圆锥曲线练习题(三)
(完整版)职高圆锥曲线练习题

圆锥曲线 练习题一、选择题1、已知椭圆方程为202x +112y =1,则它的焦距是 ( ) A 、 6 B 、 3 C 、 231 D 、312. 椭圆14522=+y x 的焦点坐标为( ) A .(-3,0)(3,0) B.(0,-3)(0,3)C.(-1,0)(1,0)D.(0,-1)(0,1)3. 双曲线的两条渐近线方程为y=x ±,则该双曲线的离心率为( )A.1B.2C.3D.24.过抛物线y 2=8x 的焦点F 且垂直于对称轴的直线交抛物线于A ,B 两点, 则|AB|=( )A.8B.4 C .16 D.25. 曲线125)2(16)6(22=+--y x 的实轴长为( ) A.8 B.16 C.10 D.56.已知圆 方程(x-1)2+(y+1)2=4,则圆心到直线y=x-4的距离是 ( ) A.22 B.22 C.2 D. 2 7.已知点P(1,-4),Q(3,2),那么以PQ 为直径的圆的方程是( )A.(x-2)2+(y+1)2=10B.(x+2)2+(y-1)2=10C.(x-2)2+(y+1)2=40D.(x+2)2+(y-1)2=408.若直线2x-y+b=0与圆x 2+y 2=9相切,则b 的值是( ) A.35 B.-35 C.±35 D. 59.长轴是短轴的2倍,且经过点P (-2,0)的椭圆的方程是( ) A.1422=+y x B.141622=+y x 或1422=+y x C.116422=+y x D. 116422=+y x 或1422=+y x 10.方程12322=++-ky k x 表示椭圆,则k 的取值范围是( ) A.-2<k<3 B.k<21且 k>-2 C.k>21 D.-2<k<21或 21<k<3 11、 两椭圆252x +92y =1与k x -252+ky -92=1(k<9) ( ) A. 有相同的顶点 B .有相同的焦点C .有相同的离心率 D. 有相同的准线12.双曲线191622=-y x 的焦点坐标是( ) A.(0,-5)和(0,5) B.(-5,0)和(5,0)C.(0,-7)和(0,7)D.(-7,0)和(7,0)13.抛物线x 2-5y=0的准线方程是( )A.x=-45 B.x=25 C.y=45 D.y=-45 14.若双曲线焦点在x 轴上,且它的一条渐近线方程是y=43x,则离心率为( ) A. 45 B.35 C.774 D.773 15.顶点在原点,以坐标轴为对称轴,且过点(2,-3)的抛物线方程是( )A.y 2=x 29或x 2=-y 34B. y 2=-x 29 C. y 2=-x 29或x 2=y 34 D. x 2=y 34 16.过点M (-2,1)的圆x 2+y 2-2x-6y-5=0的最短弦所在直线方程为( )A.2x-3y+7=0B.3x+2y+4=0C.3x+2y-2=0D.3x-2y+8=017.两圆x 2+y 2-2x=0 与x 2+y 2-4x=0 ( )A.外切B.内切C.相交D.相离18.设α∈(0,2π),方程1cos sin 22=+ααy x 表示中心在坐标原点且焦点在x 轴上的椭圆,则α的取值范围是( ) A.(0,4π) B.⎥⎦⎤ ⎝⎛4,0π C.(2,4ππ) D. ⎪⎭⎫⎢⎣⎡2,4ππ 二、填空题1、已知椭圆的两个焦点与其短轴的一个顶点恰好是正三角形的三个顶点, 则椭圆的离心率=___________2.直线x-2y+5=0与圆x 2+y 2-4x-2y=0的位置关系是____________________________.3.已知椭圆162x +142=y ,过其焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与另一焦点F 2构成的三角形的周长为 __________________.4.双曲线1251622=-y x 上一点M 到左焦点F 1的距离为9, 则点M 到右焦点F 2的距离为______________5.过点(1,4)的抛物线的标准方程为___________________6、 直线y=x+b 过圆 x 2+y 2-4x+2y-4=0的圆心,则b=____________7、 直线4x-3y=20被圆 x 2+y 2=25截得的弦长为___________________8、 椭圆9x 2+25y 2=225的离心率e=________________________9、 椭圆9x 2+25y 2=225上一点到椭圆一个焦点的距离是3,则到另一个焦点的距离为_________________.10、 以点(2,-3)为圆心,且与直线x+y-1=0相切的圆的方程为______________________11、直线4x-3y=20被圆 x 2+y 2=25截得的弦长为____________________- 12、椭圆9x 2+25y 2=225的离心率e=________________________ 13、 以双曲线191622=-y x 的右焦点为顶点,左顶点为焦点的抛物线方程是_____________________14、 抛物线(y-2)2=5x 的焦点坐标是_____________________15.椭圆14222=+a y x 与双曲线12222=-y ax 有相同的焦点, 则a 2=________________三、解答题1、椭圆的两焦点为F 1(-4,0),F 2(4,0).椭圆的弦AB 过点F 1,且ΔABF 2的周长为20,那么,求椭圆的方程。
圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题1、若点()3,P m 在以点F 为焦点的抛物线24{4x t y t == (t 为参数)上,则PF 等于( )A.2B.3C.4D.5答案:C解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.故选C.2、参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )A.圆的一部分B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分答案:B解析:参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,表示抛物线的一部分.3、椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±答案:B解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为221259x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.4、已知过曲线3cos ,{4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭C.2⎛ ⎝D.1212,55⎛⎫ ⎪⎝⎭ 答案:D解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125x y ==. 5、已知O 为原点,P为椭圆4cos ,{x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3π,则点P 坐标为( ) A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos ,{x y αα== (α为参数)化为普通方程,得2211612x y +=.由题意可得直线OP的方程为y = (0x >).由22(0),{11612y x x y =>+=解得x y ==. ∴点P的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为( ) A.2214y x += B.2212y x += C.2214x y += D.2212x y +=答案:A 解析:易知,2y cos x sin θθ==,∴2214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D解析:由xcos a θ=,∴a cos xθ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.8、若曲线2sin cos 1x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )A.RB.()0,+∞C.()0,1D.[)0,1答案:D解析:将曲线2sin cos 1x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12的直线方程为__________ 答案:x-2y-4=0解析:椭圆的普通方程为221259x y+=,故5,3,a b==所以4c==,故右焦点的坐标为(4,0),又直线的斜率为12,故直线的方程为1(4)2y x=-,即240x y--=.9、已知实数0p>,曲线212:{2x ptCy pt==(t为参数)上的点(2,)A m,曲线26cos :{26sinpxCyθθ=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆2C的半径,则p=__________.答案:8解析:曲线212:{2x ptCy pt==(t为参数)化为普通方程为22y px=,代入2x=得m=±则点(2,A±.曲线26cos:{26sinpxCyθθ=+=的圆心为(,0)2p,半径为6.10、设点O为坐标原点,直线l:4,{2xy t=+=(参数t R∈)与曲线24,:{4x uCy u==(参数u R∈)交于A、B两点.(1)求直线l与曲线C的普通方程;(2)求证:OA OB⊥.答案:1.直线l:4y x=-.曲线C:24y x=.2.证明:设1122(,),(,),A x yB x y由24{4y xy x==-消去y,得212160x x-+=.∴121212,16,x x x x+==∴12121212121212(4)(4)4()161OA OBy y x x x x x xk kx x x x x x---+⋅====-.∴OA OB⊥.11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C的参数方程为,{sin ,x y θθ== (θ为参数).1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.2.因为点 Q 是曲线 C 上的一个动点,则点 Q的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为2cos 4d πα⎛⎫++ ⎪==6πα⎛⎫=++ ⎪⎝⎭所以当cos 16πα⎛⎫+=- ⎪⎝⎭时,d.。
圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x y +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b-=与椭圆22221x y m b +=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( ) AB. C.29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(0 30.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF 的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43.若双曲线22221(0,0)x y a b a b-=>>上不存在点P 使得右焦点F 关于直线OP(O 为双曲线的中心)的对称点在y轴上,则该双曲线离心率的取值范围为( )A .)+∞B .)+∞C .D .44.已知以椭圆)0(12222>>=+b a by a x 的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2 )A B C .4 D .846.已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+47.已知双曲线)0,0(12222>>=-b a by a x 的左顶点、右焦点分别为A 、F,点B (0,b ),-=+,则该双曲线离心率e 的值为( )A .213+ B C .215- D .248.直线l 是双曲线22221(0,0)x y a b a b-=>>的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .2D .49.从双曲线)0,0(12222>>=-b a by a x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则MT MO -与a b -的大小关系为 A .a b MT MO ->- B .a b MT MO -=- C .a b MT MO -<-D .不确定.50.点P 为双曲线1C :()0,012222>>=-b a by a x 和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( ) A .3B .21+C .13+D .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于 A .1322或B .23或2C .12或2 D .2332或 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= 。
(完整word版)圆锥曲线基础知识专项练习

圆锥曲线练习一、选择题(本大题共13小题,共65。
0分)1.若曲线表示椭圆,则k的取值范围是()A。
k>1 B.k<—1C。
-1<k<1 D。
-1<k<0或0<k<12。
方程表示椭圆的必要不充分条件是()A.m∈(—1,2)B。
m∈(-4,2)C。
m∈(-4,-1)∪(—1,2) D.m∈(—1,+∞)3.已知椭圆:+=1,若椭圆的焦距为2,则k为()A.1或3 B。
1 C.3 D。
64。
已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为()A. B.C。
D。
5.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B 为焦点的椭圆”,那么()A。
甲是乙成立的充分不必要条件B。
甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件6。
“a>0,b>0”是“方程ax2+by2=1表示椭圆”的()A。
充要条件B。
充分非必要条件C.必要非充分条件D。
既不充分也不必要条件7。
方程+=10,化简的结果是()A。
+=1 B。
+=1 C.+=1 D。
+=18.设椭圆的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|=()A.B。
C.D。
9。
若点P到点F(4,0)的距离比它到直线x+5=0 的距离小1,则P点的轨迹方程是( )A。
y2=-16x B.y2=—32x C.y2=16x D.y2=32x10。
抛物线y=ax2(a<0)的准线方程是( )A.y=—B.y=-C.y=D.y=11.设抛物线y2=4x上一点P到直线x=—3的距离为5,则点P到该抛物线焦点的距离是()A.3B.4C.6D.812。
已知点P是抛物线x=y2上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为( )A。
2 B。
C.-1 D。
+113.若直线y=kx—2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=() A。
圆锥曲线中的定值、定点、定直线问题大题分类精练(学生版)

圆锥曲线中的定值、定点、定直线问题目录题型1 圆锥曲线中的定值问题题型2 圆锥曲线中的定点问题题型3 圆锥曲线中的定直线问题题型归纳【题型1圆锥曲线中的定值问题】1(2023·江西·高三南昌第三中学校考阶段练习)设x ,y ∈R ,向量i ,j分别为平面直角坐标内x轴,y 轴正方向上的单位向量,若向量a =x +3 i +y j ,b =x -3 i +y j ,且a+b =4.(1)求点M x ,y 的轨迹C 的方程;(2)设椭圆E :x 216+y 24=1,曲线C 的切线y =kx +m 交椭圆E 于A 、B 两点,试证:△OAB 的面积为定值.2(2023·全国·模拟预测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),其离心率为32,直线y =12被椭圆截得的弦长为23.(1)求椭圆C 的标准方程.(2)圆x 2+y 2=45的切线交椭圆C 于A ,B 两点,切点为N ,求证:AN ⋅NB 是定值.3(2023·内蒙古·高三校联考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,离心率e =12,过点1,32.(1)求C 的方程;(2)直线l 过点M 0,1 ,交椭圆于A 、B 两点,记N 0,3 ,并设直线NA 、直线NB 的斜率分别为k NA 、k NB ,证明:k NA +k NB =0.4(2023·辽宁大连·高三大连市金州高级中学校考期中)已知抛物线C 1的顶点在原点,对称轴为坐标轴,且过-1,1 ,1,2 ,2,-2 ,-1,-2 四点中的两点.(1)求抛物线C 1的方程;(2)若直线l 与抛物线C 1交于M ,N 两点,与抛物线C 2:y 2=4x 交于P ,Q 两点,M ,P 在第一象限,N ,Q 在第四象限,且NQ MP=2,求PQ MN的值.5(2023·河北保定·统考二模)已知椭圆C的中心在原点,焦点在x轴上,长轴长为短轴长的2倍,若椭圆C经过点P2,2,(1)求椭圆C的方程;(2)若A,B是椭圆上不同于点P的两个动点,直线PA,PB与x轴围成底边在x轴上的等腰三角形,证明:直线AB的斜率为定值.6(2023·上海·高三上海市进才中学校考期中)双曲线C:x2a2-y2b2=1a>0,b>0的离心率为3,圆O:x2+y2=2与x轴正半轴交于点A,点T2,2在双曲线C上.(1)求双曲线C的方程;(2)过点T作圆O的切线交双曲线C于两点M、N,试求MN的长度;(3)设圆O上任意一点P处的切线交双曲线C于两点M、N,试判断PM⋅PN是否为定值?若为定值,求出该定值;若不是定值,请说明理由.7(2023·全国·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个顶点为A 2,0 ,D ,E 是C 上关于原点O 对称的两点,且直线AD ,AE 的斜率之积为14.(1)求C 的标准方程.(2)设Q 是C 上任意一点,过Q 作与C 的两条渐近线平行的直线,与x 轴分别交于点M ,N ,判断x 轴上是否存在点G ,使得GM GN 为定值.【题型2圆锥曲线中的定点问题】8(2023·湖南·校联考模拟预测)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的长轴长为26,且其离心率小于22,P 为椭圆C 上一点,F 1、F 2分别为椭圆C 的左、右焦点,△F 1PF 2的面积的最大值为22.(1)求椭圆C 的标准方程;(2)A 为椭圆C 的上顶点,过点D 0,-1 且斜率为k 的直线l 与椭圆C 交于M ,N 两点,直线l 1为过点D 且与AM 平行的直线,设l 1与直线y =-52的交点为Q .证明:直线QN 过定点.9(2023·云南大理·统考一模)已知双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 ,其渐近线方程为x ±2y=0,点22,1 在Γ上.(1)求双曲线Γ的方程;(2)过点A 2,0 的两条直线AP ,AQ 分别与双曲线Γ交于P ,Q 两点(不与点A 重合),且两条直线的斜率之和为1,求证:直线PQ 过定点.10(2023·江西南昌·高三江西师大附中校考期中)在平面直角坐标系XOY 中,已知两定点P (1,1)、Q (1,4),点R 满足OR =13OQ +23OP且在焦点在x 轴正半轴的抛物线E 上. 过Q 作一斜率存在的直线交E 于A 、B 两点,连接BP 交抛物线E 于点C .(1)求抛物线E 的标准方程;(2)判断直线AC 是否恒过定点,若是请求出该定点坐标,若不是请说明理由.11(2023·广东惠州·高三校考阶段练习)在平面直角坐标系xOy 中,顶点在原点,以坐标轴为对称轴的抛物线C 经过点2,4 .(1)求C 的方程;(2)若C 关于x 轴对称,焦点为F ,过点4,2 且与x 轴不垂直的直线l 交C 于M ,N 两点,直线MF 交C 于另一点A ,直线NF 交C 于另一点B ,求证:直线AB 过定点.12(2023·福建泉州·统考模拟预测)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率是22,上、下顶点分别为A ,B .圆O :x 2+y 2=2与x 轴正半轴的交点为P ,且PA ⋅PB=-1.(1)求E 的方程;(2)直线l 与圆O 相切且与E 相交于M ,N 两点,证明:以MN 为直径的圆恒过定点.13(2023·云南昆明·昆明一中校考模拟预测)已知双曲线C:x2a2-y2b2=1a>0,b>0的左右焦点分别为F1,F2,左顶点的坐标为-2,0,离心率为7 2.(1)求双曲线C的方程;(2)A1,A2分别是双曲线的左右顶点,T是双曲线C上异于A1,A2的一个动点,直线TA1,TA2分别于直线x=1交于Q1,Q2两点,问以Q1,Q2为直径的圆是否过定点,若是,求出此定点;若不是,请说明理由.14(2023·江西九江·统考一模)已知过点P(2,0)的直线l与抛物线E:y2=2px(p>0)交于A,B两点,过线段AB的中点M作直线MN⊥y轴,垂足为N,且PM⊥PN.(1)求抛物线E的方程;(2)若C为E上异于点A,B的任意一点,且直线AC,BC与直线x=-2交于点D,R,证明:以DR为直径的圆过定点.【题型3圆锥曲线中的定直线问题】15(2023·四川成都·校联考二模)已知A 1-3,0 和A 23,0 是椭圆η:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线l 与椭圆η相交于M ,N 两点,直线l 不经过坐标原点O ,且不与坐标轴平行,直线A 1M 与直线A 2M 的斜率之积为-59.(1)求椭圆η的标准方程;(2)若直线OM 与椭圆η的另外一个交点为S ,直线A 1S 与直线A 2N 相交于点P ,直线PO 与直线l 相交于点Q ,证明:点Q 在一条定直线上,并求出该定直线的方程.16(2023·江苏常州·校考一模)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的短轴长为22,离心率为22.(1)求椭圆C 的方程;(2)过点P 4,1 的动直线l 与椭圆C 相交于不同的A ,B 两点,在线段AB 上取点Q ,满足AP ⋅QB =AQ ⋅PB ,证明:点Q 总在某定直线上.17(2023·广东广州·高三统考阶段练习)已知在平面直角坐标系中,动点Q x ,y 到F 3,0 的距离与它到直线x =53的距离之比为355,Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点P 53,1作直线l 与曲线C 交于不同的两点M 、N (M 、N 在y 轴右侧),在线段MN 上取异于点M 、N 的点H ,且满足MP PN=MH HN,证明:点H 恒在一条直线上.18(2023·全国·高三专题练习)已知双曲线E :x 2a 2-y 24=1a >0 的中心为原点O ,左、右焦点分别为F 1,F 2,离心率为355.(1)求实数a 的值.(2)若点P 坐标为0,4 ,过点P 作动直线l 与双曲线右支交于不同的两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM PN=MH HN.证明:点H 恒在一条定直线上.19(2023·吉林长春·统考一模)过抛物线E:y2=2px(p>0)焦点F,斜率为-1的直线l与抛物线交于A、B两点,|AB|=8.(1)求抛物线E的方程;(2)过焦点F的直线l ,交抛物线E于C、D两点,直线AC与BD的交点是否在一条直线上.若是,求出该直线的方程;否则,说明理由.20(2023·全国·模拟预测)已知在平面直角坐标系xOy中,抛物线M:y=mx2的焦点F与椭圆C:x2 a2+y2b2=1a>b>0的一个顶点重合,抛物线M经过点Q1,14,点P是椭圆C上任意一点,椭圆C的左、右焦点分别为F1,F2,且∠F1PF2的最大值为2π3.(1)求椭圆C和抛物线M的标准方程;(2)过抛物线M上在第一象限内的一点N作抛物线M的切线,交椭圆C于A,B两点,线段AB的中点为G,过点N作垂直于x轴的直线,与直线OG交于点E,求证:点E在定直线上.。
圆锥曲线练习题含答案

2y 1上的一点P到椭圆一个焦点的距离为3,贝UP到另一焦点距离为16P到点M (1,0)及点N (3,0)的距离之差为A .双曲线B .双曲线的一支4•设双曲线的半焦距为C,两条准线间的距离为A . 2 B. 325.抛物线y =10x的焦点到准线的距离是5 匚A .B . 526.若抛物线y2 =8x上一点P到其焦点的距离为A . (7, _、14)B . (14, _、,14)2 27.如果x - ky =2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A . 0, ::B .0,2C . 1, D.0,12 x&以椭圆—— 2y=1的顶点为顶点,离心率为2的双曲线方程()25 162 2 2 2 2 2 2 2x A .y =1 x y ’B . 1 C.x y -1或x y =1 D.以上都不对16 48 9 27 16 48 9 279.过双曲线的一个焦点F2作垂直于实轴的弦PQ , F1是另-一焦点,若/PF1Q ,则双曲线的离心率2e等于()A. 2 -1 B . ■. 2 C . 2 1D.2 22 210 . F1,F2是椭圆— - 1的两个焦点,9 7为()A. 77B .—42 2、选择题圆锥曲线专题练习2.A. 2若椭圆的对称轴为坐标轴,长轴长与短轴长的和为2 2x y19 162 2 2x y xB. 1C.25 16C. 5D. 718,焦距为6,则椭圆的方程为2 2 2y 亠x y ,1或 1 D .以上都不对25 16 16 25C.两条射线D. 一条射线d,且c = d,那么双曲线的离心率e等于()C . 2D . 、3( )15C .—D. 1029,则点P的坐标为( )C . (7,2 14)D . (-7, _2.i4)2,则点P的轨迹是( )1•已知椭圆2 x253. 动点A为椭圆上一点,且/ AF1F^ 450,则△ AF1F2的面积7、52x y -2x 6y 9=0的圆心的抛物线的方程()C . y 2 = -9x 或 y = 3x 2D . y = _3x 2 或 y 2 = 9x11.以坐标轴为对称轴,以原点为顶点且过圆A . y = 3x 2 或 y 二 -3x 2B . y = 3x 22设AB 为过抛物线y =2px (p 0)的焦点的弦,则 AB 的最小值为()pA .B . pC . 2pD .无法确定2若抛物线y 2 =x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为()A .(需B . y . (]]) D .(占4 4 8 4 4 4 8 4x 2 y 2椭圆1上一点P 与椭圆的两个焦点 F 1、F 2的连线互相垂直,则△ PF 1F 2的面积为49 24A . 20B . 22C . 28D . 24若点A 的坐标为(3,2) , F 是抛物线y 2 =2x 的焦点,点M 在抛物线上移动时,使 MF|+|MA 取得那么k 的取值范围是(( 3 A .-2填空题=1的离心率为,则它的长半轴长为2双曲线的渐近线方程为 x -2^0,焦距为10,这双曲线的方程为2 2若曲线 — -1表示双曲线,则k 的取值范围是4+k 1-k抛物线y 2 =6x 的准线方程为 ____ . _____2 2椭圆5x ky =5的一个焦点是(0,2),那么k 二12. 13. 14. 15. 16.17.18.19. 20. 21 . 22. 23.最小值的M 的坐标为( A . 0,0'2,1; <2丿C . 1「2D . 2,2x 2与椭圆一4共焦点且过点 Q (2,1)的双曲线方程是(2xA .22-y2 x=1 B .4 y 2 =122x y C .1若直线y =kx 2与双曲线 x 2=6的右支交于不同的两点,A .(.15 . 15 ,—33V15(03•、15,0) 3•. 15厂1 )抛物线2二2x 上两点 A(X 1,yJ 、B(X 2,y 2)关于直线 y=Xm 对称,且花x 二-丄,则m 等于2x 2 my 2 若椭圆21 =1的离心率为一,则k 的值为225.双曲线8kx 2 — ky 2 =8的一个焦点为(0,3),则k 的值为 ____________________26. 若直线x-y =2与抛物线y 2 =4x 交于A 、B 两点,则线段 AB 的中点坐标是 ________________227. 对于抛物线y =4x 上任意一点Q ,点P(a,0)都满足PQ 3 a ,则a 的取值范围是__2 2x y29 .设AB 是椭圆— 2 =1的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,a b则 k AB 1 kOM -x 2y 230•椭圆1的焦点F 1、F 2,点P 为其上的动点,当/ F 1 P F 2为钝角时,点P 横坐标的取值范9 4围是 __________________ 。
对口升学数学复习《圆锥曲线》练习题

《圆锥曲线》练习题练习1——椭圆1 (一)选择题:1.椭圆的两个焦点分别为F 1 (-4,0), F 2 (4,0),且椭圆上一点到两焦点的距离之和为12,则椭圆的方程为 ( )(A )1362022=+y x (B )112814422=+y x (C )1203622=+y x (D )181222=+y x 2. P 为椭圆192522=+y x 上一点,则△P F 1F 2的周长为 ( ) (A )16 (B )18 (C )20 (D )不能确定3.若方程1162522=++-my m x 表示焦点在y 轴上的椭圆,则m 的取值是( ) (A )-16<m<25 (B )29<m<25 (C )-16<m<29 (D )m>29 4.若方程222=+ky x 表示焦点在y 轴上的椭圆,则实数k 的取值范围( ) (A )(0,+∞) (B )(0,2) (C )(1,+∞) (D )(0,1)5.椭圆11692522=+y x 的焦点坐标是 ( ) (A )(±5,0) (B )(0,±5) (C )(0,±12) (D )(±12,0)6.已知椭圆的方程为22218x y m+=,焦点在x 轴上,则其焦距为 ( ) (A )228m - (B )2m -22 (C )282-m (D )222-m7.设α∈(0,2π),方程1cos sin 22=+ααy x 表示焦点在x 轴上的椭圆,则α∈( ) (A )(0,4π] (B )(4π,2π) (C )(0,4π) (D )[4π,)2π8.椭圆2255x ky +=的一个焦点是(0,2),那么k 等于 ( )(A )-1(B )1(C )5(D )9.椭圆171622=+y x 的左右焦点为21,F F ,一直线过1F 交椭圆于A 、B 两点,则2ABF ∆的周长为 ( )(A )32 (B )16 (C )8 (D )410.已椭圆焦点F 1(-1,0)、F 2(1,0),P 是椭圆上的一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆的方程为 ( )(A )221169x y += (B )2211612x y += (C )22143x y += (D )22134x y += (二)填空题:1.1,6==c a ,焦点在y 轴上的椭圆的标准方程是 。
(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)

一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学练习三(圆锥曲线)
姓名____________号数_____ 班级_______
一.选择题:
1. 过点(2,-1)引直线与抛物线2
x y
=只有一个公共点,这样的直线共有( )条
A. 1
B.2
C. 3
D.4
2. 双曲线
2
2
14
x
y k
-
=的离心率e ∈(1, 2),则k 的取值范围是( )
A .(0, 6)
B . (3, 12)
C . (1, 3)
D . (0, 12) 3. 短轴长为
5
,离心率为3
2
的椭圆的两个焦点分别为F 1,F 2,过F 1作直线交
椭圆于A ,B 两点,则△ABF 2的周长为( )
A 24
B 12
C 6
D 3 4. “ab<0”是“方程ax 2+by 2=c 表示双曲线”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
5. 抛物线y 2=2px (p >0)上一点M 到焦点的距离为a ,则M 到y 轴距离为( ) A. a -p B. a+p C. a -
2
p D. a+2p
6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x
y 42
-=上的点,为使
PF
PA +
取得最小值,P 点的坐标是( )
A )
1,4
1(-
B )
22
,2(- C )
1,4
1(--
D )22,2(--
7 .椭圆222
2
12x
y m
n
+
=与双曲线
2
2
2
2
12x y
m
n
-
=有公共焦点,则椭圆的离心率是( )
A
2
B
3
C
4
D
6
8 .椭圆
x
y
2
2
25
9
1+
=上一点P 到两焦点距离之积为m ,则当m 取最大值时,点
P 的坐标是( )A ( 5 , 0 )和( -5 , 0 ) B ( 32
, 32
2 )和(
52
,
-
32
2
)
C (
52
2
,
32
)和(
-
52
2
,
32
) D ( 0 , 3 )和( 0 , -3 )
9 . 方程02
=+ny
mx
与)0(12
2
>>=+n m ny
mx
的曲线在同一坐标系中的示意图
应是( )
A C 10.如果椭圆
19
36
2
2
=+
y
x
的弦被点(4,2)平分,则这条弦所在的直线方程是( )
02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x
二. 填空题: 11. 已知圆0
762
2
=--+x y
x
与抛物线)
0(22
>=p px y 的准线相切,则p 的值是
12、双曲线
2
2
12x
y
m
m
-
=与椭圆
2
2
15
30
x
y
+
=有共同的焦点,则m = .
13、动点P 到直线x+4=0的距离减去它到M (2,0)的距离之差等于2,则点
P 的轨迹方程是 .
14. 若双曲线的顶点为椭圆12
2
2
=+
y
x 长轴的端点,且双曲线的离心率与该椭圆的离心率的
积为1,则双曲线的方程是 .
三.解答题:15 .求与双曲线
2
2
19
3
x
y
-
=有共同的渐近线,并且经过点4)
-的双曲线方程.
16、已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(a , -3)到焦点的
距离等于5,求a 的值,并写出抛物线的方程.
17.在平面直角坐标系x O y 中,点P 到两点(0-,
,(0的距离之和等于4,设点P
的轨迹为C .(Ⅰ)求出C 的方程及其离心率e 的大小;
(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.若O A ⊥O B ,求k 和A B
的值.
18、如图,一船在水面上的高度为5米,船顶宽4米.现要通过一抛物线型桥洞,该抛物线方程为y
x 82
-=,测得河面宽10米(河面宽与桥洞宽相同),问:该船
能否通过桥洞?请说明理由.若不能,只得等落潮退水。
当河面宽至少为多少米时,该船才能通过桥洞?(精确到0.1米).
19.(10年福建高考文科)已知抛物线C :2
2(
0)y p x p =>过点A (1 , -2)。
(I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L 5
?若存在,求直线L
的方程;若不存在,说明理由。
练习三参考答案
一. CDCBC ADDAD
二. 11. 2 12
253-13.
2
8y x
= 14
2
2
12
2
y
x
-
=
三. 15 .解:由题意可设所求双曲线方程为:
()
2
2
09
3
x
y
λλ-
=≠ 双曲线经
过点4)-
∴
2
(4)5
9
3
λ-=-
=- ∴所求双曲线方程为:
2
2
1
15
45
y
x
-
=
16、解: 因为抛物线的焦点在y 轴上,且过点(a , -3) 所以可设抛物线的方程
为:2
2x p y
=-,(p>0)则抛物线的焦点坐标为F(0,2
p -
)
依题意得
:2
65
a p ⎧==解得:p=4, a =
±:2
8y
x
=-
17.(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C
是以(0(0-,
,为焦点,长
半轴为2的椭圆.
它的短半轴1b =
=,故曲线C 的方程为2
2
14
y
x +
=,离心
率2
c e a
=
=
(Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2
214 1.y
x y k x ⎧+=⎪⎨⎪=+⎩
,消去y 并整理得2
2
(4)230k x k x ++-=,
∴0
>∆(显然成立),12122
2
234
4
k x x x x k
k
+=-
=-
++,.
O A O B ⊥
,即12120x x y y +=.而2
121212()1y y k x x k x x =+++,
于是2
2
2
12122
2
2
2
33241
104
4
4
4
k k k x x y y k
k
k
k
-++=--
-
+=
=++++∴12
k =±
当12
k =±
时,12417
x x +=
,121217
x x =-
.
A B ∴=
=
10
C
D
=]4))[(1(212212x x x x k -++=]7
124)
17
4)[(
4
11(2
⨯
++
=
17
654
18、解: 将x=2代入y x
82
-=得y=14
-
…将x=5代入y
x
82
-=得y=258
-
14
-
—(258
-
)=
238
<5
∴该船不能通过桥洞 设当落潮后河面的宽度为2a 米时船
才能通过,
则:
14
-—(2
8
a
-
)≥5 (a>5)
2
a ≥≥6.5
答:河面宽13宽于13米时船能通过桥洞。