2020年高考押题预测卷01(新课标Ⅰ卷)文科数学(答题卡)
2020年高考试题押题卷文科数学一-含答案

2020年高考试题押题卷文科数学一一、单选题(共60分)1.(本题5分)设集合{}20A x x =->,{}2320B x x x =-+<,若全集U A =,则U C B =( ) A .(],1-∞B .(),1-∞C .()2,+∞D .[)2,+∞2.(本题5分)已知i 为虚数单位,复数z 满足12z zi i -=+,则z 的共轭复数z 所对应的点位于复平面内的( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(本题5分)已知()2,4a =-r,()3,b m =-r ,若0a b a b +⋅=r r r r ,则实数m =( )A .32B .3C .6D .84.(本题5分)下列函数中即是奇函数又是增函数的是 A .()2f x x =B .()3f x x =-C .3()f x x x =+D .()1f x x =+5.(本题5分)sin160cos10cos 20sin10︒︒+︒︒=( )A .12 B .-12C D .6.(本题5分)将函数3sin2y x =的图象向右平移6π个单位长度可以得到()f x 的图象C , 如下结论中不.正确..的是( ) A .函数()f x 的周期为πB .图象C 关于点2,03π⎛⎫⎪⎝⎭对称 C .图象C 关于直线1112x π=对称 D .函数()55,1212f x ππ⎛⎫-⎪⎝⎭在区间内是增函数 7.(本题5分)已知三棱柱111ABC A B C -中,1AA ⊥底面ABC ,AB BC ⊥,3AB =,4BC =,15AA =,则该三棱柱的表面积是A .15B .30C .60D .728.(本题5分)设圆224470x y x y +-++=上的动点P 到直线0x y +-=的距离为d ,则d 的取值范围是( ) A .[]0,3 B .[]2,4C .[]3,5D .[]4,69.(本题5分)有五瓶墨水,其中红色一瓶、蓝色、黑色各两瓶,某同学从中随机任取出两瓶,求取出的两瓶中有一瓶是蓝色,另一瓶是黑色的概率( ) A .110B .14C .15D .2510.(本题5分)若双曲线22221(0,0)x y a b a b-=>>的焦距为l ,且点(1,0)到l 的距离为3,则双曲线的方程为( ) A .22142x y -=B .22143x y -=C .22124x y -=D .2212x y -=11.(本题5分)函数32()3(21)f x x ax a x =-++既有极小值又有极大值,则a 的取值范围为( ) A .113-<<a B .1a >或13a <- C .113a -<<D .13a >或1a <- 12.(本题5分)已知函数()2019sin ,01,log , 1.x x f x x x π≤≤⎧=⎨>⎩ 若a ,b ,c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( ) A .()12019, B .()12020, C .()22020, D .[]22020,二、填空题(共20分)13.(本题5分)已知函数33,0()log ,0x x f x x x ⎧≤=⎨>⎩,若1()2f a =,则实数a = ______.14.(本题5分)已知,x y 满足2525x y x y x -≥⎧⎪-≤⎨⎪≤⎩则z x y =+的最大值为_______.15.(本题5分)在△ABC 中,已知C =120°,sinB =2sinA ,且△ABC的面积为则AB 的长为________. 16.(本题5分)已知抛物线24y x =上一点P 到准线的距离为1d ,到直线l :43110x y -+=的距离为2d ,则12d d +的最小值为__________.三、解答题(共70分)17.(本题12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:已知在该班随机抽取1人测评结果为优秀的概率为3.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:()()()()()22n ad bcKa b c d a c b d-=++++18.(本题12分)如图所示,在四棱锥P ABCD -中,//AD BC ,AD AB ⊥,面ABCD ⊥面PAB .求证:(1)//AD 平面PBC ; (2)平面PBC ⊥平面PAB .19.(本题12分)已知数列{}n a 是公差大于零的等差数列,其前n 项和为n S ,且1a , 31a a -, 4S 成等比数列,23a =.(1)求数列{}n a 的通项公式; (2)若12n n n b a a +=,数列{}n b 的前n 项和为n T ,求满足20182019n T <的最大的n 的值.。
2020年高考押题预测卷01(新课标Ⅰ卷)-文科数学(全解全析)

2020年高考押题预测卷01【新课标Ⅰ卷】文科数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 ADDCBDABDCBB1.A 【解析】{}{}2|4-043|1Q x R x x x x =∈-<=-<<{}123P Q ∴⋂=,, 2.D 【解析】(1,2)BC AC AB =-=--u u u r u u u r u u u r.与他有倍数关系的向量为(1,-2)故选:D3.D 【解析】()()21(1)21112i i ii i i ++===-+-i ,∴a +bi =﹣i ,∴a =0,b =﹣1,∴a-b =1,故选:D . 4.C 【解析】由图可知设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 项表达错误.5.B 【解析】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x x y e e -=+为偶函数,所以()()()1g x x m x =+-为偶函数,故()()0g x g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B6.D 【解析】设等比数列的公比为q ,由题意,得2344a a =+,即244q q =+,解得2q =, 则55512213112S -==-=-;故选D. 7.A 【解析】画出约束条件所表示的可行域,如图(阴影部分)所示. 目标函数2z y x =-可化为直线122z y x =+,结合图象可得当直线122zy x =+过点A 时,此时在y 轴上的截距最小,此时目标函数取得最小值,又由10210x y x y -+=⎧⎨++=⎩,解得(1,0)A -,所以目标函数的最小值为min 20(1)1z =⨯--=,故选A .8.B 【解析】因为()sin()f x x π=-223,又553()2sin(2)2sin 2121236f ππππ=⨯-==,所以①正确.()2sin(2)2sin()0333f ππππ--=⨯-=-=,所以②正确.将2sin 2y x =的图象向右平移3π个单位长度,得22sin[2()]2sin(2)33y x x ππ=-=-,所以③错误.所以①②正确,③错误.故选:B 9.D 【解析】在直角三角形AFB 中,AO ⊥BF ,由射影定理可得OA 2=OF ⋅OB ,即b 2=ac ,所以 a 2﹣c 2=ac ,整理可得e 2+e ﹣1=0,解得e =15-±,因为e ∈(0,1),所以e =15-+,故选:D . 10.C 【解析】选项A 、B 中易证得平面EFG 与AB 所在平面平行,由面面平行可知,直线AB 与平面EFG 平行,选项A 、B 正确;选项C 中,直线AB 与平面EFG 相交;选项D 中,//AB FG AB ⊄,平面EFG ,FG ⊂平面EFG ,所以直线AB 与平面EFG 平行.故选:C.11.B 【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a =±,由对称性,不妨取b y x a=,即0bx ay -=.圆22(2)2x y +-=的圆心坐标为(0,2),半径为2,则圆心到渐近线的距离22(2)11d =-=,∴221b a =+,解得2ce a==.故选:B . 12.B 【解析】由()0f x a -=,得()f x a =,1x y xe =+ 0x ≤ ()1xy x e '=+,当1x =-时,0y '=,当(),1x ∈-∞-时,0y '<,函数单调递减,当()1,0x ∈-时,0y '> ,函数单调递增,所以0x ≤时,函数的最小值()111f e-=-,且()01f = ,ln 2y x x =-- ,0x >,11y x '=-,当1x =时,0y '=,当()0,1x ∈时,0y '<,函数单调递减,当()1,x ∈+∞时,0y '>,函数单调递增,所以0x >时,函数的最小值()11f =-,作出函数()y f x =与y a =的图象,观察他们的交点情况,可知,11a e<-或1a >时,至多有两个交点满足题意,故选B.13.1【解析】2510m n ==,可得1lg 2m =,1lg5n =,11lg 2lg51m n+=+=,故答案为:1. 14.1011【解析】因为2*12()222n n a a a n n N ++⋅⋅⋅+=∈①,当1n =时,112a =, 当2n ≥时,211212221n n a a a n --++⋅⋅⋅+=-②,①减②得:21nn a =,即12nn a ⎛⎫= ⎪⎝⎭,当1n =时显然满足,故12nn a ⎛⎫= ⎪⎝⎭,()*n N ∈;()()122122*********n nn n log a log a n n n n log log -+-+∴===-⋅++⋅ 10111111101122310111111S ∴=-+-++-=-=L ,故答案为:101115.41416π【解析】外接圆直径为长宽高分别为1,2,6的长方体的体对角线,即41R =. 16..233【解析】数列{}n a 满足,()*1132+n n n n a a a a n N ++=∈)(且11a =,令1n =,得:22321a a =+(),解得22a =.令2n =,得:33622a a =+(),解得31a =. 令3n =,得:44321a a =+(),解得42a =.……,可得2n n a a +=,11a =,22a =。
2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D12已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D135已知sin2()=,则sin()=()A B﹣C D﹣6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D199将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82820(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D1【分析】利用复数的运算法则、复数相等可得a,b,再利用模的计算公式即可得出【解答】解:(1+ai)(2﹣i)=3+bi,化为:2+a+(2a﹣1)i=3+bi,∴2+a=3,2a﹣1=b,解得a=1,b=1∴z=1+i,则|z|==,故选:C【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题2已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}【分析】求出集合A,B,再由交集的定义求出A∩B【解答】解:∵集合A={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},B={x|y=}={x|x≤0},∴A∩B={﹣1,0}故选:D【点评】本题考查交集的求法,交集定义等基础知识,考查运算能力,是基础题32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数【分析】根据题中给出的图形中的数据,对四个选项逐一分析判断即可【解答】解:由题意,2015年至2019年这五年内每年第二产业增加值占国内生产总值比重都在39%~40.8%,故选项A正确;2015年至2019年每年第一产业增加值占国内生产总值比重先下降后上升,但无法据此判断第一产业产值是否在下降,故选项B错误;第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加,第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数,故选项C,D正确故选:B【点评】本题考查了条形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D13【分析】根据等差数列的通项公式和前n项和公式列方程组求出首项a1和公差d,即可求出a10的值【解答】解:等差数列{a n}中,a3=5,S3=12,所以,解得a1=3,d=1,所以a n=3+(n﹣1)×1=n+2,a10=10+2=12故选:C【点评】本题考查了等差数列的通项公式和前n项和公式应用问题,是基础题5已知sin2()=,则sin()=()A B﹣C D﹣【分析】利用二倍角公式化简已知等式可得cos(2α﹣)=,进而根据诱导公式即可化简求解【解答】解:因为sin2()==,可得cos(2α﹣)=,所以sin()=sin[+(2α﹣)]=cos(2α﹣)=故选:A【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a【分析】判断a<0,由幂函数y=x0.2的单调性得出0.70.2>0.30.2,由指数函数y=0.3x 的单调性得出0.30.2>0.30.5,判断b>c>0,即可得出结论【解答】解:因为a=5=﹣log35<0,由幂函数y=x0.2在(0,+∞)上是单调增函数,且0.7>0.3,所以0.70.2>0.30.2,又指数函数y=0.3x是定义域R上的单调减函数,且0.2<0.5,所以0.30.2>0.30.5,所以0.70.2>0.30.5>0,即b>c>0所以b>c>a故选:D【点评】本题考查了根据函数的单调性判断函数值大小的应用问题,是基础题7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】x2﹣mx+4>0对于∀x∈[3,+∞)恒成立,可得m<x+,求出x+的最小值,可得m的取值范围,再根据充要条件的定义即可判断【解答】解:∵x∈[3,+∞),由x2﹣mx+4>0x>0,得m<x+,∵当x∈[3,+∞)时,x+≥,当x=3时,取得最小值∴m<,∵{m|m<4}⫋{m|m}∴“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的充分不必要条件,故选:A【点评】本题考查了不等式恒成立问题和充要条件的判断,属于基础题8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D19【分析】根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,利用垂径定理得到E、F分别为AB、CD的中点,由AB=CD得到弦心距OE=OF,可得出四边形EMFO 为正方形,由M与O的坐标,利用两点间的距离公式求出OM的长,即为正方形的对角线长,求出正方形的边长OE,由圆的方程找出半径r,得OA的长,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,进而求出AB与CD的长,再利用对角线互相垂直的四边形面积等于两对角线乘积的一半,即可求出四边形ACBD的面积【解答】解:由x2﹣2x+y2﹣15=0,得(x﹣1)2+y2=16,则圆心坐标为O(1,0),根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,∴E为AB的中点,F为CD的中点,又AB⊥CD,AB=CD,∴四边形EMFO为正方形,又M(﹣1,3),∴|OM|=,∴|OE|=×=,又|OA|=4,∴根据勾股定理得:|AE|=,∴|AB|=|CD|=2|AE|=,则S四边形ACBD=|AB|•|CD|=19故选:D【点评】本题考查了直线与圆相交的性质,涉及的知识有:垂径定理,勾股定理,正方形的判定与性质,两点间的距离公式,以及对角线互相垂直的四边形面积求法,当直线与圆相交时,常常由垂径定理根据垂直得中点,然后由弦心距,弦长的一半及圆的半径构造直角三角形,利用勾股定理来解决问题,是中档题9将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z【分析】首先利用关系式的平移变换和伸缩变换的应用,求出函数的关系式,进一步利用正弦函数的性质的应用求出结果【解答】解:将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数g(x)=sin(ωx+ω+φ)的图象,因为函数y=g(x)的周期为π=,可得ω=2,所以g(x)=sin(2x++φ),因为函数y=g(x)图象的一条对称轴为直线x=,且g(x)是由f(x)的图像向左平移个单位长度得到,所以f(x)的一条对称轴为x=+=,所以2×+φ=kπ+,k∈Z,解得φ=kπ﹣,k∈Z,因为|φ|<,可得φ=,可得f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,函数y=f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z故选:B【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于中档题10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)【分析】设出点P的坐标,根据椭圆方程求出左右焦点的坐标,然后利用点P在椭圆上以及点P满足的向量关系联立求出点P的坐标,然后利用点到直线的距离公式建立不等关系,进而可以求解【解答】解:设点P的坐标为(x0,y0),则x0>0,y0>0,由椭圆的方程可得:a2=30,b2=5,则c=,所以F1(﹣5,0),F2(5,0),则=(﹣5﹣x0,﹣y0)•(5﹣x0,﹣y0)=x…①又…②,联立①②解得:x(负值舍去),所以点P的坐标为(2,1),则点P到直线AB的距离为d==,解得﹣10,即实数m的取值范围为(﹣10,0),故选:C【点评】本题考查了椭圆的性质以及向量的坐标运算性质,考查了学生的运算能力,属于中档题11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D【分析】取AD中点M,连接PM,ON,MN,求解三角形证明OM=MA=MD=MP,说明三棱锥P﹣AOD的外接球的球心O,在PM上,求出外接球的半径,然后求解外接球的体积【解答】解:如图,取AD中点M,连接PM,∵平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA=PD=3,AD=2,所以M为底面△AOD的外心,PM⊥平面AOD,所以三棱锥P﹣AOD的外接球的球心在PM上,球心为O,设球的半径为R,PM==2,所以R2=(2R)2+12,解得R=,∴PD⊥AD,PD⊥ON,三棱锥P﹣AOD的外接球的体积:=故选:D【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m【分析】利用极值点的定义,结合题意得到方程f'(x)=0有两个正解,从而求解得出正确结论【解答】解:∵函数的定义域为:x∈(0,+∞),∴函数有两个极值点,即得f'(x)=0有两个正解,∵f'(x)=∴方程x2﹣x﹣m=0有两个正解x1,x2,故有x1+x2=1,即得B正确;根据题意,可得△=1+4m>0⇒m>,且有x1•x2=﹣m>0⇒m<0所以可得<m<0,故D正确;又因为根据二次函数的性质可知,函数y=x2﹣x﹣m的对称轴为x=,由上可得0<x1<,<x2<1,故C正确;∴﹣ln2<lnx2<0,∴x1+lnx2∈(﹣ln2,),故A错误故选:A【点评】本题考查函数极值点的定义,以及函数零点与方程的根的关系属于基础题二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=﹣4【分析】根据y=f(x)+3是R上的奇函数,并且f(1)=﹣2即可得出f(﹣1)+3=﹣(﹣2+3),然后解出f(﹣1)即可【解答】解:∵y=f(x)+3是R上的奇函数,且f(1)=﹣2,∴f(﹣1)+3=﹣[f(1)+3],即f(﹣1)+3=﹣(﹣2+3),解得f(﹣1)=﹣4 故答案为:﹣4【点评】本题考查了奇函数的定义,考查了计算能力,属于基础题14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为【分析】根据条件可得出,进而可求出的值,从而可得出与的夹角【解答】解:∵,∴,∴,且,∴,且,∴故答案为:【点评】本题考查了向量垂直的充要条件,向量数量积的运算,向量夹角的余弦公式,考查了计算能力,属于基础题15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为【分析】由|OA|=c,得到AF1⊥AB,运用双曲线的定义和直角三角形的勾股定理,可得a,c的关系,进而得到离心率【解答】解:设双曲线的半焦距为c,由|OA|==c=|OF1|+|OF2|,可得AF1⊥AB,由|BF1|=5a,可得|BF2|=5a﹣2a=3a,设|AF1|=m,可得|AF2|=m+2a,|AB|=m+3a,由直角三角形ABF1,可得(m+3a)2+(m+2a)2=(5a)2,化为m2+5ma﹣6a2=0,解得m=a,则|AF1|=3a,|AF2|=a,所以(3a)2+a2=(2c)2,即为c=a,则离心率e==故答案为:【点评】本题考查双曲线的定义和性质,以及勾股定理法运用,考查方程思想和运算能力,属于中档题16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为1010【分析】根据已知关系式推出,然后利用累乘法求出a n,再利用裂项相消法求出S n,进而可以求解【解答】解:由已知(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),则(2n2﹣n﹣1)a,即(2n+1)(n﹣1)a n=(2n﹣3)(n﹣1)a n﹣1,所以,则a×==,则S=,因为S,则,解得n,所以n的最小值为1010,故答案为:1010【点评】本题考查了数列的递推式的应用,涉及到利用累乘法求解数列的通项公式以及裂项相消求和的应用,考查了学生的运算能力,属于中档题三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值【分析】(1)由已知结合正弦定理及和差角公式进行化简可求cos B,进而可求B;(2)由余弦定理可求bc的范围,然后结合三角形的面积公式可求【解答】解:(1)因为a=b cos C+c,所以sin A=sin B cos C+sin C=sin(B+C)=sin B cos C+sin C cos B,即sin C=sin C cos B,因为sin C>0,所以cos B=,由B∈(0,π)得B=;(2)由余弦定理得b2=9=a2+c2﹣ac≥ac,当且仅当a=c时取等号,故ac≤9,△ABC面积S==故面积的最大值【点评】本题主要考查了余弦定理,正弦定理,和差角公式在三角化简求值中的应用,还考查了三角形的面积公式的应用,属于中档题18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积【分析】(1)由已知可得D1D⊥平面ABCD,则D1D⊥BC,再证明BC⊥BD,由直线与平面垂直的判定可得BC⊥平面BDD1;(2)由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,求得DD1=5,再由棱锥体积公式求四棱锥D1﹣ABCD的体积【解答】(1)证明:已知直四棱柱ABCD﹣A1B1C1D1,则D1D⊥平面ABCD,∵BC⊂平面ABCD,∴D1D⊥BC,在直角梯形ABCD中,过B作BE⊥CD,则BE=AD=2,CE=DC﹣DE=DC﹣AB=4,∴BC=,BD2=AD2+AB2=5,∴BC2+BD2=CD2,即BC⊥BD,∵BD∩DD1=D,∴BC⊥平面BDD1;(2)解:由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,且tan∠D1BD=,则DD1=5∴四棱锥D1﹣ABCD的体积V=【点评】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【分析】(1)求出平均值,由72与平均值比较大小得结论;(2)由题意填写2×2列联表,再求出K2的观测值k,与临界值表比较得结论;(3)利用分层抽样求出8人中文理科所占人数,再由古典概型概率计算公式求解【解答】解:(1)由表可得高三600名文科生的成绩的平均值为:=70,∴某文科生72分的成绩达到该校高三年级文科生的平均水平;(2)2×2列联表:文科理科总计较好掌握125 75 200非较好掌握475 725 1200 总计600 800 1400 K2的观测值k=≈36.762>10.828,故有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”;(3)由分层抽样方法从200名学生中抽取8名,文科所占人数为人,则理科有3人在8人中随机抽取2人,2人中至少有1人学理科的概率为P==【点评】本题考查频率分布表,考查独立性检验,训练了古典概型概率的求法,是中档题20(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值【分析】(1)由抛物线的定义和范围,可得|PF|的最小值为,可得所求抛物线的方程;(2)设直线l的方程为x=my+1,与抛物线的方程联立,运用韦达定理和弦长公式,以及中点坐标公式和两直线垂直的条件,求得|DF|,即可得到定值【解答】解:(1)抛物线C:y2=2px(p>0),焦点F(,0),准线方程为x=﹣,设P(x0,y0),x0≥0,可得x0+的最小值为=1,即p=2,所以抛物线的方程为y2=4x;(2)证明:设直线l的方程为x=my+1,与抛物线的方程y2=4x联立,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,所以AB的中点坐标为(1+2m2,2m),AB的垂直平分线方程为y﹣2m=﹣m(x﹣1﹣2m2),令y=0,解得x=2+2m2,即D(3+2m2,0),|DF|=2(1+m2),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4,则为定值【点评】本题考查抛物线的定义、方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力,属于中档题21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3【分析】(1)f′(x)=1﹣cos x,可得f′(π),又f(π)=π,利用点斜式即可得出曲线y=f(x)在点(π,f(π))处的切线方程(2)令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0多次利用导数研究函数的单调性极值与最值即可证明结论【解答】解:(1)f′(x)=1﹣cos x,f′(π)=1﹣cosπ=2,又f(π)=π﹣sinπ=π,∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣π=2(x﹣π),即y=2x ﹣π(2)证明:令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0 g′(x)=1﹣cos x﹣x2=h(x),h(0)=0,x∈(0,π),h′(x)=sin x﹣x=u(x),u(0)=0,x∈(0,π),u′(x)=cos x﹣1<0,x∈(0,π),∴u(x)在x∈(0,π)上单调递减,∴h′(x)=u(x)<u(0)=0,∴h(x)在x∈(0,π)上单调递减,∴g′(x)=h(x)<h(0)=0,∴函数g(x)在x∈(0,π)单调递减,∴g(x)<g(0)=0∴x﹣sin x﹣x3<0,即当x∈(0,π)时,6f(x)<x3【点评】本题考查了利用导数研究函数的单调性极值、证明不等式,考查了推理能力与计算能力,属于难题选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换,再利用三角函数的关系式的变换和三角函数的性质的应用求出结果(2)利用直线与圆的位置关系和一元二次方程根和系数关系式的应用求出直线的方程【解答】解:(1)曲线C的参数方程为(φ为参数),转换为直角坐标方程为x2+(y﹣1)2=4,根据,转换为极坐标方程为ρ2﹣2ρsinθ﹣3=设曲线上的点的坐标为P(2cosθ,1+2sinθ),原点的坐标为O(0,0),所以,当(k∈Z)时,|PO|max=3(2)直线l的参数方程为(t为参数),转换为极坐标方程为θ=α(ρ∈R),由于直线与圆相交,故,整理得ρ2﹣2ρsinα﹣3=0,所以ρA+ρB=2sinα,ρAρB=﹣3,故|OA|+|OB|==,整理得sinα=0,所以直线与x轴平行,故直线的方程为y=0【点评】本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,三角函数关系式的变换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围【分析】(1)把a=3代入函数解析式,然后根据f(x)≥6,利用零点分段法解不等式即可;(2)根据绝对值不等式性质可得f(x)≥|a+2|,把不等式f(x)≥2a,对任意x∈R 恒成立转化为|a+2|≥2a恒成立,然后求出a的取值范围【解答】解:(1)把a=3代入f(x)=|x+2|+|x﹣a|,可得f(x)=|x+2|+|x﹣3|=,当x≤﹣2时,f(x)≥6等价于﹣2x+1≥6,解得x≤,则x≤﹣,当﹣2<x<3时,f(x)≥6等价于5≥6,此式不成立,当x≥3时,f(x)≥6等价于2x﹣1≥6,解得x,则x综上,不等式f(x)≥6的解集为:(﹣∞,]∪[,+∞)(2)∵f(x)=|x+2|+|x﹣a|=|x+2|+|a﹣x|≥|x+2+a﹣x|=|a+2|,∴不等式f(x)≥2a,对任意x∈R恒成立转化为|a+2|≥2a恒成立,若2a<0,即a<0,则不等式|a+2|≥2a成立,若2a≥0,即a≥0,则a2+4a+4≥4a2,即3a2﹣4a﹣4≤0,解得≤a≤2,则0≤a≤2综上,实数a的取值范围是(﹣∞,2]【点评】本题考查绝对值不等式的解法和不等式恒成立问题,考查分类讨论思想和转化思想,属于中档题。
2020年高考预测押题密卷 文科数学试题

A.4
B.27
C.8
D. 8 或−27
()
4. 2020 年春节突如其来的新型冠状病毒肺炎在湖北爆发,一方有难八方支援,全国各地的白衣天使走上战场的第一线,某医院抽调甲 乙丙三名医生,抽调 A, B, C 三名护士支援武汉第一医院与第二医院,参加武汉疫情狙击战.其中选一名护士与一名医生去第一医院,
A.[−2 , 3]
2a + b
2
为__________.
16.已知抛物线 C= : y2 2 px( p > 0) 的准线方程为 x = −2 ,焦点为 F ,准线与 x 轴的交点为 A , B 为抛物线 C 上一点,且满足
5 BF = 2 AB ,则点 F 到 AB 的距离为 _______ .
班级:
学校:
文科数学试题第 1 页(共 4 页)
_______________________________装____________________________________订_______________________________线_____________________________________
考号:
姓名:
文科数学
注意事项:
()
A. 4 3
B. 2 3
C.8
D.12
7. 已知函数 f (x) =sin(x + π ) sin x + cos2 x 的图象向右平移 π 单位,再把横坐标缩小到原来的一半,得到函数 g(x) ,则关于函数
3
6
g(x) 的结论正确的是
()
A.最小正周期为 π
B.关于 x = π 对称 6
13.已知向量a = (1, 2) ,向量b = (−2 , 3) ,则向量a + b 在a 上的投影为 ______ .
2020年普通高等学校招生全国统一考试(全国I)预测卷文科数学试卷 PDF版含答案

高三文科数学 第 4 页
2020 年普通高等学校招生全国统一考试(全国 I)预测卷
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
数学答题卷(文科) 第Ⅰ卷 (选择题,共 60 分)
一、选择题:(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的 四个选项中,只有一个选项是符合题目要求的.)
握认为交通安全意识与性别有关;
(Ⅲ)用分层抽样的方式从得分在50 分以下的样本中抽取 6 人,再从 6 人中随机选取 2 人对未来
一年内的交通违章情况进行跟踪调查,求至少有1人得分低于 40 分的概率.
频率
组距
0.028
安全意识强 安全意识不强 合计
0.020
a
男性 女性
0.008 0.004
合计
0
2020 年普通高等学校招生全国统一考试(全国 I)预测卷
文科数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间 120 分钟,共 150 分.
第Ⅰ卷(选择题共 60 分)
注意事项:
每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再
选涂其它答案,不能答在试题卷上.
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
2020 年普通高等学校招生全国统一考试(全国 I)预测卷 文科数学参考答案
一、选择题
DABCD BBCCD AC
二、填空题
13. 1 2
三、解答题
1
14. 15.5252
3
16. 2 7
17.(本小题满分 12 分)
解:(Ⅰ)由题知 3 sin( A B) 4sin2 C , 2
2020年高考文科数学预测押题密卷I卷 参考答案

f (−x) =−2020x − sin 2x =− f (x) ,且 f '(x) =2020 + 2cos 2x > 0 , 可知函数 f (x) 为单调递增的奇函数, f (x2 + x) + f (1− t) ≥ 0 可以变 为 f (x2 + x) ≥ − f (1−=t) f (t −1) ,
>0
,排除
C.
故选 A.
10. 【答案】C 【解析】点 P(x , y) 是圆上的任一点,设 x = cosα , y = sinα , 则 x + y + x=y cosα + sinα + cosα sinα ,
设=v sinα + cosα , cosα sinα = v2 −1 , v ∈[− 2 , 2] , 2
可知 x2 + x ≥ t −1 ,∴t ≤ x2 + x +1 , x2 + x +1 = (x + 1 )2 + 3 ≥ 3 ,
2 44
可知实数 t ≤ 3 ,故实数 t 的取值范围为 (−∞ , 3] .故选 C.
4
4
6. 【答案】A
【解析】双曲线的渐近线方程为 y = ± 3x ,可知双曲线的方程为
文科数学答案第 1 页(共 4 页)
设 F (t ) = 3t − λ et + e−t − 2λ 2 ,
2
∵ F (−t ) = 3t − λ e−t + et − 2λ 2 = F (t ) ,
2
∴ F (t ) 为偶函数,又∵ y = F (t ) 与 t 轴有唯一的交点,
∴此交点的横坐标为 0,∴ 1− λ =2λ 2 ,解得 λ = −1 或 λ = 1 . 2
2020年高考(文科)数学预测押题密卷最后一卷 答题卡

18.(本小题满分12分)19.(本小题满分12分)2020年高考预测押题密卷最后一卷 答题卡
1A B C D 2A B C D 3A B C D 4A B C D 5A B C D 6A B C D 7A B C D
8A B C D
9A B C D
10A B C D
11A B C D
12A B C D
一、选择题(每小题5分,共60分)
13. 14.
15. 16.
二、填空题(每小题5分,共20分)
17.(本小题满分12分)
三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效文科数学
A E A 1
B 1
C 1C B
21.(本小题满分12分)20.(本小题满分12分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效选做题(本小题满分10分)请考生从给出的22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选的题号涂黑,注意所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分。
我所选择的题号是:2223。
2020高考文科数学押题卷(一)含答案

C.2kπ-23π,2kπ+π3 (k∈Z)
D.2kπ-π6 ,2kπ+56π(k∈Z)
试卷第 1 页,总 8 页
8.已知变量x,y满足xxx+-≥y22-y+6≥4≤00,则k=yx+ -13的取值范围是(
)
1 A.k>2或k≤-5
1 B.-5≤k<2
1 C.-5≤k≤2
18.(本小题满分 12 分)如图,在四棱锥P-ABCD中,BC=CD=2 3,∠BCD=60°,∠ABC= ∠ADC=90°,点E是BP的中点,顶点P在底面ABCD内的投影恰好为AC,BD的交点O。
试卷第 2 页,总 8 页
(1)求证:PD∥平面 ACE; (2)当 OP=1 时,求三棱锥 E-ABC 的体积。
A.3 人,5 人,2 人
B.3 人,3 人,3 人
C.5 人,3 人,1 人
D.4 人,2 人,3 人
4.椭圆 C 的焦点在 x 轴上,长轴长为 4,过椭圆的右焦点且垂直于长轴的直线交椭圆于 A,B 两点,
若|AB|=1,则椭圆 C 的离心率为( )
1 A.2
6 B. 3
2 C. 2
3 D. 2
5.某几何体的三视图如图所示,其中正视图和侧视图为全等的矩形,俯视图为圆,若其正视图的面积
15.已知双曲线E:a2-b2=1(a>0,b>0)的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为
P,交另一条渐近线于点Q,若 5P→F=3F→Q,则双曲线E的离心率为________。 16.不等式 x(sinθ-cos2θ+1)≥-3 对任意 θ∈R 恒成立,则实数 x 的取值范围是________。
A.0 对
B.1 对
C.2 对
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 2020年高考押题预测卷01【新课标Ⅰ卷】
文科数学·答题卡
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 一、选择题(每小题5分,共60分)
1 [A] [B] [C] [D]
2 [A] [B] [C] [D]
3 [A] [B] [C] [D]
4 [A] [B] [C] [D]
5 [A] [B] [C] [D]
6 [A] [B] [C] [D]
7 [A] [B] [C] [D]
8 [A] [B] [C] [D]
9 [A] [B] [C] [D] 10 [A] [B] [C] [D] 11 [A] [B] [C] [D] 12 [A] [B] [C] [D] 二、填空题(每小题5分,共20分)
13.____________________ 14.____________________
15.____________________ 16.____________________
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 18.(12分) 19.(12分) 准考证号: 姓 名:_________________________________________ 贴条形码区 此栏考生禁填 缺考
标记 1.答题前,考生先将自己的姓名,准考证号填写清
楚,并认真检查监考员所粘贴的条形码。
2.选择题必须用2B 铅笔填涂;非选择题必须用0.5mm 黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。
3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
5.正确填涂
注意事项
2 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 20.(12分) 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 21.(12分) 选做题(10分)
请考生从给出的22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选的
题号涂黑,注意所做题目必须与所涂题号一致,如果多做,则按所做的第一题计分。
我所选择的题号是 [ 22 ] [ 23 ]
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效! 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!。