最新高考数学二轮专题综合训练-圆锥曲线(分专题-含答案)
(完整版)圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b -=与椭圆22221x y m b+=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )B. C.D. 29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(030.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.的离心率2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )ABCD44F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2| )A B C .4 D .846.已知F 1、F 2是双曲线 a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A . 147A 、F ,点B (0,b )则该双曲线离心率e 的值为( )A B C D 48.直线l 是双曲线O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .D . 49的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则与a b -的大小关系为A BCD .不确定.50.点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )ABCD .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P ,则曲线r 的离心率等于A B 2 C D 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= .61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程; (Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接AO BO ,并延长分别交抛物线的准线于C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)

高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。
考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。
圆锥曲线综合测试题(含详细答案)

圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。
高考数学(理)二轮配套训练【专题6】(3)圆锥曲线中的热点问题(含答案)

第3讲圆锥曲线中的热点问题考情解读 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.4.轨迹方程问题(1)求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.热点一 圆锥曲线中的范围、最值问题例1 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.思维启迪 (1)P 点是椭圆上顶点,圆C 2的直径等于椭圆长轴长;(2)设直线l 1的斜率为k ,将△ABD 的面积表示为关于k 的函数.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S , 则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 思维升华 求最值及参数范围的方法有两种:①根据题目给出的已知条件或图形特征列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∵a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2, S Q PF 1∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,则y 1=-3k +6k 2+k 43+4k 2,y 2=-3k -6k 2+k 43+4k 2,S Q PF 1∆=12×|F 1F 2|×|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴S Q PF 1∆=3-3(1t +13)2+43,∵0<1t <13,∴S Q PF 1∆∈(0,3),∴当直线PQ 与x 轴垂直时S △PF 1Q 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则S Q PF 1∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.热点二 圆锥曲线中的定值、定点问题例2 (2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.思维启迪 (1)设动圆圆心坐标,利用圆的半径、半弦长和弦心距组成的直角三角形求解;(2)设直线方程y =kx +b ,将其和轨迹C 的方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,推出k 和b 的关系,最后证明直线过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 如图由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.得x 1,2=(8-2bk )±-32kb +642k 2,则x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线, ∴y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).思维升华 (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).已知椭圆C 的中点在原点,焦点在x 轴上,离心率等于12,它的一个顶点恰好是抛物线x 2=83y 的焦点. (1)求椭圆C 的方程;(2)已知点P (2,3),Q (2,-3)在椭圆上,点A 、B 是椭圆上不同的两个动点,且满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则b =2 3.由c a =12,a 2=c 2+b 2,得a =4,∴椭圆C 的方程为x 216+y 212=1.(2)当∠APQ =∠BPQ 时,P A 、PB 的斜率之和为0, 设直线P A 的斜率为k ,则PB 的斜率为-k ,P A 的直线方程为y -3=k (x -2), 由⎩⎪⎨⎪⎧y -3=k (x -2),x 216+y212=1,整理得 (3+4k 2)x 2+8(3-2k )kx +4(3-2k )2-48=0, x 1+2=8(2k -3)k 3+4k 2,同理PB 的直线方程为y -3=-k (x -2), 可得x 2+2=-8k (-2k -3)3+4k 2=8k (2k +3)3+4k 2.∴x 1+x 2=16k 2-123+4k 2,x 1-x 2=-48k3+4k 2, k AB =y 1-y 2x 1-x 2=k (x 1-2)+3+k (x 2-2)-3x 1-x 2=k (x 1+x 2)-4k x 1-x 2=12, ∴直线AB 的斜率为定值12.热点三 圆锥曲线中的探索性问题例3 已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:x 3 -2 4 (1)求C 1,C 2(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,说明理由.思维启迪 (1)比较椭圆及抛物线方程可知,C 2的方程易求,确定其上两点,剩余两点,利用待定系数法求C 1方程.(2) 联立方程,转化已知条件进行求解.解 (1)设抛物线C 2:y 2=2px (p ≠0), 则有y 2x=2p (x ≠0),据此验证四个点知(3,-23),(4,-4)在C 2上, 易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎨⎧4a 2=12a 2+12b2=1,解得⎩⎪⎨⎪⎧a 2=4b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1), 与C 1的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -1)消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0, 于是x 1,2=8k 2±64k 4-16(1+4k 2)(k 2-1)2(1+4k 2),则x 1+x 2=8k 21+4k 2,①x 1x 2=4(k 2-1)1+4k 2.②所以y 1y 2=k 2(x 1-1)(x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2[4k 2-11+4k 2-8k 21+4k 2+1]=-3k 21+4k 2.③由OM →⊥ON →,即OM →·ON →=0,得x 1x 2+y 1y 2=0.(*) 将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2,所以存在直线l 满足条件, 且直线l 的方程为2x -y -2=0或2x +y -2=0.思维升华 解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型.解决问题的一般策略是先假设结论成立,然后进行演绎推理或导出矛盾,即可否定假设或推出合理结论,验证后肯定结论,对于“存在”或“不存在”的问题,直接用条件证明或采用反证法证明.解答时,不但需要熟练掌握圆锥曲线的概念、性质、方程及不等式、判别式等知识,还要具备较强的审题能力、逻辑思维能力以及运用数形结合的思想分析问题和解决问题的能力.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎨⎧y =32x +t ,x 216+y212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去).从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一.1.圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围. 2.定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果. 3.探索性问题的解法探索是否存在的问题,一般是先假设存在,然后寻找理由去确定结论,如果真的存在,则可以得出相应存在的结论;若不存在,则会由条件得出矛盾,再下结论不存在即可.真题感悟(2014·北京)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2, 圆心O 到直线AB 的距离d = 2. 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ).即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离 d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0, 故d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 2+162x 20= 2. 此时直线AB 与圆x 2+y 2=2相切. 押题精练已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2. (1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围.解 (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42, ∴a 2=2,b 2=1.∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12. ∴x 1,2=8k 2±64k 4-4(2k 2+1)(8k 2-2)2(1+2k 2), ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2, ∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2), y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆C 上,∴(8k 2)2[t (1+2k 2)]2+2(-4k )2[t (1+2k 2)]2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209, ∴(1+k 2)[64k 4(1+2k 2)2-4·8k 2-21+2k 2]<209, ∴(4k 2-1)(14k 2+13)>0,∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, 又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2, ∴实数t 的取值范围为(-2,-263)∪(263,2).(推荐时间:50分钟)一、选择题1.已知点M 与双曲线x 216-y 29=1的左、右焦点的距离之比为2∶3,则点M 的轨迹方程为( ) A .x 2-y 2+26x +25=0B .x 2+y 2+16x +81=0C .x 2+y 2+26x +25=0D .x 2+y 2+16x -81=0答案 C解析 设点M (x ,y ),F 1(-5,0),F 2(5,0),则由题意得|MF 1||MF 2|=23, 将坐标代入,得(x +5)2+y 2(x -5)2+y 2=49, 化简,得x 2+y 2+26x +25=0.2.已知椭圆E 的左、右焦点分别为F 1、F 2,过F 1且斜率为2的直线交椭圆E 于P 、Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( ) A.53 B.23 C.23 D.13答案 A解析 由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴|PF 2||PF 1|=2,又|PF 1|+|PF 2|=2a , ∴|PF 1|=2a 3,|PF 2|=4a 3. 根据勾股定理得⎝⎛⎭⎫2a 32+⎝⎛⎭⎫4a 32=(2c )2, 所以离心率e =c a =53. 3.已知抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455,点P 是抛物线y 2=8x 上的一动点,P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3,则该双曲线的方程为( )A.y 22-x 23=1 B .y 2-x 24=1 C.y 24-x 2=1 D.y 23-x 22=1 答案 C解析 由题意得,抛物线y 2=8x 的焦点F (2,0),双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线的方程为ax -by =0, ∵抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455, ∴2a a 2+b 2=455, ∴a =2b .∵P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3, ∴|FF 1|=3,∴c 2+4=9,∴c =5,∵c 2=a 2+b 2,a =2b ,∴a =2,b =1.∴双曲线的方程为y 24-x 2=1,故选C. 4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 设P (x 0,y 0),则 x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.5.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|,∴|FM |>4,即|y 0+2|>4,又y 0≥0,∴y 0>2.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若双曲线上存在点P 满足a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该双曲线的离心率的取值范围为( ) A .(1,2+1) B .(1,3)C .(3,+∞)D .(2+1,+∞) 答案 A解析 根据正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1, 所以由a sin ∠PF 1F 2=c sin ∠PF 2F 1可得a |PF 2|=c |PF 1|, 即|PF 1||PF 2|=c a=e , 所以|PF 1|=e |PF 2|.因为e >1,所以|PF 1|>|PF 2|,点P 在双曲线的右支上.又|PF 1|-|PF 2|=e |PF 2|-|PF 2|=|PF 2|(e -1)=2a ,解得|PF 2|=2a e -1, 因为|PF 2|>c -a ,所以2a e -1>c -a ,即2e -1>e -1, 即(e -1)2<2,解得1-2<e <2+1.又e >1,所以e ∈(1,2+1),故选A.二、填空题7.直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________. 答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m=1表示椭圆, ∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有:025+12m≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.答案 (0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为:y -2=12tx ,因此直线AB 恒过定点(0,2).9.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3.如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.10.(2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 三、解答题11.已知点A 、B 的坐标分别是(0,-1)、(0,1),直线AM 、BM 相交于点M ,且它们的斜率之积为-12. (1)求点M 轨迹C 的方程;(2)若过点D (0,2)的直线l 与(1)中的轨迹C 交于不同的两点E 、F ,试求△OEF 面积的取值范围.(O 为坐标原点)解 (1)设点M 的坐标为(x ,y ),∵k AM ·k BM =-12. ∴y +1x ·y -1x =-12. 整理,得x 22+y 2=1(x ≠0), 即M 的轨迹方程为x 22+y 2=1. (2)由题意知直线l 的斜率存在,设l 的方程为y =kx +2,①将①代入x 22+y 2=1得: (2k 2+1)x 2+8kx +6=0,由Δ>0,解得k 2>32. 设E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧ x 2=-4k -4k 2-62k 2+1,x 1=-4k +4k 2-62k 2+1,则|x 1-x 2|=24k 2-62k 2+1. S △OEF =S △OED -S △OFD =12OD ·|x 1|-12OD ·|x 2|=12OD ·|x 1-x 2|=12×2·|x 1-x 2|=|x 1-x 2| = 16(k 2-32)(2k 2+1)2. 令k 2-32=t (t >0),所以k 2=t +32(t >0),所以S △OEF =|x 1-x 2|= 16t (2t +4)2= 4t (t +2)2 =2t t 2+4t +4=21t +4t +4≤214+4=22, 故△EOF 面积的取值范围是(0,22].12.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM →·TN →的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.(1)解 依题意,得a =2,e =c a =32, 所以c =3,b =a 2-c 2=1.故椭圆C 的方程为x 24+y 2=1. (2)解 点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0.由于点M 在椭圆C 上,所以y 21=1-x 214.(*) 由已知得T (-2,0),则TM →=(x 1+2,y 1),TN →=(x 1+2,-y 1),所以TM →·TN →=(x 1+2)2-y 21=(x 1+2)2-(1-x 214)=54x 21+4x 1+3 =54(x 1+85)2-15. 由于-2<x 1<2,故当x 1=-85时,TM →·TN →取得最小值为-15. 把x 1=-85代入(*)式,得. y 1=35,故M (-85,35), 又点M 在圆T 上,代入圆的方程得到r 2=1325.故圆T 的方程为:(x +2)2+y 2=1325. (3)证明 设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0), 令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1, 故x R ·x S =x 21y 20-x 20y 21y 20-y 21,(**) 又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式,得x R ·x S =4(1-y 21)y 20-4(1-y 20)y 21y 20-y 21=4(y 20-y 21)y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.。
高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
高三数学圆锥曲线综合试题答案及解析

高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
2024年新高考版数学专题1_9.5 圆锥曲线的综合问题(分层集训)

解析 (1)设动点P的坐标为(x,y),因为| PF | = 5 ,
d5
所以
(x 1)2 y2
=
5 ,即5[(x+1)2+y2]=|x+5|2,整理得 x2 + y2 =1.所以动点P的
| x5|
5
54
轨迹方程为 x2 + y2 =1.
54
(2)设M(x1,y1),N(x2,y2),由(1)可得点A的坐标为(0,-2),故直线AM:y=
AC
·BC
=1,
则点C的轨迹为 ( )
A.圆 B.椭圆 C.抛物线 D.直线
答案 A
3.(2023届贵州遵义新高考协作体入学质量监测,8)已知圆C的方程为(x-1)2
+y2=16,B(-1,0),A为圆C上任意一点,若点P为线段AB的垂直平分线与直线
AC的交点,则点P的轨迹方程为 ( )
A. x2 + y2 =1
2 2
+
y2 b2
=1(a>b>0)的离心率e=
2 ,四
2
个顶点组成的菱形的面积为8 2 ,O为坐标原点.
(1)求椭圆E的方程;
(2)过☉O:x2+y2= 8
上任意点P作☉O的切线l与椭圆E交于点M,N,求证:
PM
·
3
PN
为定值.
解析 (1)由题意得2ab=8 2 ,e= c = 2 ,a2=b2+c2,
2
3
6
,
0
,∴
PM
=
0,
2
3
6
,
PN
=
0,
2
6 3
,
∴
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C的焦点坐标为(0,27e =由1273e e =得13e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=-即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y cx 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a b a 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v?若存在,求出直线l 的方程;若不存在,说明理由. 解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠,由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k = 由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=72.(I )求此双曲线的渐近(II )若A 、BAB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III曲线交于P 、Q由.解:(I4分(IIAB[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,,则M的轨迹是中心在原点,焦点在x.(9分)(IIIi)(ii∴k8、设M是椭圆22:1124x yC+=上的一点,P、Q、T分别为M关于y轴、原点、x轴的对称点,N为椭圆C上异于M的另一点,且MN⊥MQ,QN与PT的交点为E,当M沿椭圆C运动时,求动点E的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y≠则111111(,),(,),(,),P x y Q x y T x y----……1分221122221,(1)1241.(2)124x yx y⎧+=⎪⎪⎨⎪+=⎪⎩L L L LL L L L………3分由(1)-(2)可得1.3MN QNk k•=-…6分又MN⊥MQ,111,,MN MQ MNxk k ky⋅=-=-所以11.3QNykx=直线QN的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
若点A (-1,0)和点B (0,8)关于L 的对称点都在C 上,求直线L 和抛物线C 的方程.分析:曲线的形状已知,可以用待定系数法.设出它们的方程,L :y=kx(k ≠0),C:y 2=2px(p>0). 设A 、B 关于L 的对称点分别为A /、B /,则利用对称性可求得它们的坐标分别为:A /(12,11222+-+-k k k k ),B /(1)1(8,116222+-+k k k k )。
因为A /、B /均在抛物线上,代入,消去p ,得:k 2-k-1=0.解得:k=251+,p=552.所以直线L 的方程为:y=251+x,抛物线C 的方程为y 2=554x. 10、已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT (Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1;(Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由. (Ⅰ)证法一:设点P 的坐标为).,(y x由P ),(y x 在椭圆上,得.)()()(||222222221x aca xa b b c x y c x F +=-++=++=由0,>+-≥+≥a c x a c a a x 知,所以 .||1x aca F +=………………………3分 证法二:设点P 的坐标为).,(y x 记,||,||2211r F r F ==则.)(,)(222221y c x r y c x r ++=++=由.||,4,211222121x a c a r P F cx r r a r r +===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+x aca由椭圆第二定义得a c cax F =+||||21,即.||||||21x a c a c a x a c P F +=+= 由0,>+-≥+-≥a c x a c a a x 知,所以.||1x aca F +=…………………………3分 (Ⅱ)解法一:设点T 的坐标为).,(y x当0||=时,点(a ,0)和点(-a ,0)在轨迹上.当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F ==||21||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.222a y x =+…………………………7分 解法二:设点T 的坐标为).,(y x 当0||=时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF 且时,由02=⋅TF ,得2TF ⊥.又||||2PF =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+综上所述,点T 的轨迹C 的方程是.222a y x =+……………………7分(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是③⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤ 所以,当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,),(),,(002001y xc MF y x c MF --=---=,由2222022021b c a y c x MF =-=+-=⋅, 212121cos ||||MF F MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x 由④得.||20c b y ≤ 上式代入③得.0))((2224220≥+-=-=c b a c b a cb a x 于是,当cb a 2≥时,存在点M ,使S=2b ;当cb a 2<时,不存在满足条件的点M.………………………11分当cb a 2≥时,记c x y k k c x y k k M F M F -==+==00200121,,由,2||21a F F <知︒<∠9021MF F ,所以.2|1|tan 212121=+-=∠k k k k MF F …………14分11、设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G的轨迹方程;(2)证明∠PFA=∠PFB .解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x ③ ④解得P 点的坐标为:1010,2x x y x x x P P =+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310,,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠ ∴∠AFP=∠PFB.方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(041411121121=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB. 二、中点弦问题:12、已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121 ①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.13、椭圆C:22221(0)x y a b a b+=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥==(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于,A B 两点,且A 、B 关于点M 对称,求直线l 的方程.解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3.在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称.所以.29491822221-=++-=+k k k x x 解得98=k ,所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx①,1492222=+yx②①-②得.04))((9))((21212121=+-++-y y y y x x x x ③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2, 代入③得2121x x y y --=98,即直线l 的斜率为98,所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意. 14、已知椭圆22221(0)y x a b a b +=>>的一个焦点1(0,F -,对应的准线方程为y =(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l 的方程.解:(1)由2222.c ac a b c ⎧-=-⎪⎪-=⎨⎪⎪=+⎩3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+∴2239k k k +=+,解得k =3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y =3x +3符合要求.15、设12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的左右焦点,(1)设椭圆C上的点到12,F F 两点距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设K 是(1)中所得椭圆上的动点,求线段1KF 的中点B 的轨迹方程;(3)设点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M ,N 两点,当直线PM ,PN 的斜率都存在,并记为,PM PN k K 试探究PM PN k K ⋅的值是否与点P 及直线L 有关,并证明你的结论.解:(1)由于点在椭圆上,222221ab +=2a =4, 椭圆C 的方程为22143x y +=焦点坐标分别为(-1,0) ,(1,0)(2)设1KF 的中点为B (x, y )则点(21,2)K x y + 把K 的坐标代入椭圆22143x y +=中得22(21)(2)143x y ++=线段1KF 的中点B 的轨迹方程为221()1324y x ++=(3)过原点的直线L 与椭圆相交的两点M ,N 关于坐标原点对称 设0000(,)(,),(,)M x y N x y p x y --,,M N P 在椭圆上,应满足椭圆方程,得222200222211x y x y a b a b+=+=,0PM PN y y y y k K x x x x -+==-+PMPN k K ⋅=2200022000y y y y y y x x x x x x -+-⋅=-+-=22b a-故:PMPN k K ⋅的值与点P 的位置无关,同时与直线L 无关16、已知椭圆的一个焦点为)22,0(1-F ,对应的准线为429-=y ,离心率e 满足34,,32e 成等比数列.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线l ,使l 与椭圆交于不同的两点B A ,,且线段AB 恰好被直线21-=x 平分?若存在,求出直线l 的倾斜角α的取值范围;若不存在,说明理由.解 : (Ⅰ)由题意知,9834322=⋅=e ,所以322=e . 设椭圆上任意一点P 的坐标为),(y x ,则由椭圆的第二定义得,322429)22(22=+++y y x ,化简得1922=+y x ,故所求椭圆方程为1922=+y x . (Ⅱ)设),(),,(2211y x B y x A ,AB 中点),(00y x M ,依题意有⎪⎪⎩⎪⎪⎨⎧+=-=+=2212210210y y y x x x ,可得⎩⎨⎧=+-=+0212121y y y x x . 若直线l 存在,则点M 必在椭圆内,故19)21(202<+-y ,解得0233233000<<-<<y y 或.将),(),,(2211y x B y x A 代入椭圆方程,有⎪⎪⎩⎪⎪⎨⎧=+=+)2(19)1(1922222121y x y x )1()2(-得,09))(())((12121212=+-++-y y y y x x x x , 故0121212122)1(9)(9y y y x x x x y y k AB -⨯-=++-=--=, 所以ABk y 290=,则有029233233290<<-<<ABAB k k 或, 解得33-<>AB AB k k 或,故存在直线l 满足条件,其倾斜角)32,2()2,3(ππππα⋃∈. 三、定义与最值:17、已知F 是椭圆225945x y +=的左焦点,P 是此椭圆上的动点,A(1,1)是一定点.(1)求32PA PF +的最小值,并求点P 的坐标;(2)求PA PF +的最大值和最小值.解:(1)由椭圆的第二定义转化知32PA PF +的最小值是211,此时P )1,556(-; (2)依题意,由椭圆的第二定义知)(6)6(22PF PA PF PA PF PA -+=-+=+ ∵222=≤-AF PF PA ∴222≤-≤-PF PA∴)(26262=+≤+≤-三点共线时取、、当且仅当F A P PF PA 18、设F 1、F 2分别是椭圆2214x y +=的左、右焦点,若P 是该椭圆上的一个动点,(Ⅰ)求12PF PF ⋅u u u r u u u r的最大值和最小值;(Ⅱ)求21PF PF ⋅的最大值和最小值.解:易知2,1,a b c ===12(0),0).F F设P (x, y ),则22222121(,),)313(38).44x PF PF x y x y x y x x ⋅=-⋅-=+-=+--=-u u u r u u u r因为[2,2]x ∈-,故当x =0,即点P 为椭圆短轴端点时,21PF PF ⋅u u u r u u u r有最小值-2.当2x =±,即点P 为椭圆长轴端点时,21PF PF ⋅u u u r u u u r有最大值1.19、若双曲线过点,其渐近线方程为y =.(I )求双曲线的方程; (II )已知A )2,3(,)0,3(B ,在双曲线上求一点P ,使PB PA 33+的值最小. 解:(Ⅰ)12y x 22=-(II ))2,3(P ,最小值为333-20、以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x . 21、已知动点P 与双曲线22x -32y =1的两个焦点F 1、F 2的距离之和为6.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)若1PF •2PF =3,求⊿PF 1F 2的面积; (Ⅲ)若已知D(0,3),M 、N 在轨迹C 上且DM =λDN ,求实数λ的取值范围.解:①92x +42y =1;②2;③[51,5]22、 E 、F 是椭圆2224x y +=的左、右焦点,l 是椭圆的右准线,点P l ∈,过点E 的直线交椭圆于A 、B 两点.(1)当AE AF ⊥时,求AEF ∆的面积;(2)当3AB =时,求AF BF +的大小;(3)求EPF ∠的最大值.解:(1)2241282AEF m n S mn m n ∆+=⎧⇒==⎨+=⎩(2)因484AE AF AB AF BF BE BF ⎧+=⎪⇒++=⎨+=⎪⎩, 则 5.AF BF +=(3)设)(0)P t t > ()tan EPF tan EPM FPM ∠=∠-∠221((1663t t t t t t -=-÷+==≤++,当t =303tan EPF EPF ∠=⇒∠=o 23、已知定点)1,0(A 、)1,0(-B 、)0,1(C ,动点P 满足:2||−→−−→−−→−=⋅PC k BP AP .(1)求动点P 的轨迹方程,并说明方程表示的图形;(2)当2=k 时,求||−→−−→−+BP AP 的最大值和最小值.解:(1)设动点P 的坐标为),(y x ,则)1,(-=−→−y x AP ,)1,(+=−→−y x BP ,),1(y x PC -=−→−.∵2||−→−−→−−→−=⋅PC k BP AP ,∴[]2222)1(1y x k y x +-=-+,即 012)1()1(22=--+-+-k kx y k x k .若1=k ,则方程为1=x ,表示过点)0,1(且平行于y 轴的直线. 若1≠k ,则方程为222)11()1(ky k k x -=+-+, 表示以)0,1(kk-为圆心,以为半径|1|1k -的圆. (2)当2=k 时,方程化为1)2(22=+-y x .)2,2()1,()1,(y x y x y x BP AP =++-=+−→−−→−∴222||y x BP AP +=+−→−−→−. 又∵1)2(22=+-y x ,∴ 令θθsin ,cos 2=+=y x ,则θcos 4522||22+=+=+−→−−→−y x BP AP∴当1cos =θ时,||−→−−→−+BP AP 的最大值为6,当1cos -=θ时,最小值为2.24、点A 、B 分别是以双曲线162x 1202=-y 的焦点为顶点,顶点为焦点的椭圆C 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆C 上,且位于x 轴上方,0=⋅PF PA (1)求椭圆C 的的方程;(2)求点P 的坐标;(3)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB|,求椭圆上的点到M 的距离d 的最小值.解(1)已知双曲线实半轴a 1=4,虚半轴b 1=25,半焦距c 1=62016=+, ∴椭圆的长半轴a 2=c 1=6,椭圆的半焦距c 2=a 1=4,椭圆的短半轴2b =204622=-,∴所求的椭圆方程为+362x 1202=y (2)由已知)0,6(-A ,)0,4(F ,设点P 的坐标为),(y x ,则),,4(),,6(y x FP y x AP -=+=由已知得 22213620(6)(4)0x y x x y ⎧+=⎪⎨⎪+-+=⎩则018922=-+x x ,解之得623-==x x 或,由于y>0,所以只能取23=x ,于是325=y ,所以点P 的坐标为⎪⎭⎫⎝⎛325,239分 (3)直线063:=+-y x AP ,设点M 是)0,(m ,则点M 到直线AP 的距离是26+m ,于是626-=+m m , 又∵点M 在椭圆的长轴上,即 66≤≤-m 2m ∴= ∴当2=m 时,椭圆上的点到)0,2(M 的距离222222549(2)4420()15992x d x y x x x =-+=-++-=-+又66x -≤≤ ∴当29=x 时,d 取最小值1525、已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP j ∆=,且,3OF FP t OM j ⋅==+uu u r uu r uuu r uu u r r .(I )设4t θ<<求向量OF 与FP 的夹角uu v uu v 的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.解:(1)由34sin cos ,sin 34||||,sin ||||2132θθθθt FP OF FP OF ==⋅⋅⋅=由得,得.34tan t=θ…………………………………………………………………3分],0[3tan 1344πθθ∈<<∴<<ΘΘt ∴夹角θ的取值范围是(3,4ππ)………………………………………………………………6分(2)).0,(),,(),,(0000c OF y c x FP y x P =-则设2000000(,)(,0)()1)1||||2OFP OF FP x c y c x c c t c x S OF y y ∆∴⋅=-⋅=-==∴==⋅==u u u r u u u ru u u r…………………………………………………………………………………………8分||OP ∴=u u u r 10分∴当且仅当)32,32(,,62||,2,343±===c cc 此时取最小值时即 )3,2()1,0()32,32(33=+=∴OM 或)1,2()1,0()32,32(33-=+-=OM …………12分椭圆长轴12,48)03()22()03()22(222222==∴=-+++-+-=b a a 或2171,2171171)01()22()01()22(222222+=+=∴+=--+++--+-=b a a 故所求椭圆方程为1121622=+y x .或12171217922=+++y x …………14分 26、已知点)1,0(F ,一动圆过点F 且与圆8)1(22=++y x 内切.(Ⅰ)求动圆圆心的轨迹C 的方程;(Ⅱ)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ;(Ⅲ)在10<<a 的条件下,设△POA 的面积为1S (O 是坐标原点,P 是曲线C 上横坐标为a 的点),以)(a d 为边长的正方形的面积为2S .若正数m 满足21mS S ≤,问m 是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由. 解(Ⅰ)设动圆圆心为),(y x M ,半径为r ,已知圆圆心为)1,0(-E , 由题意知r MF =||,r ME -=22||,于是22||||=+MF ME ,所以点M 的轨迹C 是以E 、F 为焦点,长轴长为22的椭圆,其方程为1222=+y x . (Ⅱ)设),(y x P ,则2222)()(||2222222++--=-+-=+-=a ax x x a x y a x PA22)(22+++-=a a x ,令22)()(22+++-=a a x x f ,]1,1[-∈x ,所以,当1-<-a ,即1>a 时)(x f 在]1,1[-上是减函数,[]2max )1()1()(+=-=a f x f ;当11≤-≤-a ,即11≤≤-a 时,)(x f 在],1[a --上是增函数,在]1,[a -上是减函数,则[]22)()(2max +==a a f x f ;当1>-a ,即1-<a 时,)(x f 在]1,1[-上是增函数,[]2max )1()1()(-==a f x f .所以,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<-=1,111,221,1)(2a a a a a a a d .(Ⅲ)当10<<a 时,)22,(2a a P -±,于是)1(22121a a S -=,2222+=a S ,(12分)若正数m 满足条件,则)22()1(22122+≤-a m a a ,即)1(4)1(222+-≥a a a m ,22222)1(8)1(+-≥a a a m ,令2222)1(8)1()(+-=a a a a f ,设12+=a t ,则)2,1(∈t ,12-=t a , 于是641431411328123818)2)(1()(22222+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛-+-=--=t t tt t t t t t a f , 所以,当431=t ,即)2,1(34∈=t 时,641)]([max =a f ,即6412≥m ,81≥m .所以,m 存在最小值81. 27、已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22. 记动点P 的轨迹为W .(1)求W 的方程;(2)若A 、B 是W 上的不同两点,O 是坐标原点,求•的最小值.(1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,实半轴长a =2. 又半焦距c =2,故虚半轴长b =.222=-c所以W 的方程为12222=-y x ,x ≥2. (2)设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2).当AB ⊥x 轴时,x 1=x 2,y 1=y 2,从而·=x 1x 2+y 1y 2=.22121=-y x当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m ,与W 的方程联立,消去y 得 (1-k 2)x 2-2kmx -m 2-2=0,故x 1+x 2=212kkm-,x 1x 2=1222-+k m , 所以·=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=.142122121)2)(1(2222222222-+=-+=+-+-++k k k m k m k k m k 又因为x 1x 2>0,所以k 2-1>0,从而·>2. 综上,当AB ⊥x 轴时,·取得最小值2.28、一束光线从点)0,1(1-F 出发,经直线032:=+-y x l 上一点P 反射后,恰好穿过点)0,1(2F .(Ⅰ)求点1F 关于直线l 的对称点1F '的坐标;(Ⅱ)求以1F 、2F 为焦点且过点P 的椭圆C 的方程;(Ⅲ)设直线l 与椭圆C 的两条准线分别交于A 、B 两点,点Q 为线段AB 上的动点,求点Q 到2F 的距离与到椭圆C 右准线的距离之比的最小值,并求取得最小值时点Q 的坐标.解:(Ⅰ)设1F '的坐标为),(n m ,则211-=+m n 且032212=+--⋅nm .……2分解得52,59=-=n m , 因此,点 1F '的坐标为)52,59(-. …………………4分 (Ⅱ)11PF F P ='Θ,根据椭圆定义, 得||||||22121F F PF F P a '=+'=22)052()159(22=-+--=,……………5分 2=∴a ,112=-=b .∴所求椭圆方程为1222=+y x . ………………………………7分 (Ⅲ)22=ca Θ,∴椭圆的准线方程为2±=x . …………………………8分 设点Q 的坐标为)32,(+t t )22(<<-t ,1d 表示点Q 到2F 的距离,2d 表示点Q 到椭圆的右准线的距离. 则10105)32()1(2221++=++-=t t t t d ,22-=t d .22221)2(225210105-++⋅=-++=t t t t t t d d , ……………………………10分 令22)2(22)(-++=t t t t f )22(<<-t ,则)(t f 在34-=t 时取得最小值. ………………………………13分 因此,21d d 最小值=22)34(5=-⋅f ,此时点Q 的坐标为)31,34(-.…………14分注:)(t f 的最小值还可以用判别式法、换元法等其它方法求得.29、设F 是椭圆)0(1:2222>>=+b a by a x C 的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知:.||2||,8||MF PM MN ==且(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A 、B 求证:∠AFM=∠BFN ;(3)求三角形ABF 面积的最大值. 解(1)48||=∴=a MN Θ122)(1210132)(2||2||22222=-==∴==⇒=+--=-=c a b c e c e e c a a c a MF PM 舍去或即得又Θ1121622=+∴y x 椭圆的标准方程为………………………(文6分,理4分)(2)当AB 的斜率为0时,显然.0=∠=∠BFN AFM 满足题意当AB 的斜率不为0时,设),(),,(2211y x B y x A ,AB 方程为,8-=my x 代入椭圆方程整理得014448)43(22=+-+my y m 则431444348),43(1444)48(22122122+=⋅+=++⨯-=∆m y y m my y m m662222112211-+-=+++=+∴my y my y x y x y k k BF AF 0)6)(6()(62212121=--+-=my my y y y my .,0BFN AFM k k BF AF ∠=∠=+∴从而综上可知:恒有BFN AFM ∠=∠.………………………………(9分)(3)43472||||212212+-=-⋅=-=∆∆∆m m y y PF S S S PAFPBF ABF33163272416437216)4(34722222=⋅≤-+-=+--=m m m m当且仅当32841643222=-=-m m m 即(此时适合△>0的条件)取得等号.三角形ABF 面积的最大值是.33………………………………(13分)四、弦长及面积:30、已知双曲线的方程为2213y x -=,设F 1、F 2分别是其左、右焦点.(1)若斜率为1且过F 1 的直线l 交双曲线于A 、B 两点,求线段AB 的长;(2)若P 是该双曲线左支上的一点,且1260F PF ∠=o ,求12F PF ∆的面积S .解:(1)AB :2y x =+,代入2213y x -=并整理得22470x x --=设1122()()A x yB x y ,,,则121272,2x x x x +==-6AB ∴===(2)设21,PF m PF n ==,则m n -=2在12F PF ∆中,由余弦定理有222162cos602m n mn m n mn mn =+-=-+-o12mn ∴=11sin 601222S mn ∴==⨯=o 31、已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.32、已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.33、设双曲线方程22221(0)x y b a a b-=>>的半焦距为c ,直线l 过(,0),(0,)a b 两点,已知原点到直线l .(1)求双曲线的离心率;(2)经过该双曲线的右焦点且斜率为2的直线m 被双曲线截得的弦长为15,求双曲线的方程.解:(1)2222222222b a b a c a a c a e e >⇒>⇒->⇒>⇒>⇒………………………2分直线l 的方程为1x ya b+=,即0bx ay ab +-=,由原点到直线l 得ab d c ===,即222416()3a c a c -=,…………………………………4分 两边同时除以4a 得2416(1)3e e -=,整理得42316160e e -+=,解得2443e =或…5分又e >2e = ……………………………………………6分(2)由(1)知道2e =即2c a =,所以设双曲线的方程为222213x y a a-=又由题意得直线m 方程为2(2)y x a =-,代入双曲线方程得 ……………………7分22234(2)3x x a a --=,整理得2216190x ax a -+=…………………………………8分记直线m 与双曲线的交点为1122(,),(,)A x y B x y ,则有2121216,19x x a x x a +== …9分∴123015AB x a -=∴12a =………………………………………………………………………………11分 ∴所求双曲线方程为2211344x y -=…………………………………………………12分 34、已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥.(Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积;(Ⅱ)当90ABC ∠=o,且斜边AC 的长最大时,求AB 所在直线的方程.解:(Ⅰ)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =.设A B ,两点坐标分别为1122()()x y x y ,,,. 由2234x y y x⎧+=⎨=⎩,得1x =±.所以12AB x =-=. 又因为AB 边上的高h 等于原点到直线l的距离.所以h =122ABC S AB h ==g △. (Ⅱ)设AB 所在直线的方程为y x m =+,由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=.因为A B ,在椭圆上,所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,,则1232mx x +=-,212344m x x -=,所以12AB x =-=.又因为BC 的长等于点(0)m ,到直线l的距离,即BC =22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-.35、梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,|||2,AB CD AC BD ==⊥M 为CD 的中点.(Ⅰ)求点M 的轨迹方程;(Ⅱ)过M 作AB 的垂线,垂足为N ,若存在正常数0λ,使0MP PN λ=uuu v uu u v ,且P 点到A 、B 的距离和为定值,求点P 的轨迹E 的方程;(Ⅲ)过1(0,)2的直线与轨迹E 交于P 、Q 两点,求OPQ ∆面积的最大值. 解:(Ⅰ)设点M 的坐标为M (x, y )(x ≠0),则(,1(,1C x y D x y -+又(0,A B 由AC ⊥BD 有0AC BD =u u u r u u u r g ,即(,1)(,1)0x y x y -+=g , ∴x 2+y 2=1(x ≠0). ………………………(4分)(Ⅱ)设P (x, y ),则()0(1),M x y λ+,代入M 的轨迹方程有2220(1)1(0).x y x λ++=≠ 即221(0)12()10x y x λ+=≠+,∴P 的轨迹为椭圆(除去长轴的两个端点).要P 到A 、B 的距离之和为定值,则以A 、B为焦点,故1212(1)0λ-=+. ∴0 2.λ= 从而所求P 的轨迹方程为9x 2+y 2=1(x ≠0). ………………………9分 (Ⅲ)易知l 的斜率存在,设方程为1.2y kx =+ 联立9x 2+y 2=1,有223(9)0.4k x kx ++-=设P (x 1, y 1), Q (x 2, y 2),则1212223,.94(9)k x x x x k k -+=-=++21x x ∴-=令29tk =+,则21x x -=9.t ≥211122OPQ S x x ∆∴=⨯-=119,0.9t t ≥∴<≤Q所以当119t =,即9,t =也即0k =时,OPQ ∆14分五、范围问题:36、直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点? 解: (1) 联立⎪⎩⎪⎨⎧=-+=13122y x ax y ⇒(3-a 2)x 2-2ax -2=0 ①显然a 2≠3,否则方程①只有一解,于是直线与双曲线至多一个交点. 若交点A 、B 在双曲线同支上,则方程①满足:⎪⎩⎪⎨⎧>->-+=∆0320)3(84222a a a ⇒⎪⎩⎪⎨⎧>-<<<-3366a a a 或 ⇒a ∈(-6,-3)∪(3,6)若A 、B 分别在双曲线的两支上,则有:消去y⎪⎩⎪⎨⎧<->-+0320)3(84222a a a ⇒a ∈(-3,3) (2) 若以AB 为直径的圆过点O ,则OA ⊥OB ,设A(x 1,y 1),B(x 2,y 2)由于x 1+x 2=232a a-,x 1x 2=322-a a. ∴y 1y 2=(ax 1+1)(ax 2+1)=a (x 1+x 2)+a 2x 1x 2+1 =a 2·322-a +a ·232a a-+1=1 ∵OA ⊥OB ∴x 1x 2+y 1y 2=0 ∴322-a +1⇒a =±1 此时△>0,符合要求. 37、已知圆C :(x -1)2+y 2=r 2 (r >1),设M 为圆C 与x 轴负半轴的交点,过M 作圆C 的弦MN ,并使它的中点P 恰好落在y 轴上. (1)当r =2时,求满足条件的P 点的坐标;(2)当r ∈(1,+∞)时,求点N 的轨迹G 的方程;(3)过点P (0,2)的直线l 与(2)中轨迹G 相交于两个不同的点E 、F ,若·>0,求直线l 的斜率的取值范围.解:(1)由已知得,r =2时,可求得M 点的坐标为M (-1,0). 设P (0,b ),则由k CP ·k MP =-1(或用勾股定理)得:b 2=1. ∴b =±1即点P 坐标为(0,±1). (2)设N 坐标为(x ,y ),由已知得,在圆方程中令y =0,求得M 点的坐标为(1-r ,0).设P (0,b ),则由k CP ·k MP =-1(或用勾股定理)得:r =b 2+1.∵点P 为线段MN 的中点,∴x =r -1=b 2,y =2b ,又r >1.∴点N 的轨迹方程为y 2=4x (x >0). (3)由题意知直线l 的斜率存在且不等于0. 设直线l 的方程为y =kx +2,E (x 1,y 1),F (x 2,y 2), x 1>0, x 2>0.由⎩⎨⎧=+=xy kx y 422, 得k 2x 2+(4k -4)x +4=0,由∆=-32k +16>0,得k <21且k ≠0.x 1+x 2=244k k ->0,x 1x 2=24k>0,得k <1. ∵·>0,∴(x 1-1)(x 2-1)+y 1y 2>0. ∴(k 2+1) x 1x 2+(2k -1)(x 1+x 2)+5>0.得k 2+12k >0. ∴k >0或k <-12. ∴0<k <21或k <-12. 38、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.。