七年级数学第4章图形认识初步检测题
《易错题》人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(包含答案解析)(3)

一、选择题1.(0分)[ID :68657]如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.(0分)[ID :68652]已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上3.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D4.(0分)[ID :68648]图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .35.(0分)[ID :68636]平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定6.(0分)[ID :68633]已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.(0分)[ID :68632]如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个8.(0分)[ID :68629]如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个9.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°10.(0分)[ID :68626]如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定11.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒12.(0分)[ID :68598]如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定13.(0分)[ID:68583]已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm 14.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′15.(0分)[ID:68572]下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.二、填空题16.(0分)[ID:68715]长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π).17.(0分)[ID:68711]如图,能用O,A,B,C中的两个字母表示的不同射线有____条.18.(0分)[ID:68696]下午3:40时,时钟上分针与时针的夹角是_________度.19.(0分)[ID:68694]如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.20.(0分)[ID:68689]如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD21.(0分)[ID:68686]用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.22.(0分)[ID :68683]把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .23.(0分)[ID :68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.24.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
2022七年级数学上册第4章图形的初步认识检测题新版华东师大版

七年级数学上册第4章图形的初步认识检测题新版华东师大版(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.数轴是一条( B )A.射线B.直线C.线段D.以上都是2.下列四个几何体中,是三棱柱的为( C )3.下列说法中正确的是( A )A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类4.(2022·宁波)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是( C)5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为( A )A.-3 B.-2 C.-1 D.16.(2021·随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是( A )A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同第6题图第8题图第9题图第10题图7.下列说法错误的是( B )A .两个互余的角都是锐角B .一个角的补角大于这个角本身C .互为补角的两个角不可能都是锐角D .互为补角的两个角不可能都是钝角8.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( A )A .A 代表B .B 代表C .C 代表D .B 代表9.如图,已知∠AOB 是直角,∠AOC 是锐角,ON 平分∠AOC,OM 平分∠BOC,则∠MON 等于( A )A .45°B .45°+12 ∠AOC C .60°-12∠AOC D .不能计算10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是( B )A .80-2πB .80+4πC .80D .80+6π 二、填空题(每小题3分,共15分)11.(北京中考)在如图所示的几何体中,其三视图中有长方形的是__①②__.(写出所有正确答案的序号)第11题图第12题图第13题图12.如图,已知点A ,O ,C 在同一直线上,OE 平分∠AOB,OF 平分∠BOC,则∠EOF 的度数为__90__°.13.如图,已知AB =8 cm ,BD =3 cm ,C 为AB 的中点,则线段CD 的长为__1__cm . 14.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.15.(青岛中考)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走__16__个小立方块.三、解答题(共75分)16.(8分)已知平面上四点A ,B ,C ,D ,如图: (1)画直线AB ; (2)画射线AD ;(3)直线AB ,CD 相交于点E ;(4)连结AC ,BD 相交于点F.解:作图略17.(9分)如图,(1)∠AOC 是哪两个角的和; (2)∠AOB 是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC 与∠DOB 相等吗? 解:(1)∠AOC 是∠AOB 与∠BOC 的和 (2)∠AOC 与∠BOC 的差或∠AOD 与∠BOD 的差 (3)相等.理由如下:∵∠AOB=∠COD,∴∠AOB +∠BOC=∠COD+∠BOC,即∠AOC=∠BOD18.(9分)如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm . (1)求AD 的长;(2)若M 是AD 的中点,求线段MC 的长.解:(1)∵AB∶BC∶CD=2∶4∶3,∴CD =39 AD =13 AD ,∵CD =6,∴AD =3CD =18 cm (2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12 AD =12 ×18=9(cm ),∴MC =MD -CD =9-6=3(cm )19.(9分)一个正方体六个面分别标有字母A,B,C,D,E,F,其展开图如图所示,已知:A=x2-2xy,B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x,y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.解:由展开图可知A与C相对,B与D相对,∴B+D=A+C,又∵A=x2-2xy,B=A-C,C=3xy+y2,则D=A+C-B=A+C-(A-C)=2C=2(3xy+y2)=6xy+2y2,当x=-1,y=-2时,6xy+2y2=12+8=20,故当x=-1,y=-2时,多项式D的值是2020.(9分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOC的度数;(2)通过计算判断OE是否平分∠BOC.解:(1)∠BOC=180°-∠AOC=180°-50°=130°(2)∵OD平分∠AOC,∴∠COD=1 2∠AOC=12×50°=25°.∵∠DOE=90°,∴∠COE=90°-∠COD=90°-25°=65°,∴∠BOE=∠BOC-∠COE=130°-65°=65°,∴∠COE=∠BOE,∴OE平分∠BOC21.(10分)如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)①若m=50,则射线OC的方向是__北偏东40°__;②图中与∠BOE 互余的角有__∠BOS,∠EOC__,与∠BOE 互补的角有__∠BOW,∠COS__; (2)若射线OA 是∠BON 的平分线,则∠BOS 与∠AOC 是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.解:(2)∠AOC=12 ∠BOS.因为射线OA 是∠BON 的平分线,所以∠NOA=12 ∠BON.因为∠BOS+∠BON=180°,所以∠BON=180°-∠BOS.所以∠NOA=12 ∠BON =90°-12 ∠BOS.因为∠NOC+∠BOS=90°,所以∠NOC=90°-∠BOS.所以∠AOC=∠NOA-∠NOC=90°-12∠BOS-(90°-∠BOS)=12∠BOS22.(10分)如图①,已知线段AB =16 cm ,点C 为线段AB 上的一个动点(点C 不与A ,B 重合),点D ,E 分别是AC 和BC 的中点.(1)求DE 的长;(2)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC,试说明∠DOE 的大小与射线OC 的位置无关.解:(1)∵点D ,E 分别是AC 和BC 的中点,∴DC =12 AC ,CE =12 BC ,∴DE =DC +CE =12AC +12 BC =12 (AC +BC)=12 AB =12 ×16=8(cm ) (2)∵OD,OE 分别平分∠AOC 和∠BOC,∴∠DOC =12 ∠AOC,∠EOC =12 ∠BOC,∴∠DOE =∠DOC+∠EOC=12 (∠AOC+∠BOC)=12 ∠AOB=65°,∴∠DOE 为一定值,与射线OC 的位置无关23.(11分)如图①所示,将一副三角尺的直角顶点重合在点O 处. (1)①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在数量上有何关系?说明理由;(2)若将这副三角尺按图②所示摆放,三角尺的直角顶点重合在点O 处. ①∠AOD 和∠BOC 相等吗?说明理由;②∠AOC 和∠BOD 在(1)中的数量关系还成立吗?说明理由.解:(1)①相等.理由:因为∠AOD=90°+∠BOD,∠BOC=90°+∠BOD,所以∠AOD 和∠BOC相等②∠AOC+∠BOD=180°.理由:因为∠AOC+90°+∠BOD+90°=360°,所以∠AOC+∠BOD=180°(2)①相等.理由:因为∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,所以∠AOD和∠BOC相等②成立.理由:因为∠AOC=90°+90°-∠BOD,所以∠AOC +∠BOD=180°。
《常考题》人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(含答案解析)

一、选择题1.(0分)[ID :68656]给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 3.(0分)[ID :68641]如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-4.(0分)[ID :68640]α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.(0分)[ID :68637]观察下列图形,其中不是正方体的表面展开图的是( ) A . B .C .D .6.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°7.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 8.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .189.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 11.(0分)[ID :68593]如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 12.(0分)[ID :68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种13.(0分)[ID :68579]如图,图中射线、线段、直线的条数分别为( )A.5,5,1 B.3,3,2C.1,3,2 D.8,4,114.(0分)[ID:68576]下列平面图形中不能围成正方体的是()A.B.C.D.15.(0分)[ID:68559]如图,点O在直线AB上,图中小于180°的角共有()A.10个B.9个C.11个D.12个二、填空题16.(0分)[ID:68718]线段AB=12cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为_______cm.17.(0分)[ID:68695]已知,如图,点M,N分别是线段AB,BC的中点,且9MN=,线段1143BD AB CD==,则线段BD的长为________.18.(0分)[ID:68683]把棱长为1cm的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm.19.(0分)[ID:68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.20.(0分)[ID :68668]钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.21.(0分)[ID :68663]将下列几何体分类,柱体有:______(填序号).22.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
2022学年秋学期华东师大版七年级数学上册第四章单元检测卷附答案解析

第四章《图形的初步认识》
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A、B、C、D四个选项,其中只有一个是符合题目要求的。)
1、下列几何体中,是圆锥的为()
2、如图是由5个大小相同的正方体组成的几何体,它的左视图为()
3、一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是(A)
17、(本小题满分12分)先化简,再求值:
小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系。如图是他在探究时画出的5个图形。
(1)根据图完成表格:
A
B
C
平面图形(1)
3
6
平面图形(2)
5
8
平面图形(4)
10
6
(2)猜想:一个平面图形中顶点数A,区域数B,线段数C之间的数量关系是;
15、两根长度分别为6cm和10cm的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为_________cm;
16、一个正方体的六个面上分别标有1,2,3,4,5,6中的一个数字,下图是将这个正方体按三种不同方法放置,对于这三种放置朝下的面上的数字之和为________.
三、解答题(本大题6个小题,共56分。解答应写出必要的文字说明或演算步骤。)
【牛刀小试】如图1,若 ,求 的度数;
【类比说明】如图1,若 ,求 的度数(用含 的代数式表示);
【猜想发现】如图2,O是直线AB上一线, 是直角,OE平分 ,探究 与 的关系,直接写出结论。
22、(本小题满分12分)如图1,点O为直线AB上一点,过点O作射线OC,使 ,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。
七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
初级中学数学课堂学习检测-第4章-图形认识初步

第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体: { } 棱柱体: { }圆柱体: { } 球体: { }圆锥体: { }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D 图像是______号摄像机所拍.12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体 , 如下图所示 , 那么长方体的下底面共有______朵花 .18 . 如果图(1)~(10)均是正方体A 的展开图 , 正方体的每一面分别有1 , 2 , 3 , 4 , 5 , 6六个数 , 请你在图(2)~(10)的空格上填上相应的数 .(1) (2) (3) (4)(5) (6) (7) (8) (9) (10)19 . 有一个长方形的硬纸正好可以分成15个小正方形 , 如图 , 试把它剪成3份 , 每份有5个小正方形相连 , 折起来都可以成为一个无盖的正方体纸盒 , 应该怎样剪 ?测试2 点 、 线 、 面 、 体学习要求知道点是几何学中最基本的概念 . 点动成线 , 线动成面 , 面动成体 .课堂学习检测一 、 填空题1 . 面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线 , 这条线是______的(填“直”或“曲”) .2 . 如图所示的几何体是四棱锥 , 它是由______个三角形和一个形组成的 .3 . 三棱柱有______个顶点 , ______个面 , ______条棱 , ______条侧棱 , ______个侧面 , 侧面形状是______形 , 底面形状是______形 .4 . 笔尖在纸上划过就能写出汉字 , 这说明了______ ; 汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴 , 这说明了______ ; 长方形纸片绕它的一边旋转形成了一个圆柱体 , 这说明了______ . 二 、 选择题5 . 按组成面的侧面“平”与“曲”划分 , 与圆柱为同一类的几何体是( ) .(A)圆锥 (B)长方体 (C)正方体 (D)棱柱 6 . 圆锥的侧面展开图不可能是( ) .(A)小半个圆 (B)半个圆 (C)大半圆 (D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C 三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考18.填表19.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1 .(1)把一条线段二等分的______叫做这条线段的______ .(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______ ,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4 . 在下列说法中 , 正确的是( )(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A , B 就得到AB 的距离5 . 如图 , 下列关系式中与右图不符合的是( )(A)AC +CD =AB -BD (B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合 、 运用 、 诊断一 、 选择题6 . 如下图 , 从A 地到B 地有多条道路 , 人们会走中间的直路 , 而不会走其他的曲折的路 , 这是因为( ) .(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7 . 对于线段的中点 , 有以下几种说法 : ①因为AM =MB , 所以M 是AB 的中点 ; ②若AM=MB =21AB , 则M 是AB 的中点 ; ③若AM =21AB , 则M 是AB 的中点 ; ④若A , M , B 在一条直线上 , 且AM =MB , 则M 是AB 的中点 . 以上说法正确的是 ) .(A)①②③ (B)①③ (C)②④ (D)以上结论都不对8 . 已知A , B , C 为直线l 上的三点 , 线段AB =9cm , BC =1cm , 那A , C 两点间的距离是( ) . (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9 . 已知线段OA =5cm , OB =3cm , 则下列说法正确的是( )(A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度 . 10 . 已知线段AB =10cm , AP +BP =20cm . 下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11 . 能判定A , B , C 三点共线的是( )(A)AB =3 , BC =4 , AC =6 (B)AB =13 , BC =6 , AC =7 (C)AB =4 , BC =4 , AC =4 (D)AB =3 , BC =4 , AC =512 . 已知数轴上的三点A , B , C 所对应的数a , b , c 满足a <b <c , abc <0和a +b +c =0 , 那么线段AB 与BC 的大小关系是( ) . (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二 、 解答题13 . 已知C 为线段AB 的中点 , AB =10cm , D 是AB 上一点 , 若CD =2cm , 求BD 的长 . 14 . 已知C , D 两点将线段AB 分为三部分 , 且AC ∶CD ∶DB =2∶3∶4 , 若AB 的中点为M ,BD 的中点为N , 且MN =5cm , 求AB 的长 . 15 . 如图 , 延长线段AB 到C , 使,21AB BCD 为AC 的中点 , DC =2 , 求AB 的长 .拓展 、 探究 、 思考16 . 已知 : 如图 , 点C 在线段AB 上 , 点M 、 N 分别是AC 、 BC 的中点 .(1)若线段AC =6 , BC =4 , 求线段MN 的长度 ; (2)若AB =a , 求线段MN 的长度 ; (3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上” , (1)小题的结果会有变化吗 ? 求出MN 的长度 .17 . 如图 , 这是一根铁丝围成的长方体 , 长 、 宽 、 高分别为6cm 、 5cm 、 4cm . 有一只蚂蚁从A 点出发沿棱爬行 , 每条棱不允许重复 , 则蚂蚁回到A 点时 , 最多爬行多少厘米 ? 把蚂蚁所走的路线用字母按顺序表示出来 .测试5 角的度量学习要求理解角的概念 , 掌握角的表示方法 , 能利用画图工具作一个角 , 会度量一个角的大小(在角度制下) , 能进行简单的计算 . 理解周角 、 平角的概念 .课堂学习检测一 、 填空题1 . (1)____________的图形叫做角 , ____________________叫做角的顶点 , _____________________叫做角的边 .(2)角也可以看作是由一条___________绕着它的___________而形成的图形 , 这条射线的起始位置叫做角的______ , 其终止位置叫做角的__________ .(3)一条射线绕其端点O 按逆时针方向旋转得到∠AOB , 当角的终边OB 旋转到与角的始边OA 成一条直线时 , 称∠AOB 为______ ; 若角的终边继续旋转 , 当角的终边OB 与角的始边OA 重合时 , 称∠AOB 为______ . (4)以度 、 分 、 秒为单位的角度制规定 , 把一个周角______ , 每一份叫做1度 , 记作______ ; 把1度的角______ , 每一份叫做1分 , 记作______ ; 把1分的角______ , 每一份叫做1秒 , 记作______ . 这样 , 1周角是______° , 1平角是______° , 1°=______' , 1′=______″ .2 . 用三个字母表示图中所注的∠1 、 ∠2 、 ∠3 :(1) (2) (3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________ .12.图中共有______个小于平角的角,它们分别是__________________ ,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______' ;(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C , 则蚂蚁共转了____________的角 .19 . 如图 , (1)中有______个角 , (2)中有______个角 ; (3)中有______个角 . 以此类推 , 若一个角内有n 条射线 , 则可有______个角 .测试6 角的比较与运算学习要求会比较两个角的大小 , 能进行角的运算(和 、 差 、 倍 、 分) . 理解角的平分线以及直角 、 锐角 、 钝角的概念 .课堂学习检测一 、 填空题1 . 要比较∠α 和∠β 的大小 , 可先让∠α 的顶点与∠β 的顶点______ , ∠α 的始边与∠β 的始边也______ , 并且∠α 的终边与∠β 的终边都在它们的始边的同一侧 . 若∠α 的终边落在∠β 的内部 , 则称∠α ______∠β ; 若∠α 的终边落在∠β 的外部 , 则称∠α ______∠β ;若∠α 的终边恰与∠β 的终边重合 , 则称∠α ______∠β .(如图所示 , ∠AOB =α ; ∠AOC =β )2 . 如图 , 若OC 是∠AOB 的平分线 , 则______=______ ; 或______=______21=______ ; 或______=2______=2______ .3 . 如图 , OM 是∠AOB 的平分线且∠AOM =30° , 则∠BOM =______ ; ∠AOB =______ .4 . 如图 , 在横线上填上适当的角 :(1)∠AOC =______+______ ; (2)∠AOD -∠BOD =______ ; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______ . 5 . 按图填空 :(1)∠ABC 是∠ABD 与∠DBC 的______ ; (2)∠BDC 是∠ADC 与∠ADB 的_______ . 6 . 如图 , (1)若∠AOB =∠COD ,则∠AOC =∠______ . (2)若∠AOC =∠BOD , 则∠______=∠______ .二 、 选择题7 . 在小于平角的∠AOB 的内部取一点C , 并作射线OC , 则一定存在( ) .(A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8 . 如图 , ∠AOB =∠COD , 则( ) .(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9 . 射线OC 在∠AOB 的内部 , 下列四个式子中不能判定OC 是∠AOB 的平分线的是( ) . (A)∠AOB =2∠AOC (B)∠BOC =∠AOC (C)∠AOC 21∠AOB (D)∠AOC +∠BOC =∠AOB10 . 不能用一副三角板拼出的角是( ) .(A)120° (B)105° (C)100° (D)75°11 . 如图 , OC 是∠AOB 的平分线 , OD 平分∠AOC , 且∠COD =25° , 则∠AOB =( ) .(A)100° (B)75° (C)50° (D)20°12 . 如果∠AOB =34° , ∠BOC =18° , 那么∠AOC 的度数是( ) .(A)52° (B)16° (C)52°或16° (D)52°或18° 13 . 如图 , 射线OD 是平角∠AOB 的平分线 , ∠COE =90° , 那么下列式子中错误的是( ) .(A)∠AOC =∠DOE(B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC14 . 已知α 、 β 是两个钝角 , 计算)(61β+a 的值 , 四位同学算出了四种不同的答案 , 分别为24° , 48° , 76° , 86° , 其中只有一个答案是正确的 , 那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三 、 解答题15 . 下面是小马虎解的一道题 .题目 : 在同一平面上 , 若∠BOA =70° , ∠BOC =15° , 求∠AOC 的度数 . 解 : 根据题意可画出下图 .∵∠AOC =∠BOA -∠BOC=70°-15° =55° ,∴∠AOC =55° . 若你是老师 , 会给小马虎满分吗 ? 若会 , 说明理由 . 若不会 , 请将小马虎的错误指出 , 并给出你认为正确的解法 .综合 、 运用 、 诊断16 . 如图 , OT 平分∠AOB , 也平分∠COD ,那么∠AOT =∠______ ,∠AOC =∠______ ,∠AOD =∠______17 . 如图 , OA ⊥OB , OC ⊥OD , ∠AOD =146° , 则∠BOC =______ .18 . 读语句画图并填空 :画平角∠AOC , 用量角器画∠AOC 的平分线OB , 因为OB 平分∠AOC , 所以∠AOB =∠=AOC 21_______ , 再用量角器画∠BOC 的平分线OD , 图中∠AOD =∠______+∠______=______° . 19 . 作图 .(1)用一副三角板可以画出多少个小于平角的角 ? 请用一副三角板画出15° , 75°角 .(2)作∠MPQ 的平分线PR , 则∠______=∠______21=∠______ .(3)利用圆规和直尺画一个角 .已知 : ∠AOB ,求作 : ∠A ′O ′B ′ , 使得∠A ′O ′B ′=∠AOB .20 . 如图 , OD 、 OE 分别是∠AOC 和∠BOC 的平分线 , ∠AOD =40° , ∠BOE =25° , 求∠AOB 的度数 .解 : ∵OD 平分∠AOC , OE 平分∠BOC ,∴∠AOC =2∠AOD , ∠BOC =2∠______ .∵∠AOD =40° , ∠BOE =25° , ∴∠BOC =______ , ∠AOC =______ . ∴∠AOB =____ .21 . 已知 : 如图 , ∠ABC =∠ADC , DE 是∠ADC 的平分线 , BF 是∠ABC 的平分线 .求证 : ∠2=∠3 .证明 : ∵DE 是∠ADC 的平分线 ,∴∠2=______ .∵BF 是∠ABC 的平分线 , ∴∠3=______ .又∵∠ABC =∠ADC , ∴∠2=∠3 .拓展 、 探究 、 思考22 . 已知 : ∠AOB =31.5° , ∠BOC =24.3° , 求∠AOC 的度数 .23 . 如图 , 从O 点引四条射线OA 、 OB 、 OC 、 OD , 若∠AOB , ∠BOC , ∠COD , ∠DOA 度数之比为1∶2∶3∶4 .(1)求∠BOC 的度数 .(2)若OE 平分∠BOC , OF 、 OG 三等分∠COD , 求∠EOG . 24 . 如图 , ∠AOB 的平分线为OM , ON 为∠MOA 内的一条射线 , OG 为∠AOB 外的一条射线 ,某同学经过认真的分析 , 得出一个关系式是∠MON =21(∠BON -∠AON ) , 你认为这个同学得出的关系式是正确的吗 ? 若正确 , 请把得出这个结论的过程写出来 .测试7 余角和补角学习要求理解一个角的余角和补角的概念 , 理解方向角的概念 , 并能解决有关角的计算问题 .课堂学习检测一 、 填空题1 . 如果两个角的______ , 那么称这两个角______余角 , 即其中一个角是____________ .2 . 如果两个角的______ , 那么称这两个角______补角 , 即其中一个角是____________ .3 . 若∠α =n ° , 则∠α 的余角是______ , ∠α 的补角是______ .4 . 若一个角的补角是150° , 则这个角的余角是____________ .5 . 若∠1与∠2分别是∠3的余角 , 则∠1______∠2 .6 . 若∠1是∠3的余角 , ∠2是∠4的余角 , 且∠3=∠4 , 则∠1____∠2 .7 . 如图 , ∠AOD 的余角是______ , 补角是______ .8.若∠β 与∠α 互补,∠γ 与∠α 互余,则∠β 与∠γ 的差为____________.9.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为____________.10.若轮船甲自A岛沿北偏东45°的方向行驶30海里到达B岛,轮船乙自A岛沿南偏西70°的方向行驶50海里到达C岛,则∠BAC=____________.二、选择题11.已知∠α =35°19′,则∠α 的余角等于().(A)144°41′(B)144°81′(C)54°41′(D)54°81′12.下列说法中正确的是().(A)大于直角的角叫钝角(B)小于平角的角叫钝角(C)不大于直角的角叫锐角(D)大于0°且小于直角的角叫锐角13.∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是().(A)锐角(B)钝角(C)直角(D)无法确定14.已知:如图,∠AOB=∠COD=90°,则∠1与∠2的关系是).(A)互余(B)互补(C)相等(D)无法确定15.轮船航行到C处测得小岛A的方向为北偏西32°,那么从A观测此时的C处的方向为().(A)南偏东32°(B)东偏南32°(C)南偏东68°(D)东偏南68°16.下面说法中正确的是().(A)一个锐角的余角比这个角大(B)一个锐角的余角比这个角小(C)一个锐角的补角比这个角大(D)一个钝角的补角比这个角大17.下列说法中,正确的是().(A)一个角的余角一定是钝角(B)一个角的补角一定是钝角(C)锐角的余角一定是锐角(D)锐角的补角一定是锐角18.已知点C,O,B三点共线,∠COD=90°,∠COD绕点O由图(1)的位置旋转到图(2)的位置后,∠COB与∠AOD的关系是().(1) (2) (A)相等 (B)互补 (C)相等或互补 (D)不能确定三 、 解答题19 . 在图中画出表示下列方向的射线 :(1)南偏西30° (2)南偏东25°(3)北偏西20° (4)北偏东65° (5)东北方向 (6)西南方向20.(1)一个角的余角为54°求这个角的补角的度数 .(2)两个角的比是7∶3 , 它们的差是72° , 求这两个角的度数 . 21 . 如图 , 分别指出A , B , C , D 在O 的什么方向 ?综合 、 运用 、 诊断22 . 若一个角的余角比它的补角的92还多1° , 求这个角 . 23 . 用1∶10000的比例尺画图 , 并按要求填空(精确0.1cm) :(1)如下图 , 甲从O 点向北偏西60°走了200米 , 到达A 处 ; 乙从O 点向南偏西60°走了200米 , 到达B 处 , 用刻度尺量出AB =______cm , AB 的实际距离是______ . A 在B 的__________方向 .(2)如下图 , 某人从O 点向东北方向走了200米到达M 点 , 再从M 点向正西方向走了282米 , 到达N 点 , 用刻度尺量出ON =______cm , ON 实际距离是______ , 此时N 在O 的______方向 .(3)某人在O 点的北偏东60°方向上 , 距O 点300米 , 他向正南方向走了600米 , 到达A 处后 , 想去O 点 , 那么他要向______方向 , 走______米 .24 . 已知∠α 的余角是∠β 的补角的,31并且,23αβ∠=∠求∠α +∠β 的值 . 25 . 作图题 .(1)已知 : ∠α .求作 : ∠α 的补角 , 并画出∠α 的补角的平分线 .(2)已知 : ∠α .求作 : ∠α 的余角 , 并画出∠α 的余角的平分线 .26 . 填写下列空白和理由 :(1)如图所示 ,∵∠α 与∠β 互余 ,∴∠α +∠β =90° .(理由 : ______________)(2)如图所示 ,∵A , O , B 三点在同一直线上 ,∴∠________+∠________=180° .(理由 : __________________.)∴∠AOC 与∠BOC 互补 .(理由 : __________________.)(3)如图 ,∵∠AOB+∠BOC+∠COD+∠DOA=1周角,∴∠AOB+∠BOC+∠COD+∠DOA=360°.(理由_____________________.)∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=180°.(理由:__________________)又∵∠BOC=42°,∴∠AOD=180°-∠BOC=180°-42°=__________.。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 2A
3A 4O
(5)
A A 1
B 图形认识初步达标测验题
一、选择题:(每小题3分,共30分) 1.如图1所示的棱柱有( )
A.4个面
B.6个面
C.12条棱
D.15条棱
(1)
C
(2)
A
D
B
C
(3)
A
B γβ(4)
α
2.如图2,从正面看可看到△的是( )
3.如图3,图中有( )
A.3条直线
B.3条射线
C.3条线段
D.以上都不对 4.下列语句正确的是( )
A.如果PA=PB,那么P 是线段AB 的中点;
B.作∠AOB 的平分线CD
C.连接A 、B 两点得直线AB;
D.反向延长射线OP(O 为端点) 5.如图4,比较∠α、∠β、∠γ 的大小得( )
A. ∠γ>∠β>∠α;
B. ∠α=∠β;
C. ∠γ>∠α>∠β;
D. ∠β>∠α>∠γ. 6.5点整时,时钟上时针与分钟之间的夹角是( ) A.210° B.30° C.150° D.60°
7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )
A.互余
B.互补
C.既不互余也不互补
D.不确定 8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )
A. ∠α=∠β;
B. ∠α>∠β;
C. ∠α<∠β;
D. 以上都不对 9.如果∠α=3∠β, ∠α=2∠θ,则必有( ) A. ∠β=
12∠θ;B.∠β=1
3
∠θ;C.∠β=23∠θ;D.∠β=34∠θ; 10.如图5所示,已知∠AOB=64°,OA 1平分∠AOB,OA 2平分∠AOA 1,OA 3 平分∠AOA 2,OA 4平分∠
AOA 3,则∠AOA 4的大小为( )
A.8°
B.4°
C.2°
D.1° 二、填空题:(每小题3分,共30分)
11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.
12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.
13.57.32°=_______°_______′_______″;27°14′24″=_____°. 14.已知∠a=36°42′15″,那么∠a 的余角等于________. 15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.
16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____ 17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.
航线铁路
公路(6)
A
B
D
C
(7)
A
B
18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.
19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA , 则
n AA =_______________cm.
20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线. 三、解答题:(21、24、25、26每题6分,22、23题每题8分) 21.根据下列语句画图:
(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC; (3)反向延长OC 得射线OD;
(4)分别在射线OA 、OB 、OD 上画线段OE=OF=OG=2cm; (5)连接EF 、EG 、FG;
(6)你能发现EF 、EG 、FG 有什么关系?∠EFG 、∠EGF 、∠GEF 有什么关系?
22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长. 23.如图,直线AB 、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. (1)求∠2和∠3的度数.
(2)OF 平分∠AOD 吗?为什么?
32
1
O
F
C
A E
B
24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.
25.测量员沿着一块地的周围测绘.从A 向东走600米到B,再从B 向东南(∠ABC= 135°)走500米到C,再从C 向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA 的长(精确到10米)和DA 的方向(精确到1°).
北
D
C
A B
第四章
一、选择题
1.D
2.C
3.C
4.D
5.C
6.C
7.B
8.B
9.C 10.B
二、填空题
11.12cm 12.两点之间,线段最短 13.57、19、12;27.24 14. 53°17′45″ 15.同角的补角相等
16.140° 17.90 18.180°;19°38′29″. 19.
1
2
n
⎛⎫
⎪
⎝⎭
a 20.1或4或6
三、解答题
21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°
22.AM=7cm或3cm
23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD
24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.。