14c d =-⎧⎨=⎩. 所以1214A ⎡⎤=⎢⎥-⎣⎦,所以121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【点睛】本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.16.已知矩阵2132A ⎡⎤=⎢⎥⎣⎦,列向量x X y ⎡⎤=⎢⎥⎣⎦,47B ⎡⎤=⎢⎥⎣⎦,且AX B =. (1)求矩阵A 的逆矩阵1A -; (2)求x ,y 的值.【答案】(1)12132A --⎡⎤=⎢⎥-⎣⎦(2)12x y =⎧⎨=⎩ 【解析】 【分析】(1)求出二阶矩阵对应的行列式值不为0,进而直接代入公式求得逆矩阵;(2)由AX B =可得1214327X A B --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,计算矩阵的乘法,即可得答案. 【详解】(1)由2132A ⎡⎤=⎢⎥⎣⎦,()det 223110A =⨯-⨯=≠,所以A 可逆,从而12132A --⎡⎤=⎢⎥-⎣⎦. (2)由AX B =得到121413272X A B --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, ∴12x y =⎧⎨=⎩. 【点睛】本题考查公式法求矩的逆矩阵及矩阵的乘法计算,考查运算求解能力,属于基础题.17.己知矩阵1221M ⎡⎤=⎢⎥⎣⎦.(1)求1M -;(2)若曲线221:1C x y -=在矩阵M 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;(2)223y x -= 【解析】 【分析】(1)根据逆矩阵的求法,求得M 的逆矩阵1M -.(2)设出1C 上任意一点的坐标,设出其在矩阵M 对应的变换作用下得到点的坐标,根据坐标变换列方程,解方程求得两者坐标对应关系式,再代入1C 方程,化简后可求得2C 的方程. 【详解】解(1)设所求逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则122210212201a b a c b d c d a c b d ++⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦⎣⎦,即21202021a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13232313a b c d ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=-⎩,所以112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. (2)设曲线1C 上任一点坐标为()00,x y ,在矩阵M 对应的变换作用下得到点(),x y ,则001221x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即000022x y x x y y +=⎧⎨+=⎩, 解得002323y x x x y y -⎧=⎪⎪⎨-⎪=⎪⎩. 因为2201x y -=,所以2222133y x x y --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,整理得223y x -=,所以2C 的方程为223y x -=. 【点睛】本小题主要考查逆矩阵的求法,考查利用矩阵变换求曲线方程,考查运算求解能力,属于中档题.18.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】 【分析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单19.(1)已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦,求矩阵AB . (2)已知矩阵122M x ⎡⎤=⎢⎥⎣⎦的一个特征值为3,求10M . 【答案】(1)51401⎡⎤⎢⎥⎢⎥-⎣⎦;(2)29525295242952429525⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)依题意,利用矩阵变换求得11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,再利用矩阵乘法的性质可求得答案.(2)根据特征多项式的一个零点为3,可得x 的值,即可求得矩阵M ,运用对角化矩阵,求得所求矩阵. 【详解】(1)解:111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦Q ,11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,又1202A ⎡⎤=⎢⎥-⎣⎦,1202AB ⎡⎤∴=⎢⎥-⎣⎦151********⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. (2)解:矩阵122M x ⎡⎤=⎢⎥⎣⎦的特征多项式为12()(1)()42f x x λλλλλ--==-----, 可得2(3)40x --=,解得1x =,即为1221M ⎡⎤=⎢⎥⎣⎦.由()0f λ=可得13λ=,21λ=-, 当13λ=时,由12321x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x y x +=,23x y y +=,即x y =,取1x =, 可得属于3的一个特征向量为11⎡⎤⎢⎥⎣⎦; 当11λ=-时,由1221x x y y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2x y x +=-,2x y y +=-,即x y =-,取1x =,可得属于1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦.设1111P ⎡⎤=⎢⎥-⎣⎦,则111221122P -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,13001M P P -⎡⎤=⎢⎥-⎣⎦, 101115904905904912952529524220159049111295242952522M P P -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦. 【点睛】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,考查了特征值与特征向量,考查了矩阵的乘方的计算的知识.20.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程. 试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.。
高考数学压轴专题新备战高考《矩阵与变换》真题汇编及答案解析

【高中数学】数学高考《矩阵与变换》试题含答案一、151.用行列式讨论下列关于x 、y 、z 的方程组121ax y z x y az x y z --=⎧⎪+-=⎨⎪--=⎩的解的情况,并求出相应的解.【答案】(i )当1a ≠±时有唯一解.∴方程组的解为:02131x a y a z a ⎧⎪=⎪-⎪=⎨+⎪⎪=-⎪+⎩;(ii )当1a =-时,无解;(iii) 当1a =时,有无穷多解.∴通解为:3212x t y z t ⎧=+⎪⎪⎪=⎨⎪=⎪⎪⎩.【解析】 【分析】首先由二元一次方程组得到矩阵:,,,x y z D D D D ,然后根据条件判断a 的不同取值方程组解的情况,并分类讨论. 【详解】方程组可转化为: 1 111 1 21 1 11a x a y z --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦2 1 11 1 1(1)(1)1 1 1a D a a a a --=-=-=-+---,21 1 1 1 1 1 12 1 0, 1 2 32, 1 1 2331 1 11 1 11 1 1x y z a a D a D a a a D a ----=-==-=-+==-----Q(i )当1a ≠±时有唯一解.∴方程组的解为:02131x a y a z a ⎧⎪=⎪-⎪=⎨+⎪⎪=-⎪+⎩;(ii )当1a =-时,无解;(iii ) 当1a =时,有无穷多解.∴通解为:3212x t y z t ⎧=+⎪⎪⎪=⎨⎪=⎪⎪⎩.【点睛】本题考查了二元一次方程组和矩阵形式、以及行列式值的计算,考查了学生概念理解,数学运算的能力,属于中档题.2.讨论关于x ,y ,z 的方程组2112x y z x y az x ay a z ++=⎧⎪++=⎨⎪++=⎩解的情况.【答案】当1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩;当1a =时,无解.【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项计算出D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:2111111121x a a a y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,2211111(1)1a a D a a ==--,21111(1)(2)12x D a a a a a ==---,211111112y D a a a ==-+,111101112z D a ==,(1)当系数行列式||0D ≠时,方程组有唯一解,即1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩(2)当1a =时,原方程组等价于112x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩所以无解.【点睛】本题考查三元一次方程组的矩阵形式、线性方程组解的存在性、唯一性、三元一次方程的解法等基础知识,考查运算求解能力.3.已知P :矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2;Q :行列式114203121mx ----中元素1-的代数余子式的值不大于2,若P 是Q 成立的充分条件,求实数m 的取值范围.【答案】[2,)+∞ 【解析】 【分析】先根据行列式中元素1-的代数余子式的值求出P ,再根据矩阵图某个列向量的模不小于2求出Q ,结合P 是Q 成立的充分条件可得实数m 的取值范围. 【详解】因为矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2,所以521x x +≥+,解得 13x -≤≤;因为行列式114203121mx ----中元素1-的代数余子式的值不大于2,所以2323211mm x x --=-+≤,即21m x ≤-; 因为P 是Q 成立的充分条件,所以213m -≥,解得2m ≥;故实数m 的取值范围是[2,)+∞.【点睛】本题主要考查矩阵和行列式的运算及充分条件,明确矩阵和行列式的运算规则是求解的关键,充分条件转化为集合的包含关系,侧重考查数学运算的核心素养.4.设点(,)x y 在矩阵M 对应变换作用下得到点(2,)x x y +. (1)求矩阵M ;(2)若直线:25l x y -=在矩阵M 对应变换作用下得到直线l ',求直线l '的方程.【答案】(1)2011⎡⎤⎢⎥⎣⎦;(2)3x -4y -10=0. 【解析】 【分析】(1)设出矩阵M ,利用矩阵变换得到关于x 、y 的方程组,利用等式恒成立求出矩阵M ;(2)设点(,)x y 在直线l 上,利用矩阵变换得到点(,)x y '',代入直线l 中,求得直线l '的方程. 【详解】解:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,由题意,2a b x xM c d y x y ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦g , 所以2ax by x +=,且cx dy x y +=+恒成立; 所以2a =,0b =,1c =,1d =; 所以矩阵2011M ⎡⎤=⎢⎥⎣⎦; (2)设点(,)x y 在直线l 上,在矩阵M 对应变换作用下得到点(,)x y ''在直线l '上, 则2x x '=,y x y '=+,所以12x x =',12y y x ='-'; 代入直线:25l x y -=中,可得34100x y '-'-=; 所以直线l '的方程为34100x y --=. 【点睛】本题考查了矩阵变换的计算问题,也考查了运算求解能力,是基础题.5.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵; ()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵.()2由170345010521052102121258102540202001012121⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪-----⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.6.已知矩阵11m A m ⎛⎫= ⎪-⎝⎭(0m >)满足24A I =(I 为单位矩阵). (1)求m 的值;(2)设(,)P x y ,,()'Q x y '.矩阵变换11x m x y m y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'-⎝⎭⎝⎭⎝⎭可以将点P 变换为点Q .当点P 在直线:1l y x =+上移动时,求经过矩阵A 变换后点Q 的轨迹方程.(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,求出所有这样的直线;若不存在,则说明理由.【答案】(1)m (2)1)1)40x y ''--=(3)存在,1:l y x =,2:l y =.【解析】 【分析】(1)计算2A ,由24A I =可求得m ;(2)由11x x y y ⎛'⎛⎫⎛⎫= ⎪ ⎪⎪'-⎝⎭⎝⎭⎭,得x x y y ⎧=+⎪⎨=-''⎪⎩,解得44x x y y ⎧=+⎪⎨='-'''⎪⎩.代入1y x =+可得;(3)首先确定这种变换,与坐标轴垂直的直线不合题意,因此设直线l 方程为(0)y kx b k =+≠,求出变换后的直线方程,两方程表示的直线重合,可求得k ,可分类0b ≠和0b =.【详解】(1)0m >Q ,2221110104110101m m m A m m m ⎛⎫+⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭,m ∴=(2)11x x x y y y ⎛⎛⎫'+⎛⎫⎛⎫==⎪ ⎪ ⎪⎪⎪'--⎝⎭⎝⎭⎭⎭Q ,即x x y y ⎧=⎪⎨=-''⎪⎩,44x x y y ⎧=+⎪∴⎨='-'''⎪⎩. ∵点(,)P x y 在直线1y x =+上,4y x ''''-=++,即点()','Q x y的轨迹方程1)1)40x y ''--+-=. (3)垂直于坐标轴的直线不合要求.设:(0)l y kx b k =+≠,(,)P x y ,()Q x y +-()y k x b -=++Q ,1)(y k x b ∴-+=+当0b ≠时,1)1,k k -+==,无解.当0b =220k =⇒+-=,解得3k =或k =∴所求直线是1:3l y x =,2:l y =. 【点睛】本题考查矩阵的运算,考查矩阵变换,求变换后的曲线方程,可设原曲线上点坐标为(,)P x y ,变换后为()','Q x y ,由矩阵运算得'(,)'(,)x f x y y g x y =⎧⎨=⎩,然后解得(',')(',')x h x y y i x y =⎧⎨=⎩,把(,)x y 代入原曲线方程即得新方程.7.设,,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b . (1)求字母b 的代数余子式的展开式;(2)若(1)的值为0,判断直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系. 【答案】(1)233b ac -;(2)重合. 【解析】 【分析】(1)根据字母b 的代数余子式的展开式()()()246111b a b c b a c ba bc b-+-+-即可求解;(2)根据(1)的值为0,得出边长的关系,即可判断直线位置关系. 【详解】(1),,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b ,所以字母b 的代数余子式的展开式为:()()()246111b a b c b a c ba bc b-+-+-222b ac b ac b ac =-+-+- 233b ac =-(2)若(1)的值为0,即2330b ac -=,2b ac =,b c a b=, 由正弦定理:sin sin c C b B= 所以sin sin c C b c b B a b-===- 所以直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系是重合. 【点睛】此题考查求代数余子式的展开式,得出三角形边长关系,结合正弦定理判断两直线的位置关系,跨章节综合性比较强.8.已知函数cos 2()sin 2m x f x nx=的图象过点(12π和点2(,2)3π-. (1)求函数()f x 的最大值与最小值;(2)将函数()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数()y g x =图象的对称中心.【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24k k Z ππ+∈. 【解析】 【分析】(1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值;(2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在()g x 图象上,由此可求得ϕ,结合余弦函数的性质可求得对称中心.【详解】(1)易知()sin 2cos 2f x m x n x =-,则由条件,得sin cos 6644sin cos 233m n m n ππππ⎧-=⎪⎪⎨⎪-=-⎪⎩,解得 1.m n ==-故()2cos22sin(2)6f x x x x π=+=+.故函数()f x 的最大值为2,最小值为 2.-(2)由(1)可知: ()()2sin(22)6g x f x x πϕϕ=+=++.于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件.(0)2sin(2)26g πϕ∴=+=. 由0ϕπ<<,得.6πϕ=故()2sin(2)2cos 22g x x x π=+=. 由22x k =+ππ,得().24k x k Z ππ=+∈ 于是,函数()y g x =图象的对称中心为:(,0)()24k k Z ππ+∈. 【点睛】本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.9.(1)计算行列式34912,5111022,28728--的值;(2)你能否从(1)中的结论得出一个一般的结论?试证明你的结论; (3)你发现的(2)的结论,在三阶行列式中是否成立?【答案】(1)三个行列式的值都为0;(2)0a bka kb=或()0a ka k b kb =∈R ;证明见解析;(3)成立 【解析】 【分析】(1)分别进行化简计算即可求得;(2)观察可知对应行或列应成比例关系,化简求值即可证明; (3)可假设成立,再结合运算关系进行求证即可 【详解】 (1)3436360912=-=,51111011001022=-=,2856560728-=-=-;(2)由(1)可知0a bka kb=或()0a ka k b kb =∈R ,证明如下: 0a bkab kab ka kb =-=,0a ka kab kab b kb=-=,即0a bka kb=或()0a ka k b kb=∈R 成立;(3)假设三阶行列式中成立,即0ab ckakbkc na nb nc=或0a ka na b kb nb c kcnc=证明如下:0a b ckakbkc knabc knabc knabc knabc knabc knabc na nb nc=++---=0a ka nab kb nb knabc knabc knabc knabc knabc knabc c kcnc=++---= 得证,故三阶行列式也成立 【点睛】本题考查行列式的简单计算,结论的类比推理,属于基础题10.已知矩阵13m P m m ⎛⎫= ⎪-⎝⎭,x Q y ⎛⎫= ⎪⎝⎭,2M m -⎛⎫= ⎪⎝⎭,13N m ⎛⎫= ⎪+⎝⎭,若PQ =M +N .(1) 写出PQ =M +N 所表示的关于x 、y 的二元一次方程组; (2) 用行列式解上述二元一次方程组.【答案】(1) 1323mx y mx my m +=-⎧⎨-=+⎩;(2) 见解析【解析】 【分析】(1)利用矩阵的乘法和加法的运算法则直接计算并化简即可得出答案;(2)先由二元一次方程组中的系数和常数项计算出D ,D x ,D y ,然后再讨论m 的取值范围,①当m ≠0,且m ≠-3时,②当m =0时,③当m =-3时,分别求出方程组的解即可得出答案. 【详解】解:(1) 由题意可得PQ=13mm m ⎛⎫ ⎪-⎝⎭x y ⎛⎫ ⎪⎝⎭=3mx y mx my +⎛⎫ ⎪-⎝⎭,M+N=213m m -⎛⎫⎛⎫+ ⎪ ⎪+⎝⎭⎝⎭=123m -⎛⎫ ⎪+⎝⎭,所以由PQ= M+N ,可得3mx y mx my +⎛⎫ ⎪-⎝⎭=123m -⎛⎫⎪+⎝⎭,即得1323mx y mx my m +=-⎧⎨-=+⎩; (2) 由题意可得行列式1(3)3m D m m m m==-+-,1(3)231x D m m m==--++- ,12(3)323y mD m m m m -==++①当m ≠0,且m ≠-3时,D ≠0,方程组有唯一解12x m y ⎧=⎪⎨⎪=-⎩;②当m =0时,D =0,但D x ≠0,方程组无解; ③当m =-3时,D =D x =D y =0,方程组有无穷多解31x ty t =⎧⎨=-⎩(t ∈R ).【点睛】本题考查了矩阵的乘法加法运算法则的应用,考查了用行列式求解二元一次方程组方法的应用,对参数的讨论是用行列式解二元一次方程组的关键,考查了运算能力,属于一般难度的题.11.已知矩阵4321M -⎡⎤=⎢⎥-⎣⎦,向量75α⎡⎤=⎢⎥⎣⎦u r . (1)求矩阵M 的特征值及属于每个特征值的一个特征向量; (2)求3M α.【答案】(1)特征值为11λ=,22λ=,分别对应的特征向量为11⎡⎤⎢⎥⎣⎦和32⎡⎤⎢⎥⎣⎦,(2)34933M α⎡⎤=⎢⎥⎣⎦r .【解析】 【分析】(1)根据特征值的定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)7132512α⎛⎫⎡⎤⎡⎤==+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦r g ,即可求3M αr.【详解】(1)矩阵M 的特征多项式为()(1)(2)f λλλ=--, 令()0f λ=,可求得特征值为11λ=,22λ=,设11λ=对应的一个特征向量为x y α⎡⎤=⎢⎥⎣⎦,则由1M λαα=,得330x y -+=,可令1x =,则1y =-, 所以矩阵M 的一个特征值11λ=对应的一个特征向量为11⎡⎤⎢⎥⎣⎦, 同理可得矩阵M 的一个特征值22λ=对应的一个特征向量为32⎡⎤⎢⎥⎣⎦.(2)7132512α⎛⎫⎡⎤⎡⎤==+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦r g所以331349221233M α⎡⎤⎡⎤⎡⎤=+⨯⨯=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦r .【点睛】本题主要考查了矩阵特征值与特征向量的计算等基础知识,意在考查学生对这些知识的理解掌握水平.12.在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90o 得到点B ',求点B '的坐标. 【答案】()1,4- 【解析】试题分析:先根据矩阵运算确定()1,2A ',再利用向量旋转变换0110N -⎡⎤=⎢⎥⎣⎦确定:A B ''u u u u r.因为,所以1{4x y =-= 试题解析:解:设(),B x y ',依题意,由10110122--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得()1,2A ' 则.记旋转矩阵0110N -⎡⎤=⎢⎥⎣⎦, 则01211022x y --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2122x y --⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,解得1{4x y =-=, 所以点B '的坐标为()1,4- 考点:矩阵运算,旋转矩阵13.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题主要考查矩阵的乘法运算及逆矩阵的求解.14.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.【答案】(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =- 【解析】 【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程. 【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩,所以2130M ⎡⎤=⎢⎥⎣⎦;(2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''',则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+, 所以曲线C 的方程为292y x x =-. 【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.15.矩阵与变换:变换1T 是逆时针旋转2π的旋转变换,对应的变换矩阵是1M 变换2T 对应用的变换矩阵是21101M ⎡⎤=⎢⎥⎣⎦求曲线221x y +=的图象依次在12,T T 变换的作用下所得曲线的方程.【答案】22221x xy y -+= 【解析】 【分析】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦,求出211110M M M -⎡⎤==⎢⎥⎣⎦,设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,得到00x y y y x =⎧⎨=-⎩,即得解.【详解】旋转变换矩阵10110M -⎡⎤=⎢⎥⎣⎦记21110111011010M M M --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦设x y ⎡⎤⎢⎥⎣⎦是变换后曲线上任一点,与之对应的变换前的点是00x y ⎡⎤⎢⎥⎣⎦,面积00x x M y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,也就是000x x y y x =-⎧⎨=⎩,即00x y y y x =⎧⎨=-⎩, 代入22001x y +=,得22()1y y x +-=,所以所求曲线的方程是22221x xy y -+= 【点睛】本题主要考查矩阵和变换,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.已知向量11α-⎡⎤=⎢⎥⎣⎦v 是矩阵103a A ⎡⎤=⎢⎥⎣⎦的属于特征值λ的一个特征向量. (1)求实数a ,λ的值;(2)求2A .【答案】(1)4,3.a λ=⎧⎨=⎩(2)216709A ⎡⎤=⎢⎥⎣⎦ 【解析】【分析】(1)根据特征值的定义可知A αλα=u r u r,利用待定系数法求得实数a ,λ的值。
高中数学矩阵与变换(二)课后练习二新人教版选修4-2

2已知矩阵A =-4题2设M 是把坐标平面上点的横坐标不变、纵坐标沿 y 轴方向伸长为原来5倍的伸压变换.(1) 求直线4x 10y 1在M 作用下的方程; (2) 求M 的特征值与特征向量.题3.1 2已知a € R 矩阵A =,对应的线性变换把点 P (1,1)变成点P (3,3),求矩阵 A 的特征a 1值以及每个特征值的一个特征向量.题4.在平面直角坐标系 xOy 中,已知点A (0,0) , B ( — 2,0) , C ( — 2,1).设k 为非零实数,矩阵 Mk 0 0 1=o 1,N = 1 o ,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为 A 、B 、C , △ ABC 的面积是厶ABC 的面积的2倍,求k 的值.题51 01 1已知矩阵AB2 ,若矩阵AB 对应的变换把直线1 : x y 2 0变为直线0 20 1I',求直线I'的方程.专题:矩阵与变换(二),求满足AX B 的二阶矩阵X .所以所求曲线的方程为 4x 2y 1.(2)矩阵M 的特征多项式f( )1( 1)( 5) 0,5所以M 的特征值为1 1, 2 5 .当 二 11时,由M 11 1 1,得特征向量1当25时,由M 22 2,得特征向量21题3.1 1 答案:特征值为入 1 = — 1,入2= 3;特征向量为和 —1 11 21 33 详解:由题意= =, a 1 1a +13课后练习详解91 答案: 25—3 1详解:由题意得A 1=2 2,2 11 9— 4—1 - — 1 2 =2—3 115 — 1答案: (1) 4x 2y详解:(1) M设(x, y)是所求曲线上的任一点,所以x x, y 5y,x x ,所以 1 代入4x 10y 1得,4x y -y,52y题13 •/ AX B ,「. X = A 1B = 2得a+ 1 = 3,即a= 2,矩阵A的特征多项式为•••直线I 的方程为4x y 8 0入一1 — 2f (入)==(入一1)2 — 4=(入 + 1)(入一3),—2 入一 1 令f (入)=0,所以矩阵 A 的特征值为 入1=— 1,入2= 3.2x + 2y = 0 ①对于特征值 入1 = 一1,解相应的线性方程组2x + 2y = 0x = 1得一个非零解,y =— 11因此,a = 是矩阵A 的属于特征值 入1=— 1的一个特征 —1 向量;2x — 2y = 0x = 1②对于特征值⑴3,解相应的线性方程组—2x + 2y = 0 ,得一个非零解y = 1,1因此,(3 = 是矩阵A 的属于特征值入2= 3的一个特征向量.1 题4.答案:—2或2.详解: 由题设得 MN= k 00 1 0 1 0 1 0 = 1 k 0 .由0 k 0 0 0 k —2 0 0 k — 2 k 由1 0 0 = 0, 1 0 0 = — 2, 1 0 1 = — 2, 可知」 A(0,0), B(0,- -2), C (k ,— 2).计算得△ ABC 的面积是1, △ ABC 的面积是| k | , 由题设知| k | = 2X 1= 2,所以k 的值为一2或2. 题5 答案:4x y 8 0.1 0 AB0 2y 20 中得 x — y — 2 0,4 2在直线I 上任取一点P (x, y ),经矩阵 AB 变换为点Q (x,y ),11 x2 0 2 y11x y .x x y 2 , •22y y 2y详解:易得 1x y 4代入xy 2。
矩阵与变换(江苏高考题)

《选修4 - 2:矩阵与变换》高考题(2014-2008)1、(2014年江苏)已知矩阵1211,121A B x -⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,向量2a y ⎡⎤=⎢⎥⎣⎦v ,,x y 是实数,若Aa Ba =v v ,求,x y 的值。
2、(2013年江苏)已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-。
3、(2012年江苏)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值. 4、(2011年江苏)已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 5、(2010年江苏)在平面直角坐标系xOy 中,A(0,0),B(-2,0),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点1A 、1B 、1C ,111C B A ∆的面积是ABC ∆面积的2倍,求实数k 的值6、(2009年江苏)求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵. 7、(2008年江苏)在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.《选修4 - 2:矩阵与变换》高考题(2014-2008)解答(2013年江苏)已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-。
解:设矩阵A 的逆矩阵为⎥⎦⎤⎢⎣⎡d c b a K K ,则⎥⎦⎤⎢⎣⎡-2001K K ⎥⎦⎤⎢⎣⎡d c b a K K =⎥⎦⎤⎢⎣⎡1001K K ,即⎥⎦⎤⎢⎣⎡--d c b a 22K K =⎥⎦⎤⎢⎣⎡1001K K ,故a=-1,b=0,c=0,d=21∴矩阵A 的逆矩阵为⎥⎥⎦⎤⎢⎢⎣⎡⋅-=-210011ΛK A , ∴B A 1-=⎥⎥⎦⎤⎢⎢⎣⎡⋅-21001ΛK ⎥⎦⎤⎢⎣⎡6021K K =⎥⎦⎤⎢⎣⎡⋅⋅--3021ΛK(2012年江苏)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值. 解析:(2011年江苏)已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 解析:设x y α⎡⎤=⎣⎦,由2A αβ=得: 321432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,32111,43222x y x x y y α+==--⎧⎧⎡⎤∴∴∴=⎨⎨⎢⎥+==⎩⎩⎣⎦(2010年江苏)在平面直角坐标系xOy 中,A(0,0),B(-3,),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点1A 、1B 、1C ,111C B A ∆的面积是ABC ∆面积的2倍,求实数k 的值(2009年江苏)求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵. [解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。
高中数学选修42矩阵与变换知识点复习课课件苏教

坐标变换:通过矩阵运算实 现图形的平移、旋转、缩放 等变换
动画制作:通过矩阵运算实 现图形的动画效果,如变形、
运动等
矩阵在其他领域中的应用
物理:在力学、电磁学、量子力学等领域,矩阵被用来描述物理系统的状态和变化
计算机科学:在计算机图形学、人工智能、数据挖掘等领域,矩阵被用来处理和表示数据
高中数学选修4-2矩阵 与变换知识点复习课 课件
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 矩阵与变换概述 03 矩阵的逆与行列式 04 矩阵的秩与特征值 05 矩阵的几何意义与线性变换的矩阵表示
06 矩阵的应用举例
单击添加章节标题
第一章
矩阵与变换概述
第二章
矩阵的定义与性质
矩阵的定义:由m行n列的数组 成的m*n个数阵
矩阵与线性变换的关系
矩阵是线性变换的一种表示方法 线性变换可以通过矩阵乘法来实现 矩阵的逆矩阵表示线性变换的逆操作 矩阵的秩表示线性变换的维数
矩阵的逆与行列式
第三章
矩阵的逆
逆矩阵的定义:满足AB=BA=I的矩阵B称为矩阵A的逆矩阵 逆矩阵的性质:逆矩阵的唯一性、逆矩阵的线性性、逆矩阵的乘法性质 逆矩阵的求法:利用初等行变换求逆矩阵、利用伴随矩阵求逆矩阵 逆矩阵的应用:求解线性方程组、求解矩阵方程、求解线性规划问题
行列式的定义与性质
行列式的定义: 矩阵中主对角线 元素的乘积
行列式的性质: 行列式等于其转 置行列式的值
行列式的计算方 法:利用行列式 的性质进行计算
行列式的应用: 求解线性方程组、 判断矩阵是否可 逆等
行列式的计算方法
初等变换法:通过行变换或列变换 将矩阵化为行阶梯形或列阶梯形, 然后计算行列式
选修4-2选修4-2--矩阵与变换

解:设M=
依题意得 且
它是沿x轴方向的切变变换.
(2)∵
故点C′的坐标是(-1,-1).
变式1:(南京调研)已知矩阵M=
,N=
.在平面直角坐标系中,设
直线2x-y+1=0在矩阵MN对应的变换作用下得到曲线F,求曲线F的方程.
解:由题设得MN=
设(x,y)是直线2x-y+1=0上任意一点,点(x,y)在矩阵MN对应的变
(2)像
这样的矩阵,称为沿y轴或x轴的垂直伸压 变换矩阵.
(3)像
这样的矩阵,称为反射变换矩阵.
(4)像
这样的矩阵,称为旋转变换矩阵.
(5)像
这类将平面内图形投影到某条直线(或某个点)上的矩阵,称
为投影变换矩阵.
(6)像
(k∈R,k≠0)这样的矩阵,称为切变变换矩阵.
3.变换的复合与矩阵的乘法 (1)对于矩阵
(1)设A是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα
=λα,那么λ称为A的一个特征值,而α称为A的属于特征值λ的一个特
征向量.
(2)设A=
是一个二阶矩阵,λ∈R,我们把行列式f(λ)=
=λ2-(a+d)λ+ad-bc称为A的特征多项式.
1.已知A=
, B=
,且A=B,则x=________,y=________,z
(2)只有一行的矩阵称为行矩阵.
(3)只有一列的矩阵称为列矩阵.
(4)所有元素都为0的矩阵叫做 零 矩阵.
(5)对于两个矩阵A,B,只有当A,B的行数与列数分别相等,并且对应位置的元
素 也分别相等时 ,A和B才相等,记作 A=B .
2.几种常见的平面变换
(1)矩阵E=
称为恒等变换矩阵或 单位 矩阵.
高考数学压轴专题最新备战高考《矩阵与变换》难题汇编及答案

【高中数学】高考数学《矩阵与变换》练习题一、151.已知矩阵2101M ⎡⎤=⎢⎥⎣⎦(1)求矩阵M 的特征值及特征向量; (2)若21α⎡⎤=⎢⎥-⎣⎦r,求3M αv . 【答案】(1)特征值为2;对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r(2)91⎡⎤⎢⎥-⎣⎦【解析】 【分析】(1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r可得33312M M M ααα=+u u r u u r r ,求解即可. 【详解】(1)矩阵M 的特征多项式为21()01f λλλ--=-(2)(1)λλ=--,令()0f λ=,得矩阵M 的特征值为1或2,当1λ=,时由二元一次方程0000x y x y --=⎧⎨+=⎩. 得0x y +=,令1x =,则1y =-, 所以特征值1λ=对应的特征向量为111α⎡-⎤=⎢⎥⎣⎦; 当2λ=时,由二元一次方程0000x y x y -=⎧⎨+=⎩. 得0y =,令1x =,所以特征值2λ=对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r;(2)1221ααα⎡⎤==+⎢⎥-⎣⎦u ur u u r rQ ,33312M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦91⎡⎤=⎢⎥-⎣⎦.【点睛】本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.2.解关于x ,y 的方程组93x ay aax y +=⎧⎨+=⎩.【答案】分类讨论,详见解析 【解析】 【分析】分别计算得到29D a =-,6x D a =,23y D a =-,讨论得到答案.【详解】2199a D a a ==-,639x a a D a ==,2133y a D a a ==-.当3a ≠±时,0D ≠,此时方程有唯一解:2226939a x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩; 当3a =±时,0D =,0x D ≠,方程无解. 综上所述:3a ≠±,有唯一解;3a =±,无解. 【点睛】本题考查了通过行列式讨论方程组的解的情况,分类讨论是一个常用的方法,需要同学熟练掌握.3.用行列式解方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并加以讨论.【答案】当1a ≠且52a ≠-时,原方程有唯一解1125225525a x a y a z a +⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩;当52a =-时,方程组无解; 当1a =时,方程组有无穷多解,解为()11,x t y t t R z t =-⎧⎪=+∈⎨⎪=⎩【解析】 【分析】分别得到D ,x D ,y D ,z D ,然后分别得到它们等于0,得到相应的a 的值,然后进行讨论.【详解】()()2131225101D a a a a-=-=-+--,()()1133211111x D a a a a--=--=-+-,()2131321011y D a a --=-=---,()2111235101z D a a-=--=-当1a ≠且52a ≠-时,原方程有唯一解1125225525a x a y a z a +⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩;当52a =-时,原方程等价于2315232512x y z x y z y z ⎧⎪+-=-⎪⎪--=-⎨⎪⎪---=⎪⎩,方程组无解;当1a =时,原方程组等价于231231x y z x y z y z +-=-⎧⎪-+=-⎨⎪-=⎩,方程组有无穷多解,解为()11,x t y t t R z t =-⎧⎪=+∈⎨⎪=⎩【点睛】本题考查通过行列式对方程组的解进行讨论,属于中档题.4.解关于x ,y 的方程组2122ax y a ax ay a+=+⎧⎨-=-⎩.【答案】见解析 【解析】 【分析】根据对应关系,分别求出D ,x D ,y D ,再分类讨论即可 【详解】 由题可得:()122a D a a a a==-+-,()2211=212x a D a aa+=-+--,221522y a a D a aa+==--.所以,(1)当0a ≠且2a ≠-时,()()221252a x a a a y a ⎧+⎪=⎪+⎨⎪=⎪+⎩; 当0a =或2-时,0x D ≠,方程组无解 【点睛】本题考查二元一次方程的解与行列式的对应关系,属于中档题5.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x x x x x x x x x xxx =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.6.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-, ()()11233323x D a a a a a a-==-+=--=-++-, ()()212332623323y aD a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323x y a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想7.用行列式解关于的二元一次方程组:12(1)x y x k y k +=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==-- 【解析】 【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解.【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.8.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵; ()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵.()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪-----⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.9.计算:12131201221122120-⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭【答案】91559124-⎛⎫⎪--⎝⎭【解析】 【分析】直接利用矩阵计算法则得到答案. 【详解】121312011213140222112212021122240-⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 123319155213629124----⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭【点睛】本题考查了矩阵的计算,意在考查学生的计算能力.10.已知函数2sin ()1x xf x x -=.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c,若2A f ⎛⎫= ⎪⎝⎭4a =,5b c +=,求ABC V 的面积. 【答案】(1)1⎡⎤+⎢⎥⎣⎦;(2【解析】 【分析】(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. (2)由条件求得A ,利用余弦定理求得bc 的值,可得△ABC 的面积. 【详解】 解:(1)21()sin cos cos 2)sin 2sin 22232f x x x x x x x π⎛⎫=+=++=++⎪⎝⎭Q , 又02x π≤≤,得42333x πππ≤+≤,所以sin 21,0sin 2123322x x ππ⎛⎫⎛⎫-≤+≤≤++≤+⎪ ⎪⎝⎭⎝⎭, 即函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为0,12⎡⎤+⎢⎥⎣⎦; (2)∵2A f ⎛⎫=⎪⎝⎭,sin 3A π⎛⎫∴+=⎪⎝⎭, 由(0,)A π∈,知4333A πππ<+<, 解得:233A ππ+=,所以3A π=. 由余弦定理知:2222cos a b c bc A =+-,即2216b c bc =+-,216( c)3b bc ∴=+-.因为5b c +=,所以3bc =,1sin 2ABC S bc A ∆∴==【点睛】本题主要考查三角恒等变换,正弦函数的周期性、正弦函数的定义域和值域,余弦定理的应用,属于中档题.11.已知向量102112A ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦u r ,求矩阵1A -u r 的特征值和属于该特征值的特征向量.【答案】特征值:1,2-;对应特征向量:12⎛⎫ ⎪-⎝⎭,11⎛⎫⎪⎝⎭.【解析】【分析】先求得1A -u r,以及其特征多项式()fλ,令()0f λ=解得特征值,最后根据特征向量的定义求解即可. 【详解】设1A -u r a b c d ⎛⎫= ⎪⎝⎭,则由A u r 1A -u r E =r 可得 10? 1?02 10? 1?1? 2a b c d ⎛⎫- ⎪⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭- ⎪⎝⎭, 解得1,1,2,0a b c d =-=-=-=,故得1A -u r 1? 12?0--⎛⎫= ⎪-⎝⎭.则其特征多项式()()1? 1?122? f λλλλλ+==+-,令()0fλ=,可得特征值为121,2λλ==-.设11λ=对应的一个特征向量为x y α⎛⎫= ⎪⎝⎭,则由11A λαα-=r ,的2y x =-,令1x =,则2y =- 故矩阵1A -u r 的一个特征值11λ=对应的一个特征向量为12⎛⎫ ⎪-⎝⎭;同理可得矩阵1A -u r 的一个特征值22λ=-对应的一个特征向量为11⎛⎫ ⎪⎝⎭.【点睛】本题考查矩阵特征值和特征向量的求解,属中档题.12.给定矩阵,;求A 4B .【答案】【解析】试题分析:由题意已知矩阵A=,将其代入公式|λE ﹣A|=0,即可求出特征值λ1,λ2,然后解方程求出对应特征向量α1,α2,将矩阵B 用征向量α1,α2,表示出来,然后再代入A 4B 进行计算即可.解:设A 的一个特征值为λ,由题知=0(λ﹣2)(λ﹣3)=0 λ1=2,λ2=3当λ1=2时,由=2,得A的属于特征值2的特征向量α1=当λ1=3时,由=3,得A的属于特征值3的特征向量α2=由于B==2+=2α1+α2故A4B=A4(2α1+α2)=2(24α1)+(34α2)=32α1+81α2=+=点评:此部分是高中新增的内容,但不是很难,套用公式即可解答,主要考查学生的计算能力,属于中档题.13.已知=是矩阵M=属于特征值λ1=2的一个特征向量.(Ⅰ)求矩阵M;(Ⅱ)若,求M10a.【答案】(Ⅰ)M=;(Ⅱ)M10=.【解析】试题分析:(Ⅰ)依题意,M=,从而,由此能求出矩阵M.(Ⅱ)(方法一)由(Ⅰ)知矩阵M的特征多项式为f(λ)=(λ﹣1)(λ﹣2),矩阵M 的另一个特征值为λ2=1,设=是矩阵M属于特征值λ2=1的特征向量,由已知得=,由此能求出M10.(Ⅱ)(方法二)M2=MM=,,M5=M3M2,M10=M5M5,由此能求出M10.解:(Ⅰ)依题意,M=,,∴,解得a=1,b=2.∴矩阵M=.(Ⅱ)(方法一)由(Ⅰ)知矩阵M的特征多项式为f(λ)=(λ﹣1)(λ﹣2),∴矩阵M的另一个特征值为λ2=1,设=是矩阵M 属于特征值λ2=1的特征向量,则, ∴,取x=1,得=,∴,∴M 10==.(Ⅱ)(方法二)M 2=MM=,,M 5=M 3M 2==,M 10=M 5M 5==, ∴M 10=.点评:本题考查矩阵与变换、特殊性征向量及其特征值的综合应用等基本知识,考查运算求解能力.14.已知矩阵120A x -⎡⎤=⎢⎥⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦,B 的逆矩阵1B -满足17177AB y --⎡⎤=⎢⎥-⎣⎦. (1)求实数x ,y 的值;(2)求矩阵A 的特征值和特征向量.【答案】(1)1,3x y ==;(2)特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【解析】 【分析】 (1)计算()1ABB -,可得12514721y y -⎡⎤⎢⎥--⎣⎦,根据()1A AB B -=,可得结果. (2)计算矩阵A 的特征多项式()121fλλλ+-=-,可得2λ=-或1λ=,然后根据Ax x λ=r r,可得结果.【详解】(1)因为17177AB y --⎡⎤=⎢⎥-⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦所以()17175712723514721AB B y y y ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦由()1A AB B -=,所以12120514721x y y --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦所以514172103y x x y y -==⎧⎧⇒⎨⎨-==⎩⎩(2)矩阵A 的特征多项式为:()()()()1212211f λλλλλλλ+-==+-=+--令()0f λ=,解得2λ=-或1λ= 所以矩阵A 的特征值为2-和1. ①当2λ=-时,12222102x x x y xy y x y--+=-⎡⎤⎡⎤⎡⎤⎧=-⇒⎨⎢⎥⎢⎥⎢⎥=-⎣⎦⎣⎦⎣⎦⎩ 令1y =,则2x =-,所以矩阵M 的一个特征向量为21-⎡⎤⎢⎥⎣⎦.②当1λ=时,12210x x x y xy y x y--+=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥=⎣⎦⎣⎦⎣⎦⎩ 令1y =,则1x =所以矩阵M 的一个特征向量为11⎡⎤⎢⎥⎣⎦. 因此,矩阵A 的特征值为2-和1, 分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【点睛】本题考查矩阵的应用,第(1)问中,关键在于()1A ABB -=,第(2)问中,关键在于()1201f λλλ+-==-,考验分析能力以及计算能力,属中档题.15.已知矩阵14a b A ⎡⎤=⎢⎥⎣⎦若矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r ,属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r 求矩阵A .【答案】2314⎡⎤⎢⎥⎣⎦ 【解析】 【分析】根据矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r 得到33-=a b ,属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r ,故5a b +=,解得答案.【详解】矩阵A 属于特征值1的一个特征向量为131a ⎡⎤=⎢⎥-⎣⎦u u r ,1114a b a a ⎡⎤=⎢⎥⎣⎦u r u r,故33-=a b ; 属于特征值5的一个特征向量为211a ⎡⎤=⎢⎥⎣⎦u u r ,21514a b a a ⎡⎤=⎢⎥⎣⎦u u r u r,故5a b +=, 解得23a b =⎧⎨=⎩,故2314A ⎡⎤=⎢⎥⎣⎦. 【点睛】本题考查了矩阵的特征向量,意在考查学生的计算能力和对于特征向量的理解.16.已知矩阵12A c d ⎡⎤=⎢⎥⎣⎦(c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为21⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦,求矩阵A 的逆矩阵1A -.【答案】121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦【解析】 【分析】根据特征值的定义可知A αλα=,利用待定系数法建立等式关系,求出矩阵A ,即可求出逆矩阵1A -. 【详解】 解:由题意知,122422121c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,12131311c d c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,所以223c d c d +=⎧⎨+=⎩,解得14c d =-⎧⎨=⎩. 所以1214A ⎡⎤=⎢⎥-⎣⎦,所以121331166A -⎡⎤-⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 【点睛】本题主要考查了二阶矩阵,以及特征值与特征向量的计算,属于基础题.17.已知变换T 将平面上的点11,2⎛⎫ ⎪⎝⎭,(0,1)分别变换为点9,24⎛⎫- ⎪⎝⎭,3,42⎛⎫- ⎪⎝⎭.设变换T 对应的矩阵为M . (1)求矩阵M ; (2)求矩阵M 的特征值.【答案】(1)33244M ⎡⎤-⎢⎥=⎢⎥-⎣⎦(2)1或6【解析】 【分析】(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,根据变换可得关于a b c d ,,,的方程,解方程即可得到答案; (2)求出特征多项式,再解方程,即可得答案; 【详解】(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,则194122a b cd ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦,30214a b c d ⎡⎤-⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1924122324a b c d b d ⎧+=⎪⎪⎪+=-⎪⎨⎪=-⎪⎪⎪=⎩,解得33244a b c d =⎧⎪⎪=-⎪⎨⎪=-⎪=⎪⎩,则33244M ⎡⎤-⎢⎥=⎢⎥-⎣⎦.(2)设矩阵M 的特征多项式为()f λ,可得233()(3)(24)676244f λλλλλλ-==---=-+-, 令()0f λ=,可得1λ=或6λ=.【点睛】本题考查矩阵的求解、矩阵M 的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.18.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】 【分析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单19.已知a ,b R ∈,若M =13a b -⎡⎤⎢⎥⎣⎦所对应的变换T M 把直线2x-y=3变换成自身,试求实数a ,b . 【答案】【解析】 【分析】 【详解】 设则即此直线即为则..20.已知,,x y z 是关于的方程组000ax by cz cx ay bz bx cy az ++=⎧⎪++=⎨⎪++=⎩的解.(1)求证:()111a bc a b ca b a b c c a bcab c =++; (2)设01,,,z a b c =分别为ABC ∆三边长,试判断ABC ∆的形状,并说明理由;(3)设,,a b c 为不全相等的实数,试判断"0"a b c ++=是“222000o x y z ++>”的 条件,并证明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要. 【答案】(1)见解析(2)等边,见解析(3)④,见解析 【解析】 【分析】(1)将行列式的前两列加到第三列上即可得出结论;(2)由方程组有非零解得出a bc ca b bc a =0,即111a b c a b c =0,将行列式展开化简即可得出a =b =c ;(3)利用(1),(2)的结论即可答案. 【详解】(1)证明:将行列式的前两列加到第三列上,得:a b ca b a b c ca b c a a b c b c a b c a b c ++=++=++(a +b +c )•111a b c a b c .(2)∵z 0=1,∴方程组有非零解,∴a bc ca b bca=0,由(1)可知(a +b +c )•111a b c a b c =0. ∵a 、b 、c 分别为△ABC 三边长,∴a +b +c ≠0,∴111a b ca b c =0,即a 2+b 2+c 2﹣ab ﹣bc ﹣ac =0,∴2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ac =0,即(a ﹣b )2+(b ﹣c )2+(a ﹣c )2=0, ∴a =b =c ,∴△ABC 是等边三角形.(3)若a +b +c =0,显然(0,0,0)是方程组的一组解,即x 02+y 02+z 02=0,∴a+b+c=0”不是“x02+y02+z02>0”的充分条件;若x02+y02+z02>0,则方程组有非零解,∴a b cc a bb c a=(a+b+c)•111a bc ab c=0.∴a+b+c=0或111a bc ab c=0.由(2)可知a+b+c=0或a=b=c.∴a+b+c=0”不是“x02+y02+z02>0”的必要条件.故答案为④.【点睛】本题考查了行列式变换,齐次线性方程组的解与系数行列式的关系,属于中档题.。
北师大版高中数学选修4-2矩阵变换的性质同步练习.docx

高中数学学习材料马鸣风萧萧*整理制作矩阵变换的性质 同步练习一,选择题1, 矩阵⎪⎪⎭⎫ ⎝⎛1002将曲线422=+y x 变换为( )A.圆B.椭圆C.直线D.点2,以下说法错误的是( )A .零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量3,矩阵⎪⎪⎭⎫ ⎝⎛1201对基向量⎪⎪⎭⎫ ⎝⎛=01i 和⎪⎪⎭⎫ ⎝⎛=10j 的 变换结果可把向量⎪⎪⎭⎫⎝⎛87变为( ) A. ⎪⎪⎭⎫ ⎝⎛822 B. ⎪⎪⎭⎫ ⎝⎛227 C. ⎪⎪⎭⎫ ⎝⎛2222 D. ⎪⎪⎭⎫⎝⎛228 二,填空题4,已知矩阵⎪⎪⎭⎫ ⎝⎛=1011M ,向量⎪⎪⎭⎫ ⎝⎛=12α向量⎪⎪⎭⎫ ⎝⎛=31β,则=-)2(βαM .5,一般地,对平面上任意直线l ,若l 经过点A,且平行于向量0v ,那么l 的向量方程为 . 6,已知矩阵⎪⎪⎭⎫ ⎝⎛=0001M ,则该矩阵把坐标系中的图形都变成 . 三,解答题7,试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换 (1)⎪⎪⎭⎫ ⎝⎛1001方程为22+=x y (2)⎪⎪⎭⎫ ⎝⎛-1001点A (2,5) (3)⎪⎪⎭⎫ ⎝⎛-1001点A (3,7) (4)⎪⎪⎭⎫ ⎝⎛0110点A (2,7) (5)⎪⎪⎭⎫ ⎝⎛-0110点A (a,b )8,给定图形,如图,在变换下变成什么样的图形,请画出变换后的图形,并指出这是什么变换O xyB(1,1) C(0,1)A(1,0)参考答案1,B 2,C 3,B4,⎪⎪⎭⎫⎝⎛-125,)(:Rtv tOAOXl∈+=6,一条在x轴上的直线,射线或线段7,(1)变换后的方程仍为直线,该变换是恒等变换(2)经过变化后变为(-2,5),它们关于y轴对称,该变换为关于y轴的反射变换.(3)A(3,7)经过变化后变为(3,-7),它们关于x轴对称,该变换是关于x轴的反射变换.(4)即A(2,7)经过变化后变为(7,2),它们关于直线y=x成轴对称,该变换为关于直线y=x的反射变换.(5)A(a,b)经过变化后变为(-b,-a),该变换为关于直线y=-x的反射变换.8,变成一条端点为原点和A点的x轴上的线段,作图略.这是一个在x轴上的投影变换.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 矩阵与变换(选修4
2)
矩阵的线性变换与矩阵的乘法
1.(2011年江苏卷,21B)已知矩阵A=⎥⎦
⎤
⎢
⎣⎡1211,向量β=.求向量α,使得A 2
α=β.
解:A 2
=⎥⎦⎤⎢⎣⎡1211⎥⎦⎤⎢⎣⎡1211=⎥⎦⎤⎢⎣
⎡3423,
设α=⎥⎦
⎤⎢⎣⎡y a ,
由A 2
α=β,得⎥⎦⎤⎢⎣⎡3423⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡21,即⎥⎦⎤⎢⎣⎡++y x y x 3423=⎥⎦
⎤
⎢⎣⎡21,
从而解得
,所以α=⎥⎦
⎤
⎢
⎣⎡21-. 2.(2010年福建卷,理21)已知矩阵M=⎥⎦⎤⎢
⎣⎡11b a ,N=⎥⎦⎤⎢⎣⎡d c 02,且MN=⎥⎦
⎤
⎢⎣⎡-0202. (1)求实数a,b,c,d 的值;
(2)求直线y=3x 在矩阵M 所对应的线性变换作用下的像的方程. 解:法一:(1)由MN=⎥⎦⎤⎢
⎣⎡11b a ⎥⎦⎤⎢⎣⎡d c 02=⎥⎦⎤⎢⎣⎡++d b bc ad c 22=⎥
⎦
⎤
⎢⎣⎡-0202 从而解得
(2)因为矩阵M 对应的线性变换将直线变成直线(或点),所以可取直线y=3x 上的两点(0,0),(1,3). 由(1)M=⎥
⎦
⎤
⎢
⎣⎡--1111, 由⎥⎦⎤⎢⎣⎡--1111,⎥⎦⎤⎢⎣⎡00=⎥⎦⎤⎢⎣⎡00,⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡31=⎥⎦
⎤⎢⎣⎡-22得
点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的像分别是点(0,0),(-2,2). 从而直线y=3x 在矩阵M 所对应的线性变换作用下的像的方程为y=-x. 法二:(1)同法一.
(2)设直线y=3x 上的任意点(x,y)在矩阵M 所对应的线性变换作用下的像是点(x',y'),
由⎥⎦⎤⎢⎣⎡''y x =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡+--y x y x =⎥⎦
⎤⎢⎣⎡-x x 22 得x'=-2x,y'=2x, 所以y'=-x',
即点(x',y')必在直线y=-x 上.
由(x,y)的任意性可知,直线y=3x 在矩阵M 所对应的线性变换作用下的像的方程为
y=-x.
(1)对于图形变换,首先要分清哪个是变换前的,哪个是变换后的,以及变换的途径,
以防因颠倒而出错.
(2)善于运用线性变换、变换的复合转化为方程组求解
.
逆变换与逆矩阵
3.(2012年上海数学,理3,4分)函数f(x)=
的值域是 .
解析:f(x)=2×(-1)-sin xcos x=-2-sin 2x, 由于-1≤sin 2x ≤1, 所以-≤-2-sin 2x ≤-,
即-≤f(x)≤-.
答案:[-,-]
4.(2012年江苏数学,21B,10分)已知矩阵A 的逆矩阵A -1
=⎥⎥⎥⎦
⎤
⎢⎢
⎢⎣⎡--212
14341求矩阵A 的特征值. 解:因为A -1
A=E,所以A=(A -1)-1
.
因为A -1
=⎥
⎥⎥⎦
⎤
⎢⎢
⎢⎣⎡--21214341,所以A=(A -1)-1=⎥⎦⎤⎢⎣⎡1232,
于是矩阵A 的特征多项式为f(λ)==λ2
-3λ-4.
令f(λ)=0,解得A 的特征值λ1=-1,λ2=4.
5.(2012年福建卷,理21(1),7分)设曲线2x 2
+2xy+y 2
=1在矩阵A=⎥⎦
⎤
⎢⎣⎡10b a (a>0)对应的变换
作用下得到的曲线为x 2+y 2
=1.
①求实数a,b 的值;
②求A 2
的逆矩阵.
解:①设曲线2x 2+2xy+y 2
=1上任意点P(x,y)在矩阵A 对应的变换作用下的像是P'(x',y').
由⎥⎦⎤⎢⎣⎡''y x =⎥⎦⎤⎢⎣
⎡10b a ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡+y bx ax , 得
.
又点P'(x',y')在x 2
+y 2
=1上,
所以x'2+y'2
=1,
即a 2x 2+(bx+y)2
=1,
整理得(a 2+b 2)x 2+2bxy+y 2
=1, 依题意得
解得
或
因为a>0,所以
②由①知,A=⎥⎦⎤⎢⎣⎡1101,A 2=⎥⎦⎤⎢⎣⎡1101⎥⎦⎤⎢⎣⎡1101=⎥⎦⎤
⎢⎣
⎡1201,
所以|A 2|=1,(A 2)-1
=⎥
⎦
⎤
⎢⎣⎡-1201.。