2016-2017学年第二学期阶段性检测七年级数学试题卷
最新【浙教版】七年级上册数学第1章《有理数 》检测试卷(含答案)

【浙教版】七年级数学上册第一章测试卷(含答案)阶段性测试(一)[考查范围:1.1~1.4总分:100分]一、选择题(每小题4分,共32分)1.在数-3,-2,0,3中,大小在-1和2之间的数是( C ) A.-3 B.-2 C.0 D.32.仔细思考以下各对量:①胜二局与负三局;②气温上升3 ℃与气温下降3 ℃;③盈利5万元与支出5万元;④增加10%与减少20%.其中具有相反意义的量有( C )A.1对B.2对C.3对D.4对3.下列说法中不正确的是(B)A.0的相反数、绝对值都是0B.0是最小的整数C.0大于一切负数D.0是最小的非负数4.如图,在数轴上点A表示的数最可能是(C)第4题图A.2.5 B.-2.5C .-3.5D .-2.95.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( C )第5题图A .点MB .点NC .点PD .点Q6.绝对值小于2.5的整数有( A )A .5个B .4个C .3个D .2个7.下列各式中正确的是( C )A .-|-16|>0B .|0.2|>|-0.2|C .-47>-57D.⎪⎪⎪⎪⎪⎪-16<0 8.下表是某市四个景区今年2月份某天6时的气温,其中气温最低的景区是( C )A.潜山公园 B .陆水湖 C .隐水洞D .三湖连江二、填空题(每小题5分,共20分)9.英语竞赛成绩100分以上为优秀,老师将其中三名同学的成绩以100分为标准记为:+11,-6,0,则这三名同学的实际成绩分别是111分,94分,100分.10.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有__7__个.第10题图11.对于一个数,给定条件A:该数是负整数,且大于-3;条件B:该数的绝对值等于2,那么同时满足这两个条件的数是__-2__.12.已知两个数5和-8,这两个数的相反数的和是__3__.三、解答题(共48分)13.(8分)把下列各数的序号填在相应的数集内:①1②-35③+3.2④0⑤13⑥-6.5⑦+108⑧-4⑨-6(1)正整数:{①⑦}.(2)正分数:{③⑤}.(3)负分数:{②⑥}.(4)负数:{②⑥⑧⑨}.14.(10分)如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A ,B ,C 三点表示的数.(2)根据C 点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?第14题图解:根据所给图形可知:(1)A 点表示2,B 点表示5,C 点表示-4.(2)蚂蚁实际上是从原点出发,向原点左侧爬行了4个单位长度. 15.(10分)计算: (1)|-10|+|+12|.(2)⎪⎪⎪⎪⎪⎪35-⎪⎪⎪⎪⎪⎪-14. (3)⎪⎪⎪⎪⎪⎪-313×|+1.5|. (4)|-20|÷⎪⎪⎪⎪⎪⎪-14-||15. 解:(1)原式=10+12=22. (2)原式=35-14=720. (3)原式=103×32=5.(4)原式=20÷14-15=80-15=65.16.(10分)如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为__B__.(2)若点B和点D表示的数互为相反数,则原点为__C__(3)若点A和点D表示的数互为相反数,则在数轴上表示出原点O的位置.第16题图解:(3)如图所示:17.(10分)在数轴上有三个点A,B,C,分别表示-3,0,2.按下列要求回答:(1)点A向右移动6个单位长度后,三个点表示的数谁最大?(2)点C向左移动3个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动点A,B,C中的两个点,才能使三个点所表示的数相同?有几种办法?分别写出来.解:(1)移动后A点表示的数是3,∵3>2>0,∴A点表示的数最大.(2)C点移动后表示的数是-1,∵B点表示的数为0,∴这时点B表示的数比点C表示的数大1;(3)有3种方法,分别是①A点不动,B点向左移动3个单位长度,C点向左移动5个单位长度;②B点不动,A点向右移动3个单位长度,C点向左移动2个单位长度;③C点不动,A点向右移动5个单位长度,B点向右移动2个单位长度.阶段性测试(二)[考查范围:2.1~2.4 总分:100分]一、选择题(每小题4分,共32分)1.下列各式运算正确的是(C)A.(-3)+(+7)=-4B.(-2)+(+2)=-4C.(+6)+(-11)=-5D.(-5)+(+3)=-82.若()-(-5)=-3,则括号内的数是(B)A.-2B.-8C.2 D.83.用算式表示“比-4 ℃低6 ℃的温度”正确的是(B)A.-4+6=2 B.-4-6=-10C.-4+6=-10 D.-4-6=-24.引入相反数后,加减混合运算可以统一为加法运算,用式子表示正确的是(D)A.a+b-C=a+b+CB.a-b+C=a+b+CC.a+b-C=a+(-b)+(-C)D.a+b-C=a+b+(-C)5.下列变形,运用运算律正确的是( B ) A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D.13+(-2)+⎝ ⎛⎭⎪⎫+23=⎝ ⎛⎭⎪⎫13+23+(+2)6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( C )第6题图①|b |<|a |; ②a -b >0; ③a +b >0; ④a -b >a +b . A .①② B .①③ C .②④D .③④7.某公司的仓库中原先有1.5万件货物,后又运出0.7万件,过了一段时间后计划往仓库中补充1.2万件,但因为某些原因,少往仓库中补充0.3万件,则现在仓库中的货物有( B )A .1.8万件B .1.7万件C .1.5万件D .1.1万件8.已知|a |=3,|b |=4,且a ,b 异号,则a -b 的值为( D ) A .1或7 B .-1或7 C .±1D .±7二、填空题(每小题5分,共20分)9.三个不同的有理数(不全同号)的和为1,请你写出一个算式__(-3)+5+(-1)(答案不唯一)__.10.若|a |=8,b 的相反数为5,则a +b 的值是__3或-13__.11a +C -b y +w -x -z .__4__.12.如图的号码是由12位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于12,则x 所代表的数为__5__.【解析】∵-2左边的两个空格中的数字之和为14,∴根据任何相邻的三个数字之和都等于12,可得x 右边的数字为-2,9右边的紧接着的两个空格中的两数之和为3,∴可得x 左边的空格中的数为9,故x =12-9+2=5. 三、解答题(共48分) 13.(8分)计算下列各式: (1)-114+2.75. (2)4.8-3.4-(-4.5). (3)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38.(4)12+⎝ ⎛⎭⎪⎫-23-⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-12.解:(1)-114+2.75=-1.25+2.75=1.5.(2)4.8-3.4-(-4.5)=4.8-3.4+4.5=5.9 (3)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38=23+13-18-38=1-12=12.(4)12+⎝ ⎛⎭⎪⎫-23-⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-12=12-12-23+45=-1015+1215=215. 14.(10分)张华记录了今年雨季钱塘江一周内水位变化的情况,如下表(正号表示比前一天高,负号表示比前一天低):(1)本周星期__二____水位最高,星期__一__水位最低. (2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)解:(2)设上周日的水位是a 米,(+0.25)+(0.80)+(-0.40)+(+0.03)+(+0.28)+(-0.36)+(-0.04)=0.56,则这周末的水位是(a +0.56)米,∴(a +0.56)-a =0.56>0,即本周日的水位是上升了. 15.(10分)计算⎝⎛⎭⎪⎫-556+⎝⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312时,小明把整数与分数拆开,再运用加法运算律计算:解:原式=⎣⎢⎡⎦⎥⎤(-5)+(-56)+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=[(-5)+(-9)+17+(-3)]+⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-56+⎝ ⎛⎭⎪⎫-23+34+⎝ ⎛⎭⎪⎫-12=0+⎝ ⎛⎭⎪⎫-114=-114.阅读小明的计算过程,如果喜欢他的方法,请你仿照计算下面题目,如不喜欢,请你用自己的方法计算.(1)-114+⎝⎛⎭⎪⎫-213)+756+⎝ ⎛⎭⎪⎫-412. (2)⎝ ⎛⎭⎪⎫-2 01723+2 01634+⎝ ⎛⎭⎪⎫-2 01556+1612. 解:(1)原式=(-1-2+7-4)+⎝ ⎛⎭⎪⎫-14-13+56-12=-14. (2)原式=(-2017+2016-2015+16)+⎝⎛⎭⎪⎫-23+34-56+12=-2 000-14=-2 00014.16.(10分)一名足球守门员练习折返跑,从球门的位置出发,向前记做正数,返回记做负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程? 解:根据题意得(1)5-3+10-8-6+12-10=0,故回到了原来的位置.(2)离开球门的位置最远是12米.(3)总路程=|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).17.(10分)已知A,B在数轴上分别对应数a,b.第17题图(1)对照数轴填写上表,并猜想:A、B两点间的距离可表示为(D)A.a+b B.a-bC.|a+b| D.|a-b|(2)数轴上|x-2|=1表示x到2的距离是1,则x的值是__1或3__.|3+5|表示的意义是__数轴上3到-5的距离__;(3)求出数轴上到7和-7的距离之和为14的所有整数的和.(4)若数轴上点C表示的数为x.①当点C对应数__-1__时,|x+1|的值最小,|x+1|的最小值是__0__.②当点C在什么位置时,|x+1|+|x-2|的值最小?并求出这个最解:(3)-7+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7=0.(4)②点C 在-1与2之间(包括-1和2)时|x +1|+|x -2|的值最小,此时|x +1|+|x -2|=x +1+2-x =3.阶 段 性 测 试(三)[考查范围:2.5-2.7 总分:100分]一、选择题(每小题4分,共32分)1.下列各式正确的是( B ) A .-12=1B .-(-3)=3C.223=49D .23=62.下列各式与-9+31+28-45相等的是( B ) A .-9+45+28-31 B .31-45-9+28 C .28-9-31-45D .45-9-28+313.据报道,目前我国的神威·太湖之光超级计算机的运行速度的峰值性能为每秒1 250 000 000亿次,数字1 250 000 000用科学记数法可表示为( B )A .1.25×1010B .1.25×109C .12.5×109D .1.25×10174.计算⎝⎛⎭⎪⎫1-12+13+14×(-12),运用哪种运算律可以避免通分A.乘法分配律B.乘法结合律C.乘法交换律D.乘法结合律和交换律5.计算-1÷(-15)×115的结果是(C) A.-1 B.1C.1225D.-2256.2017绍兴研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为(C) A.15×1010B.0.15×1012C.1.5×1011D.1.5×10127.若a<0,则下列结论不正确的是(B)A.a2=(-a)2B.a3=(-a)3C.a2=|a|2D.a3=-|-a|38.今年5月21日是全国第27个助残日,某特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是(B)手工制品手串中国结手提包木雕笔筒总数量(个)2001008070A.手串B .中国结C .手提包D .木雕笔筒二、填空题(每小题5分,共20分)9.把⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14写成乘方形式为__⎝ ⎛⎭⎪⎫-144__.10.如图是某市某12月连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__11_℃__.第10题图11.按程序运算(如图所示):第11题图例如,输入x =5时,则运算的结果为299,若使运算结果为363,那么所有满足条件的x (x 为正整数)的值是__6、23、91__.【解析】根据题意得:(363+1)÷4=364÷4=91; (91+1)÷4=92÷4=23; (23+1)÷4=24÷4=6,则所有满足条件的x 的值为6、23、91.12.求1+2+22+23+…+22 016的值,可令S =1+2+22+23+…+22 016,则2S =2+22+23+24+…+22 017,因此2S -S =22 017-1,仿照以上推理,计算出1+5+52+53+…+52 017的值为__52 018-14__.【解析】令S =1+5+52+53+…+52 017,则5S =5+52+53+…+52 018,∴S =5S -S 4=52 018-14.故答案为52 018-14. 三、解答题(共48分) 13.(8分)计算下列各式.(1)⎝⎛⎭⎪⎫-34+338+|-0.75|+⎝⎛⎭⎪⎫-512+⎪⎪⎪⎪⎪⎪-258.(2)-13×3+6×⎝ ⎛⎭⎪⎫-13.(3)2×⎝ ⎛⎭⎪⎫-25÷⎝⎛⎭⎪⎫-114. (4)-14-(1-0.5)×13×[2-(-3)2].解:(1)原式=-34+34+338+258-512=12. (2)原式=-1+(-2)=-3. (3)原式=2×25×45=1625.(4)原式=-1-0.5×13×(2-9)=-1-0.5×13×(-7)=-1+76=16.14.(8分)已知海拔每升高1 000 m ,气温下降6 ℃,某人乘热气球旅行,在地面时测得温度是8 ℃,当热气球升空后,测得高空温度是-1 ℃.求热气球的高度.解:根据题意得:[8-(-1)]×(1000÷6)=1 500(m), 答:热气球的高度为1 500 m. 15.(8分)阅读后回答问题:计算⎝⎛⎭⎪⎫-52÷(-15)×⎝⎛⎭⎪⎫-115.解:原式=-52÷⎣⎢⎡⎦⎥⎤(-15)×⎝ ⎛⎭⎪⎫-115① =-52÷1② =-52.③(1)上述的解法是否正确?答:__不正确__. 若有错误,在哪一步?答:__①__(填序号).错误的原因: 运算顺序不对(或是同级运算中,没有按照从左到右的顺序进行) .(2)写出正确的计算过程.解:(2)原式=-52÷(-15)×⎝ ⎛⎭⎪⎫-115=-52×115×115=-190.16.(8分)如图是“温州南”动车站前广场设计方案之一,其中大广场地面长方形的长200米,宽100米,大广场“含”一个边长为80米正方形广场,正方形广场又“含”一个半径为40米的圆形中心广场,按设计,图中阴影处铺设某种广场地砖.则广场地砖需要铺多少平方米?(π取3,结果精确到千位)第16题图解:200×100-(80×80-3×402)=20 000-(6 400-4 800)=20 000-1 600=18 400≈1.8×104(平方米).答:广场地砖大约需要铺1.8×104平方米.17.(8分)某次水灾导致大约有3.6×105人无家可归.假如一顶帐篷占地100m2,可以放置40个单人床位.(1)为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多大地方?(2)若学校的操场面积为10 000 m2,可安置多少人?要安置所有无家可归的人,大约需要多少个这样的操场?解:(1)安置所有无家可归的人,需要帐篷 3.6×105÷40=9×103(顶),这些帐篷大约要占9×103×100=9×105(m2).(2)学校的操场面积为10 000 m2,可安置10 000÷100×40=4×103(人),安置所有无家可归的人,大约需要这样的操场3.6×105÷(4×103)=90(个).18.(8分)为了保护环境节约水资源,我市按照居民家庭年用水量实行阶梯水价,水价分档递增.居民用户按照以下的标准执行:第一阶梯上限180立方米,水费价格为5元/每立方米;第二阶梯为181-260立方米之间,水费价格7元/每立方米;第三阶梯为260立方米以上用水量,水价为9元/每立方米.如表所示:根据以上材料解决问题:若小明家在2017年共用水200立方米,准备1000元的水费够用吗?说明理由.解:180×5+(200-180)×7=900+140=1040(元).∵1040>1000,∴准备1000元的水费不够.阶 段 性 测 试(四)[考查范围:2.1~2.7 总分:100分]一、选择题(每小题4分,共32分)1.地球上大陆的面积约为149 000 000平方千米,用科学记数法表示为( A )A .1.49×108平方千米B .149×106平方千米C .14.9×107平方千米D .0.149×109平方千米2.使用计算器的SOD 键,将1156的结果切换成小数格式为19.166 666 67,则对应这个结果19.166 666 67,以下说法错误的是( B )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数3.下列说法正确的是( B ) A .近似数3.6与3.60精确度相同 B .数2.995 4精确到百分位为3.00 C .近似数1.3×104精确到十分位D .近似数3.61万精确到百分位4.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得简便的运算律是( C )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律5.计算12+(-18)÷(-6)-(-3)×2的结果是( C )A .7B .8C .21D .366.根据如图所示的流程图计算,若输入x 的值为-1,则输出y 的值为( C )第6题图A .-2B .-1C .7D .177.某县2016年GDP 为1 050亿元,比上年增长13.2%,提前两年实现了市委、市政府在“十一五规划”中提出“到2018年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市2018年的GDP 为( A )A .1 050×(1+13.2%)2B .1 050×(1-13.2%)2C .1 050×(13.2%)2D .1 050×(1+13.2%)8.在小兰的生日宴会上,为了活跃气氛,10个同学全坐在盾牌后面进行数学游戏,男同学的盾牌前面是一个正数,女同学的盾牌前面是一个负数,这10个盾牌如图所示,则这10个同学中,有( A ) |-3|×|-2| -(-3) -12-(-2)2-7-9 ⎝ ⎛⎭⎪⎫-122+34 (-2)3-1 -3-(-2)÷⎝ ⎛⎭⎪⎫-12-|-27|(-3)2-(-15) |-9|-|-4|A .男生5人,女生5人B .男生4人,女生6人C .男生6人,女生4人D .男生7人,女生3人二、填空题(每小题5分,共20分)9.计算(-1)5+(-1)4=__0__.10.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费__39.5__元.11.党的十九大报告回顾了脱贫攻坚战的成就,2012年至2016年这五年,我国通过精准扶贫,已使5564万中国人摆脱贫困,把5564万用科学记数法表示,且精确到百万位应为__5.6×107__人.12.若|m |=3,|n |=5,且mn <0,则m +n 的值是__2或-2__.三、解答题(共48分)13.(8分)计算下列各式。
山西省太原市2017-2018学年七年级下学期阶段性测评数学试卷【PDF版】

解:(1)答案不惟一.例如:C2a + 6 ) U + 2 6 ) = 2a2 + 5M + 2 6 2.
4
(2) A . 如图
X — . < ■ " ■ ■ ■
----->■
X
分6
!
p
t
B. 如图
< X ..... ...... ----
分
X
T
<i
'4
评 分 说 明 :只 要 求 画 出 图 形 并 标 明 字 母 ,不 必 写 出 结 论 .
用含的式子表示七年级数学第6页共6页2017?2018学年第二学期七年级阶段性测评数学试题参考答案及评分标准择题本大是题号g含101个小题2毎小是3这3甘45j678910答案bcacbbddca二填空题本大题含5八小题每小题3分共i5分11
2017〜 2018学年第二学期七年级阶段性测评
数学试卷
(考试时间:上午8: 00— 9:30) 说 明 :本试卷为闭卷笔答,考试时不允许携带科学计算器,时 间 9 0 分钟,满分1〇〇分.
B. j
2.下列说法正确的是
C. - 4
D. 4
A . 同旁内角互补 C. 对顶角相等 3.下列运算正确的是
B•在同一平面内,若 0 丄 6 , 6 丄 (?,则 a 丄 D. —个角的补角一定是钝角
A . a _3 + a -5 = a2 C. (x - 1 )( 1 - x ) = x 2 - 1
= Z i3.
要求:不写作法,保留作图痕迹,标明字母.
容
〇
M
N
20.(本 题 6 分)
根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a + 6 ) U + 6 ) =
苏州市2015-2016学年七年级数学下期末复习要点试卷含答案

苏州市2015--2016学年第二学期初一数学期终复习要点本次考试范围:苏科版义务教育教科书七年级下学期课本全部内容:主要包括第7、8、9、10、11、12章内容。
考试时间:120分钟。
考试题型:选择、填空、解答三类。
分值:130分。
第七章平面图形认识(二)知识点:探索平行线的条件;平行线的性质;图形的平移;认识三角形;多边形内角和与外角和。
1.如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠C=80°,则∠D的度数是()A.400B.450C.500D.5502.下列各组线段能组成一个三角形的是()A.4 cm,6 cm,11 cm B.4 cm,5 cm,l cmC.3 cm,4 cm,5 cm D.2cm,3 cm,6 cm3.如果一个三角形的两边分别为2和4,则第三边长可能是()A.8 B.6 C. 4 D. 24.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.下列四个图形中,线段BE是△ABC的高的是()ABCD6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC且∠B=∠D.其中,能推出AB∥DC的是()A.①④B.②③C.①③D.①③④7.一个多边形的内角和是1080°,这个多边形的边数是()A.6 B.7C.8 D.98.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,四边形EFGH是由四边形ABCD通过平移得到,且点A、E、B,在同一条直线上.若AF=14,BE=6.则AB的长度是________.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.(第12题)(第13题)13.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE=_______°.14.在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.15.若三角形三条边长分别是1,a,5(其中a为整数),则a的取值为▲.16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=25°,∠3=20°则∠2的度数为▲°.17.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= ▲°.(第16题)(第17题)18.内角和等于外角和2倍的多边形是边形.19.如图,在Rt△ABC中,∠A=90°,∠C=30°,D为斜边上的一点且BD=AB,过点D作BC的垂线,交AC于点E.若△CDE的面积为a,则四边形ABDE的面积为.(第19题)(第20题)20.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t=.21. 叙述三角形内角和定理并将证明过程填写完整.定理:_________.已知:△ABC.求证:∠A +∠B+∠C=180°.证明:作边BC的延长线CD,过C点作CE∥AB.∴∠1=∠A(__________),∠2=∠B( _____________),∵∠ACB+∠1+∠2=180°( ____________),∴∠A+∠B+∠ACB=180°(_____________).22. 如图,在△ABC中,已知AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠DAE的度数;(2)小明认为如果只知道∠B-∠C=40°,也能算出∠DAE的度数.你认为可以吗?若能,请能写出解题过程;若不能,请说明理由.23. 请将下列证明过程补充完整:已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠BEF+∠ADC=180°.求证:∠AFG=∠G.证明:∵∠BEF+∠ADC=180°(已知),又∵(平角的定义),∴∠GED=∠ADC(等式的性质),∴AD∥GE(),∴∠AFG=∠BAD(),且∠G=∠CAD(),∵AD是△ABC的角平分线(已知),∴(角平分线的定义),∴∠AFG=∠G.24. △ABC中,∠B>∠C,∠BAC的平分线交BC于点D,设∠B=x,∠C=y.(1)如图1,若AE⊥BC于点E,试用x、y表示∠EAD,并说明理由.(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,则∠G=.(用x、y表示)25. 如图,一个三角形的纸片ABC,其中∠A=∠C.(1) 把△ABC纸片按(如图1) 所示折叠,使点A落在BC边上的点F处,.DE是折痕.说明B C∥DF;(2) 把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时(如图3),∠C与∠1、∠2的关系是▲.(直接写出结论)26. 如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 动点P从A出发,以1厘米/秒的速度沿A →B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),(1) 当点Q在BC边上运动时,t为何值,AP=BQ;(2) 当t为何值时,S△ADP=S△BQD.第八章幂运算、第九章整式乘法与因式分解知识点:同底数幂相乘;幂的乘方与积的乘方;同底数幂的除法;零指数与负指数;科学记数法。
陕西省榆林市高新区2023-2024学年七年级下学期期中数学试题(含答案)

榆林市高新区2023~2024学年度第二学期阶段性自测习题七年级数学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共4页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔分别在试卷和答题卡上填写姓名和准考证号.3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.计算(-a2)3的结果是()A.-a6B.a6C.a5D.-a52.如图,若∠AOC=∠BOD=90°,则∠1=∠2的理由是()A.同角的余角相等B.同角的补角相等C.对顶角相等D.角平分线的定义3.刻蚀机是芯片制造和微观加工最核心的设备之一,中国自主研发的6纳米刻蚀机已获成功,6纳米就是0.000000006米,数据0.000000006用科学记数法表示为()A.6×10-8B.6×10-9C.0.6×10-8D.60×10-94.小李要在规定的时间内加工100个零件,在加工过程中,他所加工完成的零件数量n随工作时间t的增加而增加,下列说法正确的是()A.数100和n、t都是常量B.数100和n都是变量C.n和t都是变量D.数100和t都是变量5.如图,直线a//b,c⊥d于点O,直线b经过点O,∠1=35°,则∠2的度数为()A.55°B.65°C.75°D.85°6.如图,直线AB与直线CD被直线EF所截,分别交AB、CD于点F、M,过点M作射线MN,则图中∠1的同位角有()A .∠3B .∠2或∠DMEC .∠2或∠3D .∠2或∠3或∠DME 7.若,则正确的为( )A .a <b <c B .a <c <b C .c <b <a D .b <a <c8.下表反映的是某地区电的使用量x (千瓦时)与应缴电费y (元)之间的关系:用电量x (千瓦时)12345…应缴电费y (元)0.55 1.1 1.65 2.2 2.75…以下说法错误的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .用电量每增加1千瓦时,电费增加0.55元C .当用电量为8千瓦时,则应缴电费4.4元D .用电量为6千瓦时所缴电费是用电量为3千瓦时所缴电费的3倍第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9.若,则= .10.小明开车从甲地出发前往乙地,行驶的车速为65 km /h ,则他距离甲地的路程y km 与他所行驶的时间x (h )之间的关系式是 .(不考虑自变量的取值范围)11.若(x -3)(x +5)=x 2+bx +c ,则bc = .12.如图,AB 与CD 交于点O ,OE 是∠AOC 的平分线,且OC 恰好平分∠EOB ,则∠AOD 的度数为 °.13.如图,AB //CDAB //EF,AF平分∠BAE ,∠DAE =10°,∠ADC =120°,则∠AFE 的度数为 °.三、解答题(共13小题,计81分.解答应写出过程)0221(0.3),3,3a b c -⎛⎫=--=-=- ⎪⎝⎭8,16m n a a ==m n a -14.(5分)计算:. 15.(5分)根据图象回答下列问题:(1)点A 、B 分别表示什么?(2)请写出一个实际情景,大致符合如图所刻画的关系.16.(5分)已知,求x 的值.17.(5分)如图,已知∠AOB ,请用尺规作图法,在∠AOB 上方作∠COA ,使得∠COA =∠AOB .(保留作图痕迹,不写作法)18.(5分)如图,已知直线AB 和CD 相交于点O ,∠DOE 是直角, OF 平分∠AOE ,∠BOD =22°,求∠AOE 和∠COF 的度数.19.(5分)下表是某同学做的“观察水的沸腾”实验时所记录的数据,实验过程共加热15分钟:时间(分)01234567891011温度(℃)2030405060708090100100100100(1)上表反映了哪两个变量之间的关系?(2)根据表格,你认为12分钟、13分钟时,水的温度是多少?(3)为了节约能源,你认为烧开水的时候应该在大约几分钟关闭煤气?20.(5分)如图,在三角形ABC 中,过点C 作射线CD ,点E 为边AC 上一点,过点E 作EF //AB ,点F 在三角形ABC 内部,连接BF ,∠DCB =80°,∠CBF =20°,∠EFB =120°,判断CD 与AB 有怎样的位置关系,并说明理由.01202421(1)32-⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭24233333x ⨯⨯=21.(6分)先化简,再求值:(3a -b )(b +3a )-3a (a -b ),其中a =-2,b =1.22.(7分)如图所示是某港口从上午8h 到下午20h 的水深情况,根据图象回答下列问题:(1)这段时间内大约什么时间港口的水位最深,深度是多少米?(2)这段时间内大约什么时候港口的水位最浅,深度是多少米?(3)在这段时间里,水深是如何变化的?23.(7分)如图,直线AB ,CD 相交于点O ,OM ⊥AB .(1)若ON ⊥CD ,判断∠1和∠2的关系,并说明理由;(2)若∠1∠BOC ,求∠AOD 的度数.24.(8分)某校准备在校园围墙一角用篱笆围一个长方形的小花园,已知长方形的长为8米,宽为x 米,当长方形的宽由小到大变化时,长方形的面积y (平方米)也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)求长方形的面积y (平方米)与宽x (米)之间的关系式,并说明当长方形的宽每增加1米时,长方形的面积如何变化?(3)当长方形的宽由3米增加到6米时,长方形的面积增加了多少平方米?25.(8分)如图,某新建高铁站广场前有一块长为(3a +b )米,宽为(a +3b )米的长方形空地,计划在空地中间留一个长方形喷泉(图中阴影部分),喷泉四周留有宽度均为b 米的人行通道.(1)请用代数式表示喷泉的面积并化简;(2)喷泉建成后,需给人行通道铺上地砖方便旅客通行,若每块地砖的面积是平方米,则刚好铺满不留缝隙,求需要这样的地砖多少块?26.(10分)如图,已知点E 在BC 的延长线上,AD ∥BE ,连接AB 、CD ,∠B =∠D .1310b(1)试说明:AB ∥CD ;(2)如图2,连接AE ,AF 平分∠BAE ,点F 在BC 的下方,过点F 作FM ∥AB ,CH 平分∠DCE 交AE 于点H ,延长HC 交AF 于点F .①若∠BAE =66°,∠DCE =70°,求∠AFC 的度数;②试探究∠B +∠BAE =2∠AFC 是否成立?并说明理由.图1 图2榆林市高新区2023~2024学年度第二学期阶段性自测习题七年级数学参考答案及评分标准一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.A2.A3.B4.C5.A6.B7.D8.D二、填空题(共5小题,每小题3分,计15分)9. 10.y =65x 11.-3012.6013.25三、解答题(共13小题,计81分.解答应写出过程)14.解:原式=1-1+2…………………(3分)=2………(5分)15.解:(1)点A 表示6分钟时的速度为60千米/时,点B 表示18分钟时的速度为0千米/时.…………(2分)(2)小明的爸爸驾车上班,前6分钟在加速行驶,加速到60千米/时后,匀速行驶了6分钟,12到18分钟减速行驶至停止.(答案不唯一,言之有理即可)………(5分)16.解:因为,所以,……(2分)所以1+2x +4=23,……………(4分)解得:x =9…………………(5分)17.解:如图所示,∠COA 即为所求.…………………(5分)1224233333x ⨯⨯=1242333x ++=18.解:因为∠DOE 是直角,所以∠COE =180°-90°=90°,又因为∠AOC =∠BOD =22°,所以∠AOE =∠AOC +∠COE =112°,……………………(3分)又因为OF 平分∠AOE ,所以∠AOF=∠AOE =56°所以∠COF =∠AOF -∠AOC =56°-22°=34°.……………(5分)19解:(1)上表反映了水的温度与时间的关系,·……………………(2分)(2)根据表格,可得:时间为12分钟和13分钟时,水的温度是100℃.……………(4分)(3)为了节约能源,烧开水的时候应该在大约8分钟关闭煤气.……………(5分)20.解:CD ∥AB ,理由如下:…………………(1分)因为EF ∥AB ,∠EFB =120°所以∠ABF =180°-120°=60°……………………(2分)因为∠CBF =20°,所以∠ABC =60°+20°=80°.……………………(3分)因为∠DCB =80°,所以∠DCB =∠ABC ,所以CD ∥AB .……………………(5分)21.解:(3a -b )(b +3a )-3a (a -b )=9a 2-b 2-3a 2+3ab ………………(3分)=6a 2-b 2+3ab ,……………………………(4分)当a =-2,b =1时,原式=………………(5分)=17…………………………(6分)22.解:(1)根据图象可得:13时港口的水位最深,深度约是7.5m .……………(2分)(2)根据图象可得:8时港口的水位最浅,深度约是2m .……………………(4分)(3)根据图象可得:8h~13h ,水位不断上升;13h~15h .位不断下降;15h~20h ,水位又开始上升.……(7分)23.解:(1)∠1=∠2,理由如下:…………………(1分)因为ON ⊥CD ,所以∠CON =∠AOC +∠2=90°.……………………(2分)12226(2)13(2)1⨯--+⨯-⨯因为OM ⊥AB ,所以∠AOM =∠AOC +∠1=90°,所以∠1=∠2…………………………(4分)(2)因为OM ⊥AB ,所以∠COB =∠1+∠B 0M =∠1+90°.……………………(5分)因为∠1=∠BOC ,所以∠BOM =∠BOC =90°,………………………………(6分)所以∠BOC =135°,所以∠AOD =∠BOC =135°.…………………………(7分)24.解:(1)在这个变化过程中,自变量、因变量分别是长方形的宽和面积.………………(2分)(2)y =8x ,答:长方形的面积y 与宽x 之间的关系式为y =8x ,当长方形的宽每增加1米时,长方形的面积增加8平方米.……………………(5分)(3)8×6-8×3=48-24=24(平方米),答:长方形的宽由3米增加到6米时,长方形的面积增加了24平方米.……………(8分)25.解:(1)由图可得,喷泉面积为:(3a +b -2b )(a +3b -2b )……………………(2分)=(3a -b )(a +b )=3a 2+2ab -b 2……………………(3分)(2)[(3a +b )(a +3b )-(3a 2+2ab -b 2]÷……………………(5分)=(3a 2+10ab +3b 2-3a 2-2ab +b 2)÷=(8ab +4b 2) ÷=80a +40b (块),答:需要这样的地砖(80+40b )块.……………………(8分)25.解:(1)因为AD ∥BE ;所以∠D =∠DCE ·……………………(1分)因为∠B =∠D ,所以∠B =∠DCE ,所以AB ∥CD .………………………(3分)(2)①因为∠BAE =66°,AF 平分∠BAE ,所以∠BAF =∠BAE =33°.因为CH 平分∠DCE ,∠DCE =70°,所以∠DCH =∠DCE =35°,132310b 10b 10b1212由(1)可知:AB ∥CD ,因为FM ∥AB所以AB ∥FM /∥CD .……………………(5分)所以∠AFM =∠BAF =33°,∠CFM =∠DCH =35°,所以∠AFC =∠AFM +∠CFM =33°+35°=68°.………………(6分)②∠B +∠BAE =2∠AFC 成立,理由如下:……………(7分)设∠BAE =,∠DCE =,因为AF 平分∠BAE ,所以∠BAF =因为CH 平分∠DCE ,所以∠DCH =.…………………(8分)因为AB ∥CD , FM ∥AB ,所以 FH ∥AB ∥CD ,所以∠AFM =∠BAF =,∠CFM =∠DCH =,所以∠AFC =∠AFM +∠CFM =(+)=(∠BAE +∠DCE ),即2∠AFC =∠BAE +∠DCE .……………………(9分)因为AB ∥CD ,所以∠B =∠DCE ,所以∠B +∠BAE =2∠AFC .………………(10分)αβ12α12β12α12β12αβ12。
初一数学阶段性测试试卷含答题纸、参考答案

2013~2014学年度第二学期第一次单元练习七 年 级 数 学(考试时间:100分钟 总分:100分 )一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在..答题纸相应位置.......上.) 1.点P (3,-5)在 A .第一象限内 B .第二象限内 C .第三象限内 D .第四象限内 2. 若点M (a —2,2a +3)是x 轴上的点,则a 的值是A .2B .23 C .32- D .-23.实数5,-37,38-,3.1415,2π,0,4.1010010001中,无理数的个数为A .2个B .3个C .4个D .5个 4.设a =15-1,a 在两个相邻整数之间,则这两个整数是 A .1和2 B .2和3 C .3和4 D .4和55.如图,︒=∠+∠18021,︒=∠1053,则4∠度数为A .︒75B .︒85C .︒95D .︒105 6.如图,小明在操场上从A 点出发,先沿南偏东32°方向走到B 点, 再沿南偏东62°方向走到C 点.这时,∠ABC 的度数是A .120°B .135°C .150°D .160°7.在如图所示的数轴上,AB AC 2=,A 、B 两点对应的实数分别为5和—1,则点C 所对应的实数是A .521+B .531+C .253+D .252-8.下列命题中是真命题的是A .从直线外一点到这条直线的垂线段叫做这点到这条直线的距离。
B .过一点有且只有一条直线与已知直线平行C .相等的角是对顶角D .过一点有且只有一条直线与已知直线垂直9.将一个直角三角板和一把直尺如图放置,如果∠α=42 °, 则∠β余角的度数是 A .︒42B .︒48C .︒30D .︒6010. 如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以1个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是 A .(2,0) B .(1-,1) C .(2-,1) D .(1-,1-) 二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在...答题纸相应位置.......上.) 11.5的平方根是 ▲ . 12. 如果一个数的平方根等于这个数的立方根,那么这个数是 ▲ . 13.若8)1(3-=-x ,则=x ▲ .14.把一张长方形纸条按右图中那样折叠后,若得到∠AOB ′= 70º,则∠OGC = ▲ .15.若414.12=,1414.0=a ,则a =_____▲___. 16.若点P (x ,y )是第二象限内的点,点P 到x 轴距离为3,到y 轴距离为5,则点P 的坐标是 ▲ .17.已知点A 坐标为)(52,2,若点A 是由点B 先向下平移5个单位,再向右平移2个单位得到的,则点B 的坐标为____▲_____.18.已知AB ∥ y 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 ▲ .三、解答题:(本大题共7小题,共56分.请在..答题纸指定区域.......内作答...,解答时应写出文 ac db4321'B 'C 1-05B C字说明、证明过程或演算步骤.)19(本题满分8分)计算(1)(4分)3201423125.01)2(274⨯---+-+)((2)(4分)233333--+)(20. (本题满分7分)如图,请你从①C B ∠=∠,②AD 平分BAC ∠的邻补角CAE ∠,③AD ∥BC 这三个论断中选择两个作为已知条件,证明余下的一个成立。
七年级上学期数学阶段性测试卷2.1 正数与负数(含答案)

2.1 正数与负数一.选择题(共 10 小题)1.如果向北走 6 步记作+6,那么向南走 8 步记作( )A .+8 步B .﹣8 步C .+14 步D .﹣2 步2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数 若其意义相反,则分别叫做正数与负数,若气温为零上 10℃记作+10℃,则﹣3℃ 表示气温为( )A .零上 3℃B .零下 3℃C .零上 7℃D .零下 7℃3.大米包装袋上(10±0.1)kg 的标识表示此袋大米重( )A .(9.9~10.1)kgB .10.1kgC .9.9kgD .10kg4.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负 数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是()A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时 5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是( )A .24.70 千克B .25.30 千克C .24.80 千克D .25.51 千克 6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有( )A .1 个B .2 个C .3 个D .4 个7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合 储藏此种水饺的是()A .﹣17℃B .﹣22℃C .﹣18℃D .﹣19℃8.有四包真空包装的火腿肠,每包以标准质量 450g 为基准,超过的克数记作 正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的 是()A .+2B .﹣3C .+4D .﹣19.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中城市 时差/时悉尼 +2纽约 ﹣13不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.0110.如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作.12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”).13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作米.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是kg.15.如果+20%表示增加20%,那么减少6%记作.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书本.1 7.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“元”.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是号篮球;(2)质量最大的篮球比质量最小的篮球重g.20.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次 ﹣6 第七次﹣2千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1. (1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶 1 千米耗油 0.5 升,这一天上午共耗油多少升?24.某公司 6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库) +31,﹣32,﹣16,+35,﹣38,﹣20. (1)经过这 6 天,仓库里的货品是(填增多了还是减少了).(2)经过这 6 天,仓库管理员结算发现仓库里还有货品 460 吨,那么 6 天前仓 库里有货品多少吨?(3)如果进出的装卸费都是每吨 5 元,那么这 6 天要付多少元装卸费?25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几? (2)这 8 名男生共做了多少个俯卧撑?26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远; (2)在第次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?﹣1 ﹣2 ﹣3 2 0 3 1 0参考答案与试题解析一.选择题(共10 小题)1.(2017•天门)如果向北走6 步记作+6,那么向南走8 步记作()A.+8 步B.﹣8 步C.+14 步D.﹣2 步【分析】“正”和“负”是表示互为相反意义的量,向北走记作正数,那么向北的反方向,向南走应记为负数.【解答】解:∵向北走6 步记作+6,∴向南走8 步记作﹣8,故选B.【点评】本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.3.(2017•六盘水)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kg C.9.9kg D.10kg【分析】根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”千克,∴大米质量的范围是:9.9~10.1 千克, 故选:A .【点评】本题考查正数和负数,解题的关键是明确题意,明确正数和负数在题目 中的实际意义.4.(2017•聊城)纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间 早的时数,负数表示同一时刻比北京时间晚的时数):当北京 6 月 15 日 23 时,悉尼、纽约的时间分别是( )A .6 月 16 日 1 时;6 月 15 日 10 时B .6 月 16 日 1 时;6 月 14 日 10 时C .6 月 15 日 21 时;6 月 15 日 10 时D .6 月 15 日 21 时;6 月 16 日 12 时 【分析】由统计表得出:悉尼时间比北京时间早 2 小时,悉尼比北京的时间要早 2 个小时,也就是 6 月 16 日 1 时.纽约比北京时间要晚 13 个小时,也就是 6 月 15 日 10 时.【解答】解:悉尼的时间是:6 月 15 日 23 时+2 小时=6 月 16 日 1 时, 纽约时间是:6 月 15 日 23 时﹣13 小时=6 月 15 日 10 时. 故选:A .【点评】本题考查了正数和负数.解决本题的关键是根据图表得出正确信息,再 结合题意计算.5.一种面粉的质量标识为“25±0.25 千克”,则下列面粉中合格的是( )A .24.70 千克B .25.30 千克C .24.80 千克D .25.51 千克【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表 示.【解答】解:“25±0.25 千克”表示合格范围在 25 上下 0.25 的范围内的是合格 品,即 24.75 到 25.25 之间的合格, 故只有 24.80 千克合格. 故选:C .城市 时差/时悉尼 +2纽约 ﹣13【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.在﹣2 、+ 、﹣3、2、0、4、5、﹣1 中,负数有()A.1 个B.2 个C.3 个D.4 个【分析】根据负数的定义逐一判断即可.【解答】解:在﹣2 、+、﹣3、2、0、4、5、﹣1 中,负数有在﹣2、﹣3、﹣1 共3 共个.故选:C.【点评】本题考查了负数的定义:小于0 的数是负数.7.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B、﹣22℃<﹣20℃,故B 不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B.【点评】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.8.有四包真空包装的火腿肠,每包以标准质量450g 为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是()A.+2 B.﹣3 C.+4 D.﹣1【分析】根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|2|=2,|﹣3|=3,|+4|=4,|﹣1|=1,∵1<2<3<4,∴从轻重的角度来看,最接近标准的是记录为﹣1.故选:D.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Ö45.02 B.Ö44.9 C.Ö44.98 D.Ö45.01【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03.∵44.9 不在该范围之内,∴不合格的是B.故选:B.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.10.(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二.填空题(共10 小题)11.如果向东走3 米记为+3 米,那么向西走6 米记作﹣6 米.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意,向西走6 米记作﹣6 米.故答案为:﹣6 米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示12.某种零件,标明要求是ö:20±0.02 mm(ö表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).【分析】ö20±0.02 mm,知零件直径最大是20+0.02=20.02,最小是20﹣0.02=19.98,合格范围在19.98 和20.02 之间.【解答】解:零件合格范围在19.98 和20.02 之间.19.9<19.98,所以不合格.故答案为:不合格.【点评】本题考查数学在实际生活中的应用.13.如果把长江的水位比警戒水位高0.2 米,记作+0.2 米,那么比警戒水位低0.15 米,记作﹣0.15 米.【分析】由已知长江的水位比警戒水位高0.2 米,记作+0.2 米,根据正负数的意义可得出.【解答】解:已知长江的水位比警戒水位高0.2 米,记作+0.2 米,则比警戒水位低0.15 米,记作﹣0.15 米.故答案为:﹣0.15 米.【点评】此题考查了学生对正负数意义的理解与掌握.关键是高记“+”,则低记“﹣”.14.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3 袋大米的实际重量是49.3kg.【分析】根据有理数的加法,可得答案.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.【点评】本题考查了正数和负数,利用有理数的加法运算是解题关键.15.(2016 秋•渝北区期末)如果+20%表示增加20%,那么减少6%记作﹣6% .【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.【解答】解:根据正数和负数的定义可知,﹣6%表示减少6%,故答案为:﹣6%【点评】此题考查正数和负数问题,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.阅览室某一书架上原有图书20 本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书19 本.【分析】(﹣3,+1)表示借出3 本归还1 本,求出20 与借出归还的和就是该书架上现有图书的本数,【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19【点评】本题考查了有理数的加减混合运算,弄懂记录(﹣3,+1)等是关键.17.仔细思考下列各对量:①胜两局与负三局;②气温升高3℃与气温为﹣3℃;③盈利3 万元与支出3 万元;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65.其中具有相反意义的量有①②.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.【解答】解:①胜两局与负三局,符合题意;②气温升高3℃与气温为﹣3℃,符合题意;③盈利3 万元与支出3 万元,不合题意;④甲、乙两支球队组织了两场篮球比赛,甲、乙两队的比分分别为65:60 与60:65,不合题意.故答案为:①②.【点评】此题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.若收入10 万元记做“+10 万元”,则支出1000 元记做“ ﹣1000元”.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意得:支出1000 元记作:﹣1000 元;故答案为:﹣1000;【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.检查5 个篮球的质量,把超过标准质量的克数记作整数,不足的克数记作负数,检查结果如表:篮球的编号与标准质量的差(g)1+42+73﹣34﹣85+9(1)最接近标准质量的是 3 号篮球;(2)质量最大的篮球比质量最小的篮球重17 g.【分析】(1)根据超过标准质量的克数记作整数,不足的克数记作负数,绝对值最小的最接近标准,可得最接近标准质量的球;(2)根据质量最大的篮球减去质量最小的篮球,可得(2)的结果.【解答】解:(1)∵|4|=4,|7|=7,|﹣3|=3,|﹣8|=8,|9|=9,3<4<7<8<9,∴3 号球质量接近标准质量,故答案为:3;(2)质量最大的排球比质量最小的排球重:9﹣(﹣8)=17(克),故答案为:17.【点评】本题考查了绝对值、有理数的减法在实际中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.20.(2017•江西)中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为﹣3 .【分析】根据有理数的加法,可得答案.【解答】解:图②中表示(+2)+(﹣5)=﹣3,故答案为:﹣3.【点评】本题考查了有理数的运算,利用有理数的加法运算是解题关键.三.解答题(共6 小题)21.在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100 克,检测每100克奶粉蛋白质含量与规定每100 克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5(1)求平均每100 克奶粉含蛋白质为多少?(2)每100 克奶粉含蛋白质不少于14 克为合格,求合格率为多少?【分析】(1)平均每100 克奶粉含蛋白质为:标准克数+其余数的平均数,把相关数值代入即可求解;(2)找到合格的奶粉的数目,除以总数目即为所求的合格率.【解答】解:(1)+15=14.6(g);(2)其中﹣3,﹣4,﹣5,﹣1.5 为不合格,那么合格的有6 个,合格率为=60%.【点评】用到的等量关系为:平均数=标准+和标准相比其余数的平均数;合格率等于合格数目与总数目之比.22.足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果;(2)求出每一段到出发点的距离,即可判断出结果;(3)利用绝对值的性质以及有理数加法法则求出即可.【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277 米.【点评】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.23.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1 千米耗油0.5 升,这一天上午共耗油多少升?【分析】(1)将题目中的数据相加,即可解答本题;(2)取题目中的各个数据的绝对值,将它们相加再乘以0.5 即可解答本题.【解答】解:(1)由题意可得,5+(﹣4)+3+(﹣7)+4+(﹣8)+2+(﹣1)=﹣6,答:A 处在岗亭南方,距离岗亭6 千米;(2)由题意可得,0.5×(5+4+3+7+4+8+2+1)=0.5×34=17,答:这一天上午共耗油17 升.【点评】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.24.某公司6 天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣32,﹣16,+35,﹣38,﹣20.(1)经过这6 天,仓库里的货品是减少(填增多了还是减少了).(2)经过这6 天,仓库管理员结算发现仓库里还有货品460 吨,那么6 天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5 元,那么这6 天要付多少元装卸费?【分析】(1)将所有数据相加即可作出判断,若为正,则说明增多了,若为负,则说明减少了;(2)结合(1)的答案即可作出判断;(3)计算出所有数据的绝对值之和,然后根据进出的装卸费都是每吨5 元,可得出这6 天要付的装卸费.【解答】解:(1))+31﹣32﹣16+35﹣38﹣20=﹣40(吨),∵﹣40<0,∴仓库里的货品是减少了.故答案为:减少了.(2)+31﹣32﹣16+35﹣38﹣20=﹣40,即经过这6 天仓库里的货品减少了40 吨,所以6 天前仓库里有货品460+40=500 吨.(3)31+32+16+35+38+20=172(吨),172×5=860(元).答:这6 天要付860 元装卸费.第一次 ﹣3 第二次 +8 第三次 ﹣9 第四次 +10 第五次 +4 第六次 ﹣6 第七次﹣2【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性, 确定具有相反意义的.25.某校对七年级男生进行俯卧撑测试,以能做 7 个为标准,超过的次数用正 数表示,不足的次数用负数表示,其中 8 名男生的成绩如下表:(1)这 8 名男生的达标率是百分之几? (2)这 8 名男生共做了多少个俯卧撑?【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知, 正数为超过的次数,负数为不足的次数.【解答】解:(1)这 8 名男生的达标的百分数是 ×100%=62.5%;(2)这 8 名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56 个. 【点评】本题考查了正数和负数的知识,属于基础题,解决本题的关键理解已知 中正数、负数的含义.26.某检修小组从 A 地出发,在东西方向的马路上检修线路,如果规定向东行 驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km ):(1)求收工时检修小组距 A 地多远;(2)在第五次记录时时检修小组距 A 地最远;(3)若每千米耗油 0.1L ,每升汽油需 6.0 元,问检修小组工作一天需汽油费多 少元?【分析】(1)七次行驶的和即收工时检修小组距离 A 地的距离;(2)计算每一 次记录检修小组离开 A 的距离,比较后得出检修小组距 A 地最远的次数;(3) 每次记录的绝对值的和,是检修小组一天的行程,根据单位行程的耗油量计算出 该检修小组一天的耗油量.﹣1 ﹣2 ﹣3 2 0 3 1 0【解答】解:(1)﹣3+8﹣9+10+4﹣6﹣2=2(km),所以收工时距A 地2 km(2)第一次后,检修小组距A 地3km;第二次后,检修小组距A 地﹣3+8=5(km);第三次后,检修小组距A 地﹣3+8﹣9=﹣4(km)第四次后,检修小组距A 地﹣3+8﹣9+10=6(km)第五次后,检修小组距A 地﹣3+8﹣9+10+4=10(km)第六次后,检修小组距A 地﹣3+8﹣9+10+4﹣6=4(km)第七次后,检修小组距A 地﹣3+8﹣9+10+4﹣6﹣2=2(km)故答案为:五(3)(3+8+9+10+4+6+2)×0.1×6.0=42×0.1×6.0=25.2(元)答:检修小组工作一天需汽油费25.2 元【点评】本题考查了有理数的加减法在生活中的应用.耗油量=行程×单位行程耗油量.。
山东省2016-2017第二学期七年级期中阶段性检测数学试题

2016-2017学年度山东省第二学期七年级期中阶段性检测数学试题一、精心选一选:(将唯一正确答案的代号字母填在下面的方格内,每小题3分,共42分).1.如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3, B.∠5=∠4, C.∠5+∠3=180°, D.∠4+∠2=180°2.如图,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°, B.130°, C.135°, D.140°3.如图,E为BC上一点,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有A.5个B.4个C.3个D.2个4.天安门广场上五星红旗的旗杆与地面的位置关系属于()A.直线与直线平行, B.直线与直线垂直C.直线与平面平行, D.直线与平面垂直5.下列语句不是命题的是A.对顶角相等B.两点之间线段最短C.同旁内角互补D.延长线段AB到C6n-3)2=0,则m等于A.1B.-1C 1 D 1 7.下列说法中,错误的是A.4的算术平方根是2 B 3C.8的立方根是±2 D.-1的立方根等于-18.下列各式中,正确的是A=B.=C=-5 D.2=99.若x,y y=4,则xy的值A.0 B.4 C.2 D.不能确定10.有下列说法:其中正确的说法的个数是(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.A.1 B.2 C.3 D.411.已知y轴上的点P到x轴的距离为5,则点P的坐标为A.(5,0)B.(0,5)或(0,-5)C.(0,5)D.(5,0)或(-5,0)12.下列语句:(1)点(3,2)与点(2,3)是同一个点;(2)点(2,1)在第二象限;(3)点(2,0)在第一象限;(4)点(0,2)在x轴上,其中正确的是A.(1)(2)B.(2)(3)C.(1)(2)(3)(4)D.没有13.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形A.横向向右平移2个单位B.横向向左平移2个单位C.纵向向上平移2个单位D.纵向向下平移2个单位14.已知坐标平面内点M(a,b)在第三象限,那么点N(b,-a)在A.第一象限B.第二象限C.第三象限D.第四象限二、认真填一填:将正确答案直接填在题中横线上(每小题3分,共15分).15.两条直线相交所成的四个角中,有一组邻补角相等时,这两条直线的位置关系是____.16____.17.一个自然数的算术平方根是x,则它下一个自然数的立方根是____.18.若点P(2m+4,3m+3)在x轴上,则点P的坐标为____.19.已知点P到x轴的距离为3个单位长度,到y轴的距离为4个单位长度,则点的坐标为____.三、开动脑筋,你一定能做对!(本大题共3小题,共l8分)+;20.计算(6分)1221.(本小题满分6分)如果a的算术平方根是4,b-1是8的立方根,求a-b-4的平方根.22.(本小题满分6分)如图:AB∥CD,AE与CD相交与点C,DE⊥AE于E,并且∠A=40°,求∠D的度数.四、认真思考,你一定能成功!(本大题共2小题,共18分)23.(本小题满分8分)如图,已知EF∥AD,∠1=∠2.证明:∠DGA+∠BAC=180°(写出每一步的依据)24.(本小题满分10分)如图,在平面直角坐标系中,画出△ABC的三个顶点分别是A(4,3),B(3,0),C(1,2).(1)画出△ABC.(2)求△ABC的面积.(3)平移△ABC,使点C与原点O重合,A、B两点分别与D、E对应,并画出△DOE.(4)写出D、E两点的坐标.五、相信自己,加油啊!(本大题共2小题,共22分)25.(本小题满分l0分)小明同学家在学校以东150m再往北100m处,小华同学家在学校以东50m再往南200m处,小玲同学家在学校以南150处.建立适当的平面直角坐标系,在坐标系里画出这三位同学家的位置,并用坐标表示出来.26.(本小题满分l2分)(1)引例:如图①所示,直线AD∥CE。
四十二中天津市第四十二中学2016-2017学年度第二学期

天津市第四十二中学2016-2017学年度第二学期 七年级 数学学科 第一次阶段检测卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.试卷满分100分.第Ⅰ卷(选择题 共36分)一、选择题(本大题共10小题,每小题3分,共6分)每小题给出的四个选项中,只有一个最符合题A .3B .3±C .13± D .3-2.下列图形中,1∠与2∠是对顶角的是()A .B .C .D .3.如图所示,下列说法错误的是()A .A ∠和B ∠是同旁内角 B .A ∠和3∠是内错角C .1∠和3∠是内错角D .C ∠和3∠是同位角4.如图,已知点O 在直线AB 上,CO DO ⊥于点O ,若1=145∠︒,则3∠的度数为()A .35︒B .45︒C .55︒D .65︒5.如图,点E 在AC 的延长线上,下列条件能判断AB CD ∥的是()21211221C321BA321O DCBAA .3=4∠∠B .D DCE ∠=∠C .180D ACD ∠+∠=︒ D .12∠=∠ 6.如图,12180∠+∠=︒,3108∠=︒,则4∠=()A .72︒B .80︒C .82︒D .108︒ 7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a b ∥,b c ∥,则a c ∥ A .1个 B .2个 C .3个 D .4个8.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A .第一次右拐50︒,第二次左拐130︒B .第一次右拐50︒,第二次右拐50︒C .第一次左拐50︒,第二次左拐130︒D .第一次左拐50︒,第二次右拐50︒ 9.如图,AB CD ∥,1=58∠︒,FG 平分EFD ∠,则FGB ∠度数为()A .122︒B .151︒C .116︒D .97︒10.如图,有一块长为32cm ,宽为24cm 的草坪,其中有两条宽2m 的直道把草坪分为4块,则草坪的面积为()A .2660mB .2656mC .2640mD .2670m11.如图,一张长方形纸条折成如图的形状,如果1=130∠︒,2∠度数为()4321EDCBA4321dc ba1FEDCBA2米24A .50︒B .60︒C .55︒D .65︒ 12.如图,若AB EF ∥,那么BCE ∠=()A .12∠+∠B .21∠-∠C .18021︒-∠+∠D .18012︒-∠+∠ 二、填空题(每空3分共18分)13=;.1415.如图,已知直线m n ∥,1=100∠︒,则2∠的度数为.16.如图,计划把河中的水引到水池M 中,可以先过M 点作MC AB ⊥,垂足为C ,然后沿MC 开渠,则能使所开的渠最短,这种设计方案的根据是.17.如图,如果AB CD EF ∥∥,那么BAC ACE CEF ∠+∠+∠=.21F 21EC BA12nmBAFEDC BA18.如图,点A ,C ,F ,B 在同一直线上,CD 平分ECB ∠,FG CD ∥,若ECA ∠为α度,则GFB∠为度(用关于α的代数式表示).三、解答题(共46分) 19.求下列各式中的x :①.()2216x +=,②.()38156x +=-20.已知3是21a -的一个平方根,351a b +-的立方根是4,求2a b +的平方根.21.如图,直线AB 、CD 交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.22.如图所示,已知B C ∠=∠,AD BC ∥,试说明:AD 平分CAE ∠.23.如图1032BAD ∠=︒-∠,772B ∠=︒+∠,AC CD ⊥于C ,EF CD ⊥于F ,请将下面说明1=2∠∠的理由补充完整.解:∵1032BAD ∠=︒-∠,772B ∠=︒+∠(已知)∴180BAD B ∠+∠=︒(等式性质) ∴()∴13∠=∠()∵AC CD ⊥于C ,EF CD ⊥于F (已知) ∴90ACD EFD ∠=∠=︒() ∴AC EF ∥() ∴() ∴1=2∠∠()GF EDC BAOEDCBAEDCB A 321FEDCBA24.如图,12=180∠+∠︒,3=B ∠∠,试判断AED ∠与C ∠的数量关系,并对结论进行说明.25.如图,已知直线12l l ∥,直线3l 和直线1l 、2l 交于点C 和D ,在直线CD 上有一点P . (Ⅰ)如果P 点在C 、D 之间运动时,问PAC ∠,APB ∠,PBD ∠有怎样的数量关系?请说明理由. (Ⅱ)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合),试探索PAC ∠,APB ∠,PBD∠之间的关系又是如何?321FGEDCBAPDC B Al 3l 2l 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2016-2017学年第二学期阶段性检测七年级数
学试题卷
考生须知:本试卷分答题卷与试题卷,满分100分,答题时间90分钟.请在答题卷...指定位置答题.
一. 选择题(共10题,每题3分,共30分)
1.下列四个汉字,可以看作轴对称图形的是( )
A .余
B .新
C .中
D .学
2. 在△ABC 中,∠A =35°,∠B =55°,则∠C 的度数是( )
A .80°
B .90°
C .100°
D .110°
3.下列各组线段,能构成三角形的是( ) A .1,1,1 B .1,1,2 C .1,2,3 D .1,2,4
4. 如图所示,∠A ,∠1,∠2的大小关系是( )
A .∠A >∠1>∠2
B .∠2>∠1>∠A
C .∠A >∠2>∠1
D .∠2>∠A >∠1
5、如下图,若△ABC ≌△DEF ,则∠E 等于( )
A .30°
B .50°
C .60°
D .100°
6、如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )
A 、线段BE 的长度
B 、线段E
C 的长度 C 、线段BC 的长度
D 、线段EF 的长度
7. 小明照镜子的时候,发现T 恤上的英文单词在镜子中呈现的样子是( ) A . B . C .
D .
第5题 第4题图 A B C
D
E F
第6题
8、 如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )
A .三角形的稳定性
B .垂线段最短
C .两点之间线段最短
D .两点确定一条直线
9、在△ABC 和△DEC 中,已知∠1=∠2,∠B =∠E ,要判定这两个三角形全等,还需要添加的条件是( )
A .A
B =CE B .A
C =DC C .∠A =∠
D D .AB =DC
10. 如右图,△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A =110°,∠D =40°,则∠α的度数是( )
A .30°
B .40°
C .50°
D .60°
二、填空题(每小题3分,共30分)
11、 已知小明手中有两条长度分别为2cm 和3cm 的小木棒,请你给小明找一根小木棒,使它和小明手中的两根小木棒能组成一个三角形,你找的小木棒的长度是__________cm (只需填一个你认为合适的长度就可以)
12、将线段AB 平移1cm ,得到线段A ′B ′,则点A 到点A ′的距离是______cm
13、在△ABC 中,C B A ∠=∠+∠,则△ABC 的形状是____________三角形
14、如图,在△ABC 中,BD 是中线,AB =4cm,BC =6cm ,则△BCD 的周长与△ABD 的周长的差是___________cm.
15、如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 _______cm .
16、如图,△ABC 中,AB 的垂直平分线交AC 于点D ,交AB 于点E ,若△BDC 的周长为13cm ,BC =5cm ,则AC 的长是________cm.
第8题图
第10题图 第9题
第14题 第15题 第16题
17、在1:100的地图上某个图形的周长是20cm ,则它的实际周长是_______cm.
18、 如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 _______2
cm
19、如图,在△ABC 中,过点A 作AD ⊥BC 交BC 的延长线于点D ,过点C 作CE ⊥BC 交AB 于点E ,若AD =3cm ,CE =2cm ,BC =6cm ,则△ABC 的面积是________2cm
20、 如图所示,CD 是线段AB 的垂直平分线,D 在AB 上,有下列结论:①AD =BD ; ②AC =BC ;③∠A =∠B ;④∠ACD =∠BCD ;⑤∠ADC =∠BDC =90°.其中正确
的结论有_________________(只需填序号)
三、解答题(共5题,共40分)
21. 如图,已知∠BAC =∠EDF ,AB =DE ,AF =DC ,则△ABC ≌△DEF .请说明理由(填空)
证明:∵AF =DC (已知)
∴AF +_______ =DC +_________
即________ =__________ (等式的性质)
在△ABC 和△ADE 中 ⎪⎩
⎪⎨⎧===(已证)已知)已知)______________(
____(DE AB ∴△ABC ≌△ADE ( ).
22、如图,已知∠A =∠D ,∠ABC =∠DCB ,则AB =DC ,请说明理由.
第18题图
第20题图 第19题图 第
21题图
23. 如图,请借助直尺按要求画图: (1)平移方格纸中左下角的图形,
使点1P 平移到点2P 处,画出
经平移后的图形。
(2)将点1P 平移到点3P 处,
并画出将原图放大为两倍的图形.
24. 如图,在△ABC 中,AD 是高线,
(1)用直尺和圆规作出△ABC 的角平分线AE ,(保留作图痕迹,不必写作法)
(2)若∠B =80º,∠C =50º,请求∠DAE 的度数.
25、如图1,在∠AOB 的两边上分别截取OD =OE ,OM =ON ,连结DN 、EM.
(1)请说明∠OEM =∠ODN 的理由;
(2)小明在做完后,继续研究,他发现如果设DN 、EM 的交点为P ,过点P 作
射线OP (如图2),则OP 平分∠AOB ,请你帮忙小明说明理由.
第25题图1 第25题图2 第24题 第23题。