我的高考数学错题本我的高考数学错题本——第1章集合易错题

合集下载

第一章 集合易错题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

第一章 集合易错题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练

专题03 集合中的易错题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②⌀≠⊂{0};③{0,1,2}⊆{1,2,0};④N∈R;⑤0∩⌀=⌀;A. 1B. 2C. 3D. 42.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<323.若集合A={x∈N|x≤√2020},a=2√2,则下列结论正确的是()A. {a}⊆AB. a⊆AC. {a}∈AD. a∉A4.已知集合A={x||x|<3,x∈N},集合B={−1,0,1,2},则图中阴影部分所表示的集合为()A. {1,2}B. {0,1,2}C. {−1,1,2}D. {−1,0,1,2}5.已知集合{1,2}⊆A⊆{1,2,3,4,5,6},则满足条件的A的个数为()A. 16B. 15C. 8D. 76.下列所给的关系式正确的个数是()①0⊆N;②π∈Q;③{a}⊆{a,b,c,d};④⌀∈R.A. 1B. 2C. 3D. 4二、多选题7.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是A. 集合M={−4,−2,0,2,4}为闭集合B. 正整数集是闭集合C. 集合M={n|n=3k,k∈Z}为闭集合D. 若集合A1,A2为闭集合,则A1∪A2为闭集合8.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. −4∈MD. 4∈M三、单空题9.已知集合A={x|−2<x<5},B={x|p+1<x<2p−1},A∪B=A,则实数p的取值范围是______.10.A={x|x2=1},B={x|mx=1},若A∪B=A,则m的取值集合为_____.11.下列表示正确的是①{0}=⌀,②{2}∈{x2−3x+2=0}③0∈{0}④C U(A⋂B)=(C U A)⋂(C U B)12.已知全集U=R,集合A={x|y=√−x},B={y|y=1−x2},那么集合(∁U A)∩B=____________.四、解答题13.已知全集U={x∈N|x<6},集合A={1,2,3},B={2,4}.求:(1)A∩B,C U(A⋃B);(2)设集合C=x{|−a⩽x⩽2a−1}且C U(A⋃B)⊆C,求a的取值范围;14.已知A={x|3⩽x⩽5},B={x|2a⩽x⩽a+3},全集U=R.(1)当a=1时,求A∩B和A∪B;(2)若B⊆(C U A),求实数a的取值范围.15.设A={x|x2+2(a+1)x+a2−1=0},B={x|x(x+4)(x−12)=0,x∈Z}.若A⊆A∩B,求a的取值范围.专题03 集合中的易错题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:16.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②⌀≠⊂{0};③{0,1,2}⊆{1,2,0};④N∈R;⑤0∩⌀=⌀;A. 1B. 2C. 3D. 4【答案】C【解析】【分析】本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.据“∈”于元素与集合;“∩”用于集合与集合间;判断出①④⑤错,集合是它本身的子集,⌀是非空集合的真子集判断出②④的对错.【解答】解:对于①,“∈”是用于元素与集合的关系,故①错,对于②,⌀是任意非空集合的真子集,故②对,对于③,集合是它本身的子集,故③对,对于④,“∈”是用于元素与集合的关系,故④错,对于⑤,因为∩是用于集合与集合的关系的,故⑤错,故选C.17.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<32【答案】B 【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识, 分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围. 【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意; ②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3, 解得0≤m <13, 综合可得m ≥0,∴实数m 的取值范围是m ≥0. 故选B .18. 若集合A ={x ∈N|x ≤√2020},a =2√2,则下列结论正确的是( )A. {a}⊆AB. a ⊆AC. {a}∈AD. a ∉A【答案】D 【解析】 【分析】本题考查元素和集合的关系,集合和集合的关系. 【解答】解:因为a =2√2不是自然数,而集合A 是不大于√2020的自然数构成的集合, 所以a ∉A . 故选D .19. 已知集合A ={x||x|<3,x ∈N},集合B ={−1,0,1,2},则图中阴影部分所表示的集合为( )A. {1,2}B. {0,1,2}C. {−1,1,2}D. {−1,0,1,2}【答案】B【解析】【分析】本题主要考查用venn图表示集合的交集运算,易知图中阴影部分对应的集合为A∩B.【解答】解:A={x||x|<3,x∈N}={x|−3<x<3,x∈N}={0,1,2},易知图中阴影部分对应的集合为A∩B,A∩B={0,1,2},故选B.20.已知集合{1,2}⊆A⊆{1,2,3,4,5,6},则满足条件的A的个数为()A. 16B. 15C. 8D. 7【答案】A【解析】【分析】根据题意A中必须有1,2这两个元素,因此A的个数应为集合{3,4,5,6}的子集的个数.【解答】解:∵{1,2}⊆A⊆{1,2,3,4,5},∴集合A中必须含有1,2两个元素,可以含有3,4,5,6.因此满足条件的集合A为{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,5,6},{1,2,4,5,6},{1,2,3,4,5,6}共16个.故选A.21.下列所给的关系式正确的个数是()①0⊆N;②π∈Q;③{a}⊆{a,b,c,d};④⌀∈R.A. 1B. 2C. 3D. 4【答案】A【解析】【分析】本题考查了集合与元素、集合与集合的关系,【解答】解:①0⊆N,0为集合N的一个元素,0∈N,故①错误,②π∈Q,因为π为无理数,π∉Q,故②错误,③{a}⊆{a,b,c,d},因为集合{a}是集合{a,b,c,d}的子集,故③正确,④⌀∈R,因为ϕ为R 的子集,故④错误.故选A.二、多选题22.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是A. 集合M={−4,−2,0,2,4}为闭集合B. 正整数集是闭集合C. 集合M={n|n=3k,k∈Z}为闭集合D. 若集合A1,A2为闭集合,则A1∪A2为闭集合【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,根据闭集合定义逐一判断即可.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,则a+b∈M,但a−b不一定属于M,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,所以集合M是闭集合.D.设A1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈(A1∪A2),而(2+3)∉(A1∪A2),此时A1∪A2不为闭集合.所以说法中不正确的是ABD.故选ABD.23.已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A. 0∉MB. 2∈MC. −4∈MD. 4∈M 【答案】CD【解析】【分析】本题考查集合中元素的性质、集合与元素的关系,注意题意中x、y、z的位置有对称性,即代数式的值只与x、y、z中有几个为负数有关,与具体x、y、z中谁为负无关.根据题意,分析可得代数式x|x|+y|y|+z|z|+|xyz|xyz的值与x、y、z的符号有关;按其符号的不同分4种情况讨论,分别求出代数式在各种情况下的值,即可得M,分析选项可得答案.【解答】解:根据题意,分4种情况讨论;①x、y、z全部为负数时,则xyz也为负数,则x|x|+y|y|+z|z|+|xyz|xyz=−4,②x、y、z中有一个为负数时,则xyz为负数,则x|x|+y|y|+z|z|+|xyz|xyz=0,③x、y、z中有两个为负数时,则xyz为正数,则x|x|+y|y|+z|z|+|xyz|xyz=0,④x、y、z全部为正数时,则xyz也正数,则x|x|+y|y|+z|z|+|xyz|xyz=4;则M={4,−4,0},分析选项可得CD符合.故选CD.三、单空题24.已知集合A={x|−2<x<5},B={x|p+1<x<2p−1},A∪B=A,则实数p的取值范围是______.【答案】(−∞,3]【解析】【分析】本题考查了集合的并集以及集合中的参数取值问题,集合的包含关系,考查了分类讨论的思想及转化的思想,解题的关键是根据题设条件对集体B分类讨论,解出参数p的取值范围.由题意,由A∪B=A,可得B⊆A,再由A={x|−2<x<5},B={x|p+1<x<2p−1},分B=⌀,B≠⌀两类解出参数p的取值范围即可得到答案.【解答】解:由A∪B=A,可得B⊆A,又A={x|−2<x<5},B={x|p+1<x<2p−1},若B=⌀,即p+1≥2p−1得p≤2,显然符合题意;若B ≠⌀,即有p +1<2p −1,得p >2时, 有{p +1≥−22p −1≤5,解得−3≤p ≤3, 故有2<p ≤3,综上可知,实数p 的取值范围是(−∞,3]. 故答案为(−∞,3].25. A ={x|x 2=1},B ={x|mx =1},若A ∪B =A ,则m 的取值集合为_____.【答案】{−1,0,1} 【解析】 【分析】本题考查集合的求法,考查并集、子集等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,当m =0时,B =⌀,A ∪B =A 成立;当m ≠0,B ={1m },由A ∪B =A ,得B ⊂A ,从而1m =−1或1m =1,由此能求出m 的取值的集合. 【解答】解:∵集合A ={x|x 2=1}={−1,1},B ={x|mx =1},且A ∪B =A , ∴当m =0时,B =⌀,A ∪B =A 成立; 当m ≠0,B ={1m },由A ∪B =A ,得B ⊂A , ∴1m =−1或1m =1, 解得m =−1或m =1.综上,m 的取值的集合为{−1,0,1}. 故答案为{−1,0,1}.26. 下列表示正确的是①{0}=⌀,②{2}∈{x 2−3x +2=0} ③0∈{0}④C U (A⋂B)=(C U A)⋂(C U B) 【答案】③ 【解析】 【分析】本题考查集合与集合之间的关系、元素与集合之间的关系的应用,由集合与集合之间的关系、元素与集合之间的关系进行判断即可.【解答】解:①{0}⫌⌀,所以错误;②{2}∈{x2−3x+2=0}集合之间关系,首先符号错误,其次{x2−3x+2=0}中就一个元素x2−3x+ 2=0,所以错误;③0∈{0},正确;④取U={1,2,3},A={1,2},B={1},则C U(A∩B)={2,3},(C U A)∩(C U B)={3},所以错误.故答案为③.27.已知全集U=R,集合A={x|y=√−x},B={y|y=1−x2},那么集合(∁U A)∩B=____________.【答案】(0,1]【解析】【分析】本题考查了函数的定义域,指数函数的值域,以及交集的运算,先化简集合A和B,然后求集合A的补集,再根据两个集合的交集的意义求解.【解答】解:∵A={x|y=√−x},B={y|y=1−x2},∴A={x|x≤0},B={y|y≤1}∴∁U A={x|x>0},(∁U A)∩B={y|0<y≤1}(∁U A)∩B=(0,1].故答案为(0,1].四、解答题28.已知全集U={x∈N|x<6},集合A={1,2,3},B={2,4}.求:(1)A∩B,C U(A⋃B);(2)设集合C=x{|−a⩽x⩽2a−1}且C U(A⋃B)⊆C,求a的取值范围;【答案】解:(1)因为A={1,2,3},B={2,4},所以A ∩B ={2},A ∪B ={1,2,3,4}, 因为U ={x ∈N|x <6}={0,1,2,3,4,5} ∴C U (A ∪B)={0,5}; (2)∵C U (A ∪B)⊆C , ∴{−a <02a −1⩾52a −1>−a , 解得a ≥3. 故a ≥3. 【解析】略29. 已知A ={x|3⩽x ⩽5},B ={x|2a ⩽x ⩽a +3},全集U =R .(1)当a =1时,求A ∩B 和A ∪B ; (2)若B ⊆(C U A),求实数a 的取值范围. 【答案】 解:(1)当a =1时,B ={x|2⩽x ⩽4}, A ∩B ={x|3⩽x ⩽4} A ∪B ={x|2⩽x ⩽5}, (2)C U A ={x|x <3或x >5}当B =⌀时,2a >a +3,a >3符合题意, 当B ≠⌀时,{2a ≤a +3a +3<3,或{2a ≤a +32a >5, 解得a <0或52<a ≤3, 所以a ∈(−∞,0)∪(52,+∞).【解析】本题考查集合中的参数取值问题,属于集合包含关系的运用,求解本题关键是理解包含关系的意义,本题中有一易错点,在第二小问中空集容易因为忘记讨论B 是空集导到失分,这是一个很容易失分的失分点,切记.(1)当a =1时,先求出集合B ,再根据交集的定义求集合A ∩B 和A ∪B 即可;(2)若B ⊆(C U A),求实数a 的取值范围进要注意B 是空集的情况,故此题分为两类求,是空集时,不是空集时,比较两个集合的端点即可.)=0,x∈Z}.若A⊆A∩B,求a的取值30.设A={x|x2+2(a+1)x+a2−1=0},B={x|x(x+4)(x−12范围.【答案】解:B={−4,0},由A⊆A∩B知:A=A∩B,即:A⊆B,①当A=⌀时,方程x2+2(a+1)x+a2−1=0无解,即Δ=4(a+1)2−4(a2−1)<0,解得:a<−1;②当A为单元素集时,Δ=4(a+1)2−4(a2−1)=0,即a=−1,此时A={0}满足题意;③当A={−4,0}时,−4和0是关于x的方程x2+2(a+1)x+a2−1=0的两根,∴a=1.综上所述:a≤−1或a=1.【解析】本题考查了子集、交集的定义及其运算,考查了分类讨论思想.先求得集合B,由A⊆A∩B知:A=A∩B,即:A⊆B,利用分类讨论方法分别求得集合A=⌀,集合A为单元素集和A={−4,0}时a的范围,再综合即可.11。

2023年人教版高中数学第一章集合与常用逻辑用语易错题集锦

2023年人教版高中数学第一章集合与常用逻辑用语易错题集锦

(名师选题)2023年人教版高中数学第一章集合与常用逻辑用语易错题集锦单选题1、已知x∈R,则“x≠0”是“x+|x|>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要答案:B分析:由x+|x|>0可解得x>0,即可判断.由x+|x|>0可解得x>0,∵“x≠0”是“x>0”的必要不充分条件,故“x≠0”是“x+|x|>0”的必要不充分条件.故选:B.2、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C3、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.4、下列说法正确的是()A.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}B.∅与{0}是同一个集合C.集合{x|y=x2−1}与集合{y|y=x2−1}是同一个集合D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是同一个集合答案:A分析:根据集合的定义和性质逐项判断可得答案集合中的元素具有无序性,故A正确;∅是不含任何元素的集合,{0}是含有一个元素0的集合,故B错误;集合{x|y=x2−1}=R,集合{y|y=x2−1}={y|y≥−1},故C错误;集合{x|x2+5x+6=0}={x|(x+2)(x+3)=0}中有两个元素−2,−3,集合{x2+5x+6=0}中只有一个元素,为方程x2+5x+6=0,故D错误.故选:A.5、下列关系中,正确的是()A.√3∈N B.14∈Z C.0∈{0}D.12∉Q答案:C分析:根据元素与集合的关系求解.根据常见的数集,元素与集合的关系可知,√3∈N,14∈Z,12∉Q不正确,故选:C6、已知命题p:∃x∈(−1,3),x2−a−2≤0.若p为假命题,则a的取值范围为()A.(−∞,−2)B.(−∞,−1)C.(−∞,7)D.(−∞,0)答案:A解析:由题可得命题p的否定为真命题,即可由此求解.∵p为假命题,∴¬p:∀x∈(−1,3),x2−a−2>0为真命题,故a<x2−2恒成立,∵y=x2−2在x∈(−1,3)的最小值为−2,∴a<−2.故选:A.7、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.8、2022年3月21日,东方航空公司MU5735航班在广西梧州市上空失联并坠毁.专家指出:飞机坠毁原因需要找到飞机自带的两部飞行记录器(黑匣子),如果两部黑匣子都被找到,那么就能形成一个初步的事故原因认定.3月23日16时30分左右,广西武警官兵找到一个黑匣子,虽其外表遭破坏,但内部存储设备完整,研究判定为驾驶员座舱录音器.则“找到驾驶员座舱录音器”是“初步事故原因认定”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案:C分析:因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,根据充分与必要条件的定义即可判断出结果.因为两部黑匣子都被找到,就能形成一个初步的事故原因认定,则“找到驾驶员座舱录音器”不能形成“初步事故原因认定”;而形成“初步事故原因认定”则表示已经“找到驾驶员座舱录音器”,故“找到驾驶员座舱录音器”是“初步事故原因认定”的必要不充分条件,故选:C.9、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.10、下图中矩形表示集合U,A,B是U的两个子集,则不能表示阴影部分的是()A.(∁U A)∩BB.∁B(A∩B)C.∁U(A∩(∁U B))D.∁A∪B A答案:C分析:根据韦恩图,分U为全集,B为全集,A∪B为全集时,讨论求解.由图知:当U为全集时,阴影部分表示集合A的补集与集合B的交集,即(∁U A)∩B当B为全集时,阴影部分表示A∩B的补集,即∁B(A∩B)当A∪B为全集时,阴影部分表示A的补集,即∁A∪B A故选:C11、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.12、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.双空题13、设集合A={x∈R|0<x<2},B={x∈R||x|<1},则A∩B=_____,(∁R A)∪B= ___.答案:{x|0<x<1}{x|x<1或x≥2}分析:先求出集合B,然后进行集合运算即可.由题意:B={x∈R||x|<1}={x|−1<x<1},因为A={x∈R|0<x<2},所以A∩B={x|0<x<1},∁R A={x|x≤0或x≥2},所以(∁R A)∪B={x|x<1或x≥2}所以答案是:{x|0<x<1};{x|x<1或x≥2}小提示:此题考查集合的交并补运算,考查了绝对值不等式,属于基础题.14、设集合A={−1,0}B={t|t=y−x,x∈A且y∈A}则用列举法表示集合B=____________;A∩B =__________.答案: {−1,0,1} {−1,0}分析:根据A 中的元素,以及t =y -x 确定出B 中元素;根据交集的运算规则计算A ∩B 即可.t =y −x ,x ∈A 且y ∈A ,则x =-1,y =-1时t =0;x =-1,y =0时t =1;x =0,y =-1时t =-1;x =0,y =0时t =0;B ={−1,0,1},A ∩B ={−1,0}.所以答案是:{−1,0,1};{−1,0}15、A n ={x|2n <x <2n+1,x =3m,m ∈N},若|A n |表示集合A n 中元素的个数,则|A 5|=_______,则|A 1|+|A 2|+|A 3|+...+|A 10|=_______.答案: 11 682分析:解不等式25<3m <26可得|A 5|=11,再考虑2113的整数部分,从而|A 1|+|A 2|+|A 3|+...+|A 10|的值. 当n =5时,25<3m <26,故323<m <643,即11≤m ≤21,|A 5|=11, 由于2n 不能整除3,且2113=68223,故从21到211,3的倍数共有682个,|A 1|+|A 2|+|A 3|+...+|A 10|=682.所以答案是:11,682.16、已知集合M ,对于它的非空子集A ,将A 中每个元素k 都乘以(−1)k 后再求和,称为A 的“元素特征和”. 比如∶A ={4}的“元素特征和”为(−1)k ×4=4,A ={1,2,5} 的“元素特征和”为(-1)1×1+(-1)2×2+(-1)5×5=-4,那么: (平行班)集合M ={1,2,3,4,5}的所有非空子集的"元素特征和"的总和为_______(实验班)集合M ={1,2,⋅⋅⋅,n -1,n}的所有非空子集的“元素特征和”的总和为_______答案: -48 (-1)n [n +1-(-1)n 2]⋅2n -2分析:根据集合元素个数可确定非空子集个数,并得到每个元素出现的次数,按照已知中的运算即得.因为M={1,2,3,4,5}的所有非空子集共有25-1个,所以每个元素1,2,3,4,5在集合M的所有非空子集中都出现24次,所以所有非空子集的"元素特征和"的总和为:24×[(-1)1×1+(-1)2×2+(-1)3×3+(-1)4×4+(-1)5×5]=-48;因为M={1,2,⋅⋅⋅,n-1,n}的所有非空子集共有2n-1个,每个元素在集合M的所有非空子集中都出现2n-1次,所以所有非空子集的"元素特征和"的总和为:[-1+2-3+4-⋅⋅⋅+(-1)n n]⋅2n-1=[(-1+2)+(-3+4)+⋅⋅⋅]⋅2n-1={n2⋅2n-1,n为偶数-n-1 2⋅2n-1,n为奇数,即为(-1)n[n+1-(-1)n2]⋅2n-2.所以答案是:-48;(-1)n[n+1-(-1)n2]⋅2n-2.小提示:数学中的新定义题目解题策略:①仔细阅读,理解新定义的内涵;②根据新定义,对对应知识进行再迁移.17、已知全集U={2,3,5},集合A={x|x2+bx+c=0},若∁U A={2},则b=_______,c=_______.答案:−8 15分析:根据补集的结果推出集合A,可知方程x2+bx+c=0的两个实数根为3和5,利用根与系数的关系即可求得b、c.∵∁U A={2},∴A={3,5},∴方程x2+bx+c=0的两个实数根为3和5,∴b=−(3+5)=−8,c=3×5=15.所以答案是:−8;15小提示:本题考查集合补集的概念、一元二次方程,属于基础题.解答题18、已知m >0,p:(x +1)(x −5)≤0,q:1−m ≤x ≤1+m .(1)若m =5,p ∨q 为真命题,p ∧q 为假命题,求实数x 的取值范围;(2)若p 是q 的充分条件,求实数m 的取值范围.答案:(1){x|−4≤x <−1或5<x ≤6};(2)[4,+∞).分析:(1)由“p ∨q ”为真命题,“p ∧q ”为假命题,可得p 与q 一真一假,然后分p 真q 假,p 假q 真,求解即可;(2)由p 是q 的充分条件,可得[−1,5]⊆[1−m,1+m],则有{m >01−m ≤−11+m ≥5,从而可求出实数m 的取值范围(1)当m =5时,q:−4≤x ≤6,因为“p ∨q ”为真命题,“p ∧q ”为假命题,故p 与q 一真一假,若p 真q 假,则{−1≤x ≤5x <−4或x >6,该不等式组无解; 若p 假q 真,则{x <−1或x >5−4≤x ≤6,得−4≤x <−1或5<x ≤6, 综上所述,实数的取值范围为{x|−4≤x <−1或5<x ≤6};(2)因为p 是q 的充分条件,故[−1,5]⊆[1−m,1+m],故{m >01−m ≤−11+m ≥5,得m ≥4,故实数m 的取值范围为[4,+∞).19、已知集合A ={x|x =m +√6n,其中m,n ∈Q}.(1)试分别判断x 1=−√6,x 2=√2−√3√2+√3与集合A 的关系;(2)若x 1,x 2∈A ,则x 1x 2是否一定为集合A 的元素?请说明你的理由.答案:(1)x 1∈A ,x 2∈A(2)x 1x 2∈A ,理由见解析分析:(1)将x 1,x 2化简,并判断是否可以化为m +√6n ,m,n ∈Q 的形式即可判断关系.(2)由题设,令x 1=m 1+√6n 1,x 2=m 2+√6n 2,进而判断是否有x 1x 2=m +√6n ,m,n ∈Q 的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.20、已知p:{x|{x+2≥0x−10≤0},q:{x|1-m≤x≤1+m,m>0}.(1)若m=1,则p是q的什么条件?(2)若p是q的充分不必要条件,求实数m的取值范围.答案:(1)p是q的必要不充分条件;(2)m∈[9,+∞).分析:(1)分别求出p、q对应的集合,根据集合间的关系即可得出答案;(2)根据p是q的充分不必要条件,则p对应的集合是q对应的集合的真子集,列出不等式组,解得即可得出答案.(1)因为p:{x|{x+2≥0x−10≤0}={x|-2≤x≤10},若m=1,则q:{x|1-m≤x≤1+m,m>0}={x|0≤x≤2},显然{x|0≤x≤2}⊂≠{x|-2≤x≤10},所以p是q的必要不充分条件.(2)由(1),知p:{x|-2≤x≤10},因为p是q的充分不必要条件,所以{x∣−2≤x≤10}⊂≠{x∣1−m≤x≤1+m},所以{m>01−m≤−21+m≥10,且1−m≤−2和1+m≥10不同时取等号,解得m≥9,即m∈[9,+∞).。

我的错题本之高中数学(一)集合与函数:专题二函数的概念及其表示(含答案解析)

我的错题本之高中数学(一)集合与函数:专题二函数的概念及其表示(含答案解析)

专题三函数的观点及其表示雷区 1:函数定义理解不到位例 1:以下四个图象中,是函数图象的是()A .(1)( 2)B .( 3)C.(2)( 3)D.( 3)(4)错解:( 1)中的线条不连续,不是函数图象,(3)(4)中曲线比较对称,是函数图象,应选 D.上边的错解主假如对函数的定义没有透辟的理解,忽视函数定义中重点条件:在会合 A 中随意一个 x 在会合 B 中都有独一的 y 值对应 .1、关于会合 A = {x|0 ≤ x≤,2}B= {y|0 ≤ y≤,3}则由以下图形给出的对应 f 中,能组成从A 到B 的函数的是()【剖析】关于B, C 两图能够找到一个x 与两个 y 对应的情况,关于 A 图,当 x= 2 时,在B中找不到与之对应的元素.对函数定义理解抓住两点:(1)A,B为非空数集;(2)从会合 A 到会合 B 的元素对应必易爆警告须拥有独一性,判断给出的曲线是不是函数图象主假如考虑第二条.雷区2:求解函数值域忽视定义域优先的原则例 2:已知 f (x) 2 log3x, x[1,9] ,试求函数y[ f ( x)] 2 f ( x2 ) 的值域.错解:∵f ( ) 2 log3xy[ f ( x)]22)2+ 2 + log 2 =,∴ f (x= (2+ log 3x)3xx(log 3x)2+ 6log 3x+ 6= (log 3x+ 3)2- 3.∵ x∈ 1, 9],∴ 0≤log最小值= 6, y 最大值= 22.∴函数 f(x) 的值域是 6,22] .3x≤2,∴ yf(x) 的定义域和 f(x 2 )的定义域是不一样的,只关注f(x) 的定义域为1,9],而认为 f(x 2)的定义域也为1, 9]是产生错误的根来源因.2、函数 y= 2-- x2+ 4x的值域是()A .- 2,2]B .1, 2]C.0, 2]D.- 2, 2]【剖析】∵- x2+ 4x=- (x- 2)2+ 4≤4,∴ 0≤ - x2+ 4x≤2∴.0≤2-- x2+ 4x≤2,应选 C.3、奇函数f (x) )是定义在(1,1) 上的减函数,且 f (1a) f (2 a1)0 ,务实数的取值范围 .【剖析】由 f (1a) f (2 a1) 0,得 f (1a) f (2 a1)∵ f (x) 是奇函数,∴ f ( x) f (x) ,∴ f (1a) f (12a)11a1又∵ f ( x) 是定义在 (1,1) 上的减函数,∴112a1,解得 0a1.1a12a即所务实数的取值范围是0 a 1.求函数的值域,不只要重视对应法例的作用,并且还要特别注意定义域对值域的限制作易爆警告用,关于复合函数的定义域,应牢记: “内层函数的值域是外层函数的定义域 ”.雷区 3:对分段函数定义理解不透致误2x a, x 1例 3:已知实数 a0 ,函数 f (x),若 f (1 a) f (1 a) ,则 a.x 2a, x 1错解一:, ,由f (1 a) f (1 a)可得 1 a 2a 2 2a a,1 a 1 1 a 1解得 a3.4错 解 二 :( 1 ) 当 a0 时 , 1 a 1 , 1 a 1 , 由 f (1 a ) f (1a 得)2 2a a1 a 2a , 解 得 a3 a0 时 , 1 a1 , 1 a 1 , 由;(2)当23,综上所述,3f (1 a )得 1a 2a2 2a a ,解得或f (1 a )aa3 44a.2此题易出现的错误主要有两个方面:(1) 误认为 1 a 1, 1 a 1,没有对进行议论直接代入求解;(2) 求解过程中忘掉查验所求结果能否切合要求致误.(3a 1)x 4a, x 1) 上的减函数, 那么的取值范围是 (例 4:已知 f ( x)是 ( ,)log a x,( x 1)A .(0,1)B. (0, 1 )C.[1, 1)D. [1 ,1)37 37错解:依题意应有 3a 1 0 1a ,解得 0 a,选 B.13此题的错误在于没有注意分段函数的特色,只保证了函数在每一段上是单一递减的,没有使函数 f(x) 在 (- ∞, 1]上的最小值大于 (1,+ ∞)上的最大值,进而得犯错误结果.【剖析】 据题意要使原函数在定义域 R 上为减函数,要知足3a - 1<0,且 0< a < 1,及 x =1 时 (3a - 1) ×1+ 4a ≥ log a 1,解得 a 的取值范围为 [ 1 , 1) ,应选 C.7 3例 5:已知函数 f x2 2 x , x 1,,不等式 f x 2 的解集为.2x 2, x1,错解:由22 x2 ,得 x1 ;由 2x2 2 ,得 x 0 ,所以 f x2 的解集为2(1] [0,).2解第一个不等式时,忽视了“x 1”这个大前提.f (x)x, x 0f a =4x 2 , x 04、设函数 ,则实数 a,若( )A .-4 或- 2B .-4或2C .-2 或 4D .-2或 2f a =4a 4, a4; a 2 4, a 2, a 2(舍去),即 a【剖析】 由知,a 0 a1f (x)( a 1) x 3 a 4,( x 0)a x,( x 0)B4或,选.x 1 x 25、已知 且 ,函数 知足对随意实数,都有f ( x 2 ) f (x 1)x 2x 1建立,则的取值范围是()0,11,( C ) (1, 5]( D ) [5,2)( A )( B )33yf ( x)a 1 0a 1【剖析】由已知得函数在 R 上单一递加,故知足3a41,解得的取值范围是(1,5].36、设函数 fx 2 x , x 0,2 ,则实数 t 的取值范围是(x2, x 0, 若 f f t)xA..2B.2.C.. 2D.2.办理分段函数的求值问题, 重要紧切记 “对号入坐 ”原则,即一定考虑自变量的取值所在区间,易爆警告假如取值不太明确时,经常要利用分类议论的思想进行办理 .①分类议论思想在求函数值中的应用:关于分段函数的求值问题,若自变量的取值范围不确立,应分状况求解 .②查验所求自变量的值或范围能否切合题意:求解过程中,求出的参数的值或范围其实不一定切合题意,所以要查验结果能否切合要求 .1、以下图像中不可以作为函数图像的是( )【剖析】 B 项中的图像与垂直于 x 轴的直线可能有两个交点,明显不知足函数的定义.应选B.2x1, x] 表示不超出 x 的最大整数,则函数 y = f(x)] 的值域为(2、设函数 f(x) = 1+ 2 x - 2 )A .{0}B .{ -1,0}C . {-1,0, 1}D .{ -2,0}【剖析】 ∵ f(x) = 1- x 1 1 1 1 x1 1 +1 - = - x,又 2 > 0,∴- 2<f(x) < .∴ y = f(x)] 的值域为 { -2 2 2 2 + 121,0} .3、函数 y 16 4x 的值域是()A .0,+∞)B . 0, 4]C . 0, 4)D . (0, 4)【剖析】由已知得 0≤16- 4x <16, 0≤ 16- 4x < 16= 4,即函数 y =16-4x 的值域是 0,4).答案: C4、设函数 f (x)x, x,若 f ( a)f ( 1) 2 ,则 a()x , xA . 3B . 3C . 1D .15、已知函数 f(x) =2x - 3, x ∈{x ∈N|1 ≤ x ≤,5}则函数 f (x) 的值域为 ________.【剖析】∵ x ∈ {x ∈ N|1≤x ≤5}= {1 , 2, 3, 4, 5} ,∴ x =1 时 y =- 1; x = 2 时 y = 1; x = 3 时, y = 3;x = 4 时, y = 5; x = 5 时, y = 7,∴ y ∈ { - 1, 1, 3, 5, 7} .答案: { - 1,1,3, 5, 7}a, (a b) 6 、 对 任 意 两 实 数 a 、 b , 定 义 运 算 “ * ”如 下 : a bb) ,则函数b, (af ( x) l o 1g(3x 2) * l o 2gx 的值域为 ________.21【剖析】f ( x) log23x 2 , ( x 1)1log 1 (3x 2) * log 2 x2,∴当 x ≥1时,≤1,2log 2 x, ( x 1)3x - 232x2< f(x) <0.∴ f(x) 的值域为 (- ∞, 0].f(x) ≤0;当 3 1时, log 23ax 2+1, x 0,( a 2- ) ax , <7、函数 f ( x)1 e x 0________.在(-∞,+ ∞)上单一,则的取值范围是e x- ,2k x(- , 08、已知函数f ( x) 1 k ) x.是 R 上的增函数,则实数的取值范围是e 0 2k1-,2(- k )解得【剖析】由题意得 1 ≤<1. 9、设函数 f ( x)2 x 21,( x 1) f (a)1a,若,则.log 2 (1 x), (x1)【剖析】f (4)2 42 131f ( f (4)) f (31) log 2 32 5a1 ,; 当时 ,2a 111 2a 11时, log 2 (1 a)1 , aa1,;当 a,综上 1或 a .2210、已知函数 f ( x)3x , x [0,1] ,当 t[ 0,1] 时, f [ f (t )] [ 0,1] ,则实数的取值范93x, x(1,3]2 2围是 .【剖析】当 t [ 0,1] 时, f (t )3t [1,3] ,故当 3t 1,即 t 0 时, f [ f (t)]33t3 [0,1] ,当 3t(1,3] ,即t (0,1]时, f [ f (t )]9 3 3t[ 0,1] ,解得t[log 3 71,1] .2211、已知函数 f ( x)log 2 x(x0)x2,则不等式 f (x ) 0 的解集为.1( x0)【剖析】当 x 0 时,log2 x0log2 1,解得 0x 1; 当 x0时, 1x2>0 ,解得1x0 ,所以不等式 f (x )0 的解集为 ( 1,1).12、设 O为坐标原点,给定一个定点A(4 , 3),而点 B(x , 0)在 x 轴的正半轴上挪动, l(x)表示线段 AB 的长度,求函数yx的值域.l (x)。

高一数学必修一集合错题集.doc

高一数学必修一集合错题集.doc

第一讲集合与函数概念对应练习1 (对应易错点1、易错点2、易错点3)已知集合^={x|x2—1=0},则下列式子表示正确的有()②{—1}丘乂③0—④{1, -1}^AA.1个B. 2个C. 3个D. 4个答案:C解析:A = {x|x2— 1 = 0} = {1, — 1}.①③④均正确.对应练习2 (对应易错点5)集合A={y\y=x2+1},集合B={(x, y)\y=x2+l}(A, B中诈R, yER),选项中元素与集合的关系都正确的是()A.2",且2GBB.(l,2)e^,且(l,2)e5C. 2 —,且(3,10)WBD.(3,10)G,且2EB答案C解析:集合/中元素y是实数,不是点,故选项B, D不对.集合B的元素(x, y)是点.而不是实数,2WB不正确,所以A错.对应练习3 (对应易错点8、易错点9)已知集合M={y\y=x2+\, xWR}, N= {x^= 则M与N之间的关系()A. MGNB. MWNC. M=ND. M与N关系不确定答案:A解析:':M= {y\y^l}, N={x\x^ — \}, .'.MQN.对应练习4 (对应易错点15)集合A={y[y=x2+1},集合B={(x, y)[y=X2+l}(A,B中x WR, yWR),选项中元素与集合的关系都正确的是()A.2",且2GBB.(1,2) — ,且(1,2)£5C. 2 —,且(3,10)G5D.(3,10)G,且2WB答案:C解析:集合/中元素y是实数,不是点,故选项B, D不对.集合B的元素(x, y)是点.而不是实数,2WB不正确,所以A错.对应练习5 (对应易错点6)已知集合2 = {x『一3x+2=0}, B^{x\x-x+2m^0}.若AC\B=B,求加的取值范围.答案:w>|.解析:⑴由题意得/= {1,2}.■因为AC\B=B,所以, ,1当p=0时,方程x—x+1m = 0无实数解,因此其判别式/=1一&”<0,即也电;当B={1}或2={2}时,方程X2—x+2m=0有两个相同的实数解x=l或x=2,因此其判别式zf = l —8加=0,解得%=£,代入方程x'—x+lm—0解得*=*,矛盾,显然不符合要求;当B={1,2}时,方程x^-x+2m=0有两个不相等的实数解x=l或x=2,因此1+2 =1,2加=2.显然第一个等式不成立.综上所述,m>|.对应练习6 (对应易错点11)下列各图中,可表示函数y=fix)图象答案:D解析:由函数的定义“对于自变量x每取一个值都有唯一的一个y值与之对应”知答案:D.对应练习7 (对应易错点12、易错点13、易错点20)已知函数»=X2-2X+2.(1)求人对在区间百,3]上的最大值和最小值;⑵若能)=金)一加在[2,4]上是单调函数,求的取值范围.答案:⑴在区间百,3]上最大值是5,最小值是1.⑵的取值范围是(一8, 2]U[6, +8).解析:(l)"x)"—2x+2=(x-1)2+1, 3],•■- 7(x)的最小值是久1)=1.又冶)=专,/3)=5,乐)的最大值是/3)= 5, 即沧)在区间百,3]上的最大值是5,最小值是1.(2)*.* g(x) =y(x)—mx=x—(加+2)x+2, •••巴养2或巴养4,即m<2或劝26.故加的取值范围是(一8, 2]U[6, +8).|x+l, x^Q对应练习8(对应易错点14)已知心)= ,若代a) = 2,则实数〔4兀,x<0答案:1解析:T 当Q20时,/(Q)= Q+ 1 = 2,二a= 1.*.* 当日〈0 时,f (金=4&=2, 日=*(舍去)•对应练习9 (对应易错点13)已知函数X3X-2)的定义域是[—2,0),则函数沧)的定义域是_________ :若函数沧)的定义域是(一2,4],则X-2x+2)的定义域是____________ ・答案:[—8, ~2) [_ 1,2)解析:T/Px—2)的定义域是[―2,0), ./3x—2)中的x 满足一2Wx<0.—8W3x—2V —2.••夬兀)的定义域是[-8,2).••7(兀)的定义域是(一2,4], —2V兀W4.:.扎—2兀+2)中,一2V—2兀+2W4, 即一1 W…xV 2.2兀+2)的定义域是[―1,2).答案:[_8, —2)[—1,2)对应练习10 (对应易错点15)若沧)是偶函数,其定义域为(一8, +8),且在[0, +°°)上是减函数,则—㊁)与加2+2Q+R的大小关系是()3 7 5 3 7 5A.夬_㊁)+2°+空)B.夬一㊁)初Q +2Q+㊁)C・|)勺/+2卄号) D. X —|)+ 2a+|)答案:B5 3 3解析:I,/ + 2°+㊁=(Q+刁又函数沧)为偶函数,X-|)=x|),乐)在(0, + «=)上为减函数..• 7(—号)+ 2a+1).对应练习11 (对应易错点17)已知集合A^{x\ax~ 1=0}, B={xp?—3x+2=0},且AQB,求实数a的值.答案:<7 = 0或1或*.解析:8={1,2},且/为0或单元素集合,由A^B^A可能为0, {1}, {2}.(1)/=0=>Q = O;(2)力={1}»=1;(3)力={2}O Q=*.综上得Q = 0或1或"(a—3)x+5, xWl, 对应练习12 (对应易错点18、易错点19)已知函数f(x)=^2a—,x>llx是(一8, +8)上的减函数,那么a的取值范围是()A. (0,3)B. (0,3]C. (0,2)D・(0,2]答案:D'a—3<0, 解析:由题意可知la>0, 解得0<aW2.卫一3 + 5 22a,对应练习13 (对应易错点4).已知[7= {0,2, .r-2}, luA={2, x},则 g 答案:{-2}或{0}解析::([品)UU, 且心2.当x=0 时,U= {0,2, -2}, M={0,2}, A={-2}.当x=x? —2时得x= — l或x=2(舍去)x=_l 时,U= {0,2, —1},[显={2, —1}, T4= {0}.。

高考状元数学错题本:第1章集合易错题含解析

高考状元数学错题本:第1章集合易错题含解析

我的高考数学错题本第1章 集合易错题易错点1 遗忘空集致误由于空集是任何非空集合的真子集,在解题中如果思维不够缜密就有可能忽视了B =∅这种情况,导致解题结果错误.【例 1】 设2{|230}A x x x =--=,{|10}B x ax =-=,B A ⊆,求的值.【错解】 {3,1}A =-,1{}B a =,从而13a =或1-. 【错因】忽略了集合B =∅的情形【正解 】当B ≠∅时,得13a =或1-;B =∅时,得0a =.所以13a =或1a =-或0a =. 【纠错训练】已知{|23}A x a x a =≤≤+,{|15}B x x x =<->或,若=AB ∅,求a 的取值范围. 【解析】由=A B ∅,(1)若A =∅,有23a a >+,所以3a >.(2)若A ≠∅,则有213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩,解得122a -≤≤. 综上所述,的取值范围是1{|23}2x a a -≤≤>或. 易错点2 忽视集合元素的三要素致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.【例2】已知集合{1,4,}A a =,2{1,,}B a b =,若A B =,求实数,的值.【错解】由题意得,24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩. 【错因】本题误认为两个集合相等则对应项相同,这显然违背了集合的无序性.【正解】∵A B =,由集合元素的无序性,∴有以下两种情形:(1)24a a b ⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩; (2)24a a b ⎧=⎨=⎩,解得04a b =⎧⎨=⎩或12a b =⎧⎨=-⎩,经检验12a b =⎧⎨=-⎩与元素互异性矛盾,舍去.∴22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩或04a b =⎧⎨=⎩.【例3】 已知集合{1,4,}A a =,集合2{1,}B a =,若B A ⊆,求的值.【错解】24a =或2a a =,解得2a =±或0a =或1a =.【错因】没有将计算结果代回到集合中检验,忽略了集合中元素的互异性,导致出现了增解.【正解】24a =或2a a =,解得2a =±或0a =或1a =,经检验当1a =时,{1,4,1}A =,与集合中元素的互异性相矛盾,舍去,所以2a =±或0a =.【纠错训练】已知集合{1,2}A =,{|30}B x ax =-=,若B A ⊆,则实数的值是( )A .30,,32B .0,3C . 3,32D .【解析】若B A ⊆,则集合B 是集合A 的子集,当B =∅,显然0a =;当B ≠∅时,解得3B a ⎧⎫=⎨⎬⎩⎭,则有31a=或32a =,解得3a =或32a =,即的值为30,,32,选A .易错点3 弄错集合的代表元【例4】已知{}| 1 A y y x ==+,{}22(,)|1B x y x y =+=,则集合A B 中元素的个数为________.【错解】 1个或无穷多个【错因】没有弄清集合B 的代表元的含义【正解】集合A 是一个数集,集合B 是一个点集,二者的交集为空集,所包含的元素个数为0.【例5】已知函数()y f x =,[,]x a b ∈,那么集合{(,)|(),[,]}{(,)|2}x y y f x x a b x y x =∈=中元素的个数为( )A .1 A .0 C .0或1 D .1或2【错解】不知题意,无从下手,蒙出答案D【错因】没有弄清两个集合打代表元,事实上,{|()}x y f x =、{|()}y y f x =、{(,)|()}x y y f x =分别表示函数()y f x =的定义域、值域、函数图象上的点的坐标组成的集合.【正解】本题中集合的含义是两个图象交点的个数,从函数值的唯一性可知,两个集合的交中之多有一个交点,故选C .【纠错训练】1.已知集合2{|1}A y y x ==+,{|2}B x y =,则A B =_______________. 【解析】{|1}A y y =≥,{|0}B x x =≥,所以{|1}A B x x =≥.【纠错训练】2.设集合{(,)|25}A x y x y =+=,{(,)|23}B x y x y =-=-,则A B =______.【解析】由2523x y x y +=⎧⎨-=-⎩,解得12x y =⎧⎨=⎩,从而{(1,2)}A B =.易错点4 忽略了题目中隐含的限制条件。

(易错题)高中数学必修一第一单元《集合》测试题(含答案解析)(4)

(易错题)高中数学必修一第一单元《集合》测试题(含答案解析)(4)

一、选择题1.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥2.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+3.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5114.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈5.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤6.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4 B .5C .6D .77.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,yA ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 8.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈9.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( )A .5m >B .3m <-C .5m >或3m <-D .35m -<<10.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______. 16.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合1122⎧---⎪⎨⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号)17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________19.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个. 20.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.三、解答题21.已知集合{|314}A x x =-<+,{|213}B x m x m =-<+. (1)当1m =时,求AB ;(2)若A B A ⋃=,求m 的取值范围.22.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.23.设{}{},1,05U R A x x B x x ==≥=<<,求()UA B 和()U A B ∩24.设集合{|12A x a x a =-<<,}a R ∈,不等式2760x x -+<的解集为B . (1)当a 为0时,求集合A 、B ; (2)若A B ⊆,求实数a 的取值范围.25.设集合2{|320}A x x x =-+≥,{|B x y ==,全集U =R ,求()U A C B ⋂.26.设全集U =R .(1)解关于x 的不等式|1|10()x a a R -+->∈;(2)记A 为(1)中不等式的解集,B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,若()U C A B ⋂恰有三个元素,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案.当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.2.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】 由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.3.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-=【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.4.C解析:C 【分析】由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【分析】写出集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的非空子集,根据和美集合的定义验证即可. 【详解】先考虑含一个元素的子集,并且其倒数是其本身,有{}{}1,1,- 再考虑 含有两个元素的和美集合,有{}11,1,,33⎧⎫-⎨⎬⎩⎭,含有三个元素的子集且为和美集合的是111,,3,1,,3,33⎧⎫⎧⎫-⎨⎬⎨⎬⎩⎭⎩⎭含有四个元素的子集且为和美集合的是11,1,,33⎧⎫-⎨⎬⎩⎭. 【点睛】本题主要考查了集合的子集,考查了创设新情景下解决问题的能力,属于中档题.7.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.8.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.9.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案. 【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =,于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主 解析:11{0,,}24- 【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合.【详解】 由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-=解得2x =-或4x = 故:{}2,4B =- {}10,A x ax x R =+=∈由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a-= 解得12a =或14a =- a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-.【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集. 19.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛 解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.20.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和.【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈, ∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况三、解答题21.(1){|13}A B x x ⋂=;(2)3(2-,0][4⋃,)+∞. 【分析】(1)当1m =时,求出集合B ,A ,由此能求出A B .(2)由A B A ⋃=,得B A ⊆,当B =∅时,213m m -+,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,由此能求出m 的取值范围.【详解】解:(1)当1m =时,{|14}B x x =<,{|314}{|43}A x x x x =-<+=-<,{|13}A B x x ∴⋂=.(2)A B A =,B A ∴⊆,当B =∅时,213m m -+,解得4m ,当B ≠∅时,21321433m m m m -<+⎧⎪->-⎨⎪+⎩,解得302m -<, 综上,m 的取值范围为3(2-,0][4⋃,)+∞. 【点睛】结论点睛:本题考查交集、实数的取值范围的求法,并集、交集的结论与集合包含之间的关系:A B A B A =⇔⊆,A B A A B ⋂=⇔⊆.22.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 23.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 24.(1){|10}A x x =-<<,{|16}B x x =<<;(2)1a -或23a .【分析】(1)根据题意,由0a =可得结合A ,解不等式2760x x -+<可得集合B ,(2)根据题意,分A 是否为空集2种情况讨论,求出a 的取值范围,综合即可得答案.【详解】解:(1)根据题意,集合{|12A x a x a =-<<,}a R ∈,当0a =时,{|10}A x x =-<<,276016x x x -+<⇒<<,则{|16}B x x =<<,(2)根据题意,若A B ⊆,分2种情况讨论:①,当12a a -时,即1a -时,A =∅,A B ⊆成立;②,当12a a -<时,即1a >-时,A ≠∅,若A B ⊆,必有1126a a -⎧⎨⎩, 解可得23a ,综合可得a 的取值范围为1a -或23a .【点睛】本题考查集合的包含关系的应用,(2)中注意讨论A 为空集,属于基础题.25.{|1x x ≤或}23x ≤<【分析】先化简集合A ,B 中元素的性质,再求得U B ,进而由交集的定义求解即可. 【详解】由题,因为2320x x -+≥,解得2x ≥或1x ≤,所以{|2A x x =≥或}1x ≤,因为30x -≥,解得3x ≥,所以{}|3B x x =≥,所以{}U |3B x x =<,则(){U |1A B x x ⋂=≤或}23x ≤<【点睛】本题考查集合的交集、补集运算,考查解一元二次不等式,考查具体函数的定义域. 26.(1)见解析(2)10a -<≤【分析】(1)通过讨论a 的取值范围,求出不等式的解集即可.(2)解不等式组求得集合B ,通过讨论a 的范围求出A 的补集,再根据()U C A B ⋂恰有三个元素,建立不等式求解.【详解】(1)因为|1|10()x a a R -+->∈,所以|1|1->-x a ,当10a -< 即1a > 时,解集为R ,当10a -= 即1a = 时,解集为{}|1x x ≠ ,当10a -> 即1a < 时,11->-x a 或11-<-x a ,所以2x a >-或x a <,所以解集为{|2x x a >- 或}x a <.综上:1a > 时,解集为R ;1a = 时,解集为{}|1x x ≠ ;1a < 时,解集为{|2x x a >- 或}x a <.(2)因为2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩, 所以23510410x x x x -⎧-≤⎪+⎨⎪-+≥⎩,所以()()29404210x x x x x ⎧⎛⎫+-≤≠-⎪ ⎪⎝⎭⎨⎪-+≥⎩, 解得942x -<≤ . 因为B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,所以{}3,2,1,0,1,2,3,4B =--- ,当1a > 时,U A =∅ 不满足()U C A B ⋂恰有三个元素. 当1a = 时,{}=1U A 不满足()U C A B ⋂恰有三个元素. 当1a < 时,{}=≤≤-|2U A x a x a ,21a -> ,因为()U C A B ⋂恰有三个元素,所以12224a a a a a <⎧⎪--≥⎨⎪--<⎩, 解得10a -<≤ .综上:a 的取值范围是10a -<≤.【点睛】本题主要考查了绝对值不等式,分式不等式及一元二次不等式的解法和集合的基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.。

数学课程错题本格式(样本)

数学课程错题本格式(样本)

数学错题本一时间:9.26 二出处:细巧第一章综合测试题三(错题)1(题号)、下列分式,当x取何值时,分式有意义?当x取何值时,分式的值为零?可以粘贴四错误原因:粗心、对可课本注释忘记五回归课本(考查的知识点:分式的意义和性质。

)与例题等比较六思路七正确解答:(1)分式的分母不为零,分式有意义,反之,分式的分母为零,分式无意义。

所以x2-3x-4≠0 (x-4)(x+1)≠0 x≠4且x≠-1 所以当x≠4且x≠-1 时分式有意义。

(2)当分式的分子为零,分母不为零的时候,分式的值为零。

所以x2-16=0且x2-3x-4 ≠0时,分式的值为零。

得出 x=-4 八该类知识点的难点小结九复习难题情况如9.28有问题10.8无问题十注意要赠送以下资料考试知识点技巧大全一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

科学研究证实,虽然大脑的重量只占人体重量的2%-3%,但大脑消耗的能量却占食物所产生的总能量的20%,它的能量来源靠葡萄糖氧化过程产生。

据医学文献记载,一个健康的青少年学生30分钟用脑,血糖浓度在120毫克/100毫升,大脑反应快,记忆力强;90分钟用脑,血糖浓度降至80毫克/100毫升,大脑功能尚正常;连续120分钟用脑,血糖浓度降至60毫克/100毫升,大脑反应迟钝,思维能力较差。

我们中考、高考每一科考试时间都在2小时或2小时以上且用脑强度大,这样可引起低血糖并造成大脑疲劳,从而影响大脑的正常发挥,对考试成绩产生重大影响。

因此建议考生,在用脑60分钟时,开始补饮25%浓度的葡萄糖水100毫升左右,为一个高效果的考试加油。

二、考场记忆“短路”怎么办呢?对于考生来说,掌握有效的应试技巧比再做题突击更为有效。

1.草稿纸也要逐题顺序写草稿要整洁,草稿纸使用要便于检查。

不要在一大张纸上乱写乱画,东写一些,西写一些。

打草稿也要像解题一样,一题一题顺着序号往下写。

(易错题)高中数学必修一第一单元《集合》检测题(包含答案解析)(4)

(易错题)高中数学必修一第一单元《集合》检测题(包含答案解析)(4)

一、选择题1.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则MN =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞2.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥5.对于非空集合P ,Q ,定义集合间的一种运算“★”:{P Q x x P Q =∈★∣且}x P Q ∉⋂.如果{111},{P x x Q x y =-≤-≤==∣∣,则P Q =★( )A .{12}x x ≤≤∣B .{01xx ≤≤∣或2}x ≥ C .{01x x ≤<∣或2}x > D .{01xx ≤≤∣或2}x > 6.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .37.已知集合123,,A A A 满足: {}*123|19A A A x N x =∈≤≤,且每个集合恰有3个元素,记()1,2,3i A i =中元素的最大值与最小值之和为()1,2,3i M i =,则123M M M ++的最小值为( ) A .21B .24C .27D .308.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C的个数是( ). A .7B .8C .15D .169.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞ B .5[0,]2C .7(0,]2D .5(0,]210.若x A ∈,则1A x ∈,就称A 是和美集合,集合111,0,,,1,323M ⎧⎫⎨=⎩-⎬⎭的所有非空子集中是和美集合的个数为( ) A .4B .5C .6D .711.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UBD .∅12.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则AB 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________. 14.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 15.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______16.设全集{|35}Ux x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.17.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.18.已知集合{|||1,}A x x a x R =-<∈,2{|1,}1x aB x x R x -=<∈+,且A B =∅,则实数a 的取值范围是________.19.已知集合{}A a =-,,2||b aB a ⎧⎫=⎨⎬⎩⎭,且A B =,则a b +=______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 集合易错题易错点1 遗忘空集致误由于空集是任何非空集合的真子集,在解题中如果思维不够缜密就有可能忽视了B =∅这种情况,导致解题结果错误.【例 1】 设2{|230}A x x x =--=,{|10}B x ax =-=,B A ⊆,求a 的值. 【错解】 {3,1}A =-,1{}B a =,从而13a =或1-. 【错因】忽略了集合B =∅的情形 【正解 】当B ≠∅时,得13a =或1-;B =∅时,得0a =.所以13a =或1a =-或0a =. 【纠错训练】已知{|23}A x a x a =≤≤+,{|15}B x x x =<->或,若=A B ∅,求a 的取值范围.【解析】由=AB ∅,(1)若A =∅,有23a a >+,所以3a >. (2)若A ≠∅,则有213523a a a a ≥-⎧⎪+≤⎨⎪≤+⎩,解得122a -≤≤.综上所述,a 的取值范围是1{|23}2x a a -≤≤>或. 易错点2 忽视集合元素的三要素致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.【例2】已知集合{1,4,}A a =,2{1,,}B a b =,若A B =,求实数a ,b 的值.【错解】由题意得,24a a b⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩.【错因】本题误认为两个集合相等则对应项相同,这显然违背了集合的无序性. 【正解】∵A B =,由集合元素的无序性,∴有以下两种情形:(1)24a a b⎧=⎨=⎩,解得22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩;(2)24a a b ⎧=⎨=⎩,解得04a b =⎧⎨=⎩或12a b =⎧⎨=-⎩,经检验12a b =⎧⎨=-⎩与元素互异性矛盾,舍去.∴22a b =⎧⎨=⎩或22a b =-⎧⎨=-⎩或04a b =⎧⎨=⎩.【例3】 已知集合{1,4,}A a =,集合2{1,}B a =,若B A ⊆,求a 的值. 【错解】24a =或2a a =,解得2a =±或0a =或1a =.【错因】没有将计算结果代回到集合中检验,忽略了集合中元素的互异性,导致出现了增解.【正解】24a =或2a a =,解得2a =±或0a =或1a =,经检验当1a =时,{1,4,1}A =,与集合中元素的互异性相矛盾,舍去,所以2a =±或0a =.【纠错训练】已知集合{1,2}A =,{|30}B x ax =-=,若B A ⊆,则实数a 的值是( )A .30,,32B .0,3C .3,32D .3 【解析】若B A ⊆,则集合B 是集合A 的子集,当B =∅,显然0a =;当B ≠∅时,解得3B a ⎧⎫=⎨⎬⎩⎭,则有31a =或32a =,解得3a =或32a =,即a 的值为30,,32,选A .易错点3 弄错集合的代表元【例4】已知{}| 1 A y y x ==+,{}22(,)|1B x y x y =+=,则集合A B 中元素的个数为________. 【错解】 1个或无穷多个【错因】没有弄清集合B 的代表元的含义【正解】集合A 是一个数集,集合B 是一个点集,二者的交集为空集,所包含的元素个数为0. 【例5】已知函数()y f x =,[,]x a b ∈,那么集合{(,)|(),[,]}{(,)|2}x y y f x x a b x y x =∈=中元素的个数为( )A .1 A .0 C .0或1 D .1或2 【错解】不知题意,无从下手,蒙出答案D【错因】没有弄清两个集合打代表元,事实上,{|()}x y f x =、{|()}y y f x =、{(,)|()}x y y f x =分别表示函数()y f x =的定义域、值域、函数图象上的点的坐标组成的集合.【正解】本题中集合的含义是两个图象交点的个数,从函数值的唯一性可知,两个集合的交中之多有一个交点,故选C .【纠错训练】1.已知集合2{|1}A y y x ==+,{|2}B x y ==,则A B =_______________.【解析】{|1}A y y =≥,{|0}B x x =≥,所以{|1}A B x x =≥.【纠错训练】2.设集合{(,)|25}A x y x y =+=,{(,)|23}B x y x y =-=-,则A B =______.【解析】由2523x y x y +=⎧⎨-=-⎩,解得12x y =⎧⎨=⎩,从而{(1,2)}A B =.易错点4 忽略了题目中隐含的限制条件【例6】【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【错解】{}{}20,1x x x M ===,{}{}lg 01x x x x N =≤=≤,所以(,1]MN =-∞,故选D .【错因】在解lg 0x ≤时,忽略了0x >这个隐含的限制条件.【正解】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A .【纠错训练】【2015高考重庆,理4】“1x >“是“12log (2)0x +<”的( )A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .易错点5 集合的交并运算弄反【例7】【2015高考山东,理1】已知集合{}2430A x xx =-+<,{}24B x x =<<,则A B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)【错解】因为{}13A x x =<<,{}24B x x =<<,所以{}14A B x x =<<,故选B .【错因】将集合的“交运算”误认为是“并运算”. 【正解】{}{}{}132423AB x x x x x x =<<<<=<<,故选C .【纠错训练】【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【解析】{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<,故选A .【错题巩固】1.设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ A 【解析】2{|}{0,1}M x x x ===,{|lg 0}{|01}N x x x x =≤=<≤,所以M N =[0,1].故选A .2.集合A = { x | x < a },B = { x | 1 < x < 2},若A B =RR ,则实数a 的取值范围是( )A .a ≤1B .a < 1C .a ≥2D .a > 2C 【解析】{|1,2}B x x x =≤≥R或,因为AB =RR ,所以a ≥2,选C.3.已知A ={x | -2≤x ≤5}, B =[a +1,2a -1].若B A ⊆,则实数a 的取值范围是______.【解析】易知B ≠∅,所以应满足21521211a a a a -≤+⎧⎪≥-⎨⎪->+⎩,解得2<a ≤3.故实数a 的取值范围是(2,3].4.已知A ={x | -2≤x ≤5},B ={x | a +1≤x ≤2a -1}.若B A ⊆,则实数a 的取值范围是______.3a ≤【解析】①当B =∅时,即121a a +>-,有a <2;②当B≠∅,则21521211a a a a -≤+⎧⎪≥-⎨⎪-≥+⎩,解得2≤a ≤3.综合①②得a 的取值范围为a ≤3.5.已知集合A =14(,]a a-,集合B =1(,2]2-.若B A ⊆,则实数a 的取值范围是______.02a <≤【解析】1411242a a aa ⎧-<⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得02a <≤,所以实数a 的取值范围为02a <≤.6.知集合2[2,2],{|430}A a a B x x x =-+=-+≤,A B ,则实数a 的取值范围是 01a <<【解析】122322aa a a ≤-⎧⎪+≤⎨⎪-<+⎩,得01a <≤,当1=a ,[1,3],[1,3]A B ==不符合,所以01a <<。

7.已知集合A ={x |1<x <3},B ={x |2m <x <1-m }.若AB ∅=,则实数m 的取值范围是 .[0,)+∞【解析】由A B ∅=,得:①若2m ≥1-m ,即m ≥13时,B ∅=,符合题意;②若2m <1-m ,即m <13时,需1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩解得0≤m <13.综上,实数m 的取值范围是[0,)+∞.8.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.1,0-,或1【解析】集合{1,1}A =-,对于集合{|1}B x ax ==,所以当B =∅时,a=0;当{1}B =时,a=1;当{1}B =-时,1a =-.综上,a 的值为1,0-,或1.9.若集合2{|10,}A x x ax x =++=∈R ,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.【解析】(1)若A =∅,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意;(3)若2A ∈,则22210a ++=,解得52a =-,此时1{2,}2A =,不合题意.综上,实数a 的取值范围为[2,2)-.10.已知集合A ={x|-2≤x≤7 }, B ={x|m+1<x <2m -1},若A B A =,则实数m 的取值范围是 .【解析】A B A =则B A ⊆. 当B =∅时,m+1≥2m -1,解得2m ≤; 当B ≠∅时,12112217m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得24m <≤.所以实数m 的取值范围是m ≤4. 11.已知集合{|141}A x a x a =+≤≤+,{|(3)(5)}B x y x x =+-,且B A ⊆,则实数a 的取值范围是( )A.10<<aB.10≤≤aC.1<aD.1≤a【解析】化简得{|(3)(5)0}B x x x =+-≥{|35}x x =-≤≤.当A =∅时,B A ⊆成立,即有141+>+a a 成立,所以0<a ;当A ≠∅时,要使B A ⊆,故需14113415a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得01a ≤≤.综上,1≤a.故选D.12.已知集合{28}A x x =<<|,{22}B x a x a =<<-,若A B =B ,则实数a 的取值范围是______.(],5-∞【解析】因为AB =B ,所以B A ⊆,当B =∅时,22a a ≥-,解得2a ≤;当B ≠∅时,需满足222228a a a a <-⎧⎪≥⎨⎪-≤⎩,解得25a <≤.综上,实数a 的取值范围是(],5-∞. 13.已知集合{1,2}A =,{|30}B x ax =-=,若B A ⊆,则实数a 的值是( )A .30,,32 B .0,3 C .3,32D .3 A 【解析】由题可知:若B A ⊆,则集合B 是集合A 的子集,集合B 有两种可能,一种是空集,一种是有限集,当集合B 是空集时,显然a=0,当集合B 是有限集时,解得a x 3=,则有313=⇒=a a或者2323=⇒=a a 。

相关文档
最新文档