考研数学二历年真题(2003—2012)__杨玉坤
2003-数二真题标准答案及解析

2003 年考研数学(二)真题一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)1( 1) 若 x0 时, (1 ax 2 ) 41 与 xsin x 是等价无穷小,则 a=.( 2 ) 设 函 数 y=f(x)由 方 程 xy 2ln x y 4所 确 定 , 则 曲 线 y=f(x) 在 点 (1,1) 处 的 切 线 方 程是.( 3)y 2 x 的麦克劳林公式中 x n 项的系数是 __________.( 4) 设曲线的极坐标方程为e a (a0) ,则该曲线上相应于从0变到2的一段弧与极轴所围成的图形的面积为 __________.(5) 设 为 3 维列向量,T 是T的转置. 若T=.11 11 1 1,则11110 1 ( 6) 设三阶方阵 A,B 满足 A 2 BA B E ,其中 E 为三阶单位矩阵,若 A 02 0 ,则2 0 1B ________.二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 1)设 { a n }, { b n }, { c n } 均为非负数列,且lim a n0 , lim b n1 , lim c n,则必有nnn(A) a n b n 对任意 n 成立 .(B) b n c n 对任意 n 成立 .(C)极限 lim a n c n 不存在 .(D) 极限 lim b n c n 不存在 .[]nn3 n( 2)设 a nn 1x n 1 1 x n dx , 则极限 lim na n 等于2 0 n33 (A)(1 e)21 . (B)(1e 1 ) 2 1 .33(C)(1e 1) 2 1 .(D)(1 e) 2 1.[]( 3)已知 yx 是微分方程 y y ( x) 的解,则 ( x) 的表达式为ln x xyyy 2y 2(A )x 2.(B)x2 .x 2x 2(C)y 2 .(D)y 2 .[]( 4)设函数 f(x) 在 ( , ) 内连续,其导函数的图形如图所示,则f(x) 有(A) 一个极小值点和两个极大值点 . (B) 两个极小值点和一个极大值点 . (C) 两个极小值点和两个极大值点 .(D) 三个极小值点和一个极大值点 .[ ]yOx(5)设 I 1 4 tan xdx , I 2 4 xxdx , 则tan x(A) I 1 I 2 1.(B) 1 I 1 I 2 .(C)I 2I 11.(D)1 I 2I 1 .[](6)设向量组 I : 1, 2 ,, r 可由向量组 II :1,2 , , s 线性表示,则(A) 当 r s 时,向量组 II 必线性相关 . (B)当 r s 时,向量组 II 必线性相关 .(C) 当 rs 时,向量组 I 必线性相关 .(D) 当 r s 时,向量组 I 必线性相关 .[]三 、(本题满分 10 分)ln(1 ax 3 ), x0,x arcsin xx 0,设函数 f (x)6,e ax x 2ax 1 x0,,xx sin4问 a 为何值时, f(x) 在 x=0 处连续; a 为何值时, x=0 是 f(x) 的可去间断点?四 、(本题满分 9 分)x 1 2t2 ,d 2y.设函数 y=y(x) 由参数方程1 2 ln t eu(t 1) 所确定,求du dx 2x 9 y1u五 、(本题满分 9 分)计算不定积分xe arctan xdx.(1 3x 2 )2六 、(本题满分 12 分)设函数 y=y(x) 在 (, ) 内具有二阶导数,且 y0, x x( y) 是 y=y(x) 的反函数 .(1)试将 x=x(y) 所满足的微分方程d 2x ( ysin x)( dx) 30 变换为 y=y(x) 满足的微分方程;dy 2dy (2) 求变换后的微分方程满足初始条件y(0)0, y (0)3的解 .2七 、(本题满分 12 分)讨论曲线 y4 ln x k 与 y4x ln 4 x 的交点个数 .八 、(本题满分 12 分)设位于第一象限的曲线y=f(x) 过点 ( 2 , 1) ,其上任一点P(x,y) 处的法线与 y 轴的交点为 Q ,且线22段 PQ 被 x 轴平分 .(1) 求曲线 y=f(x) 的方程;(2) 已知曲线 y=sinx 在 [ 0, ] 上的弧长为 l ,试用 l 表示曲线 y=f(x) 的弧长 s. 九 、(本题满分 10 分)有一平底容器,其内侧壁是由曲线x ( y)( y 0) 绕 y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m.根据设计要求, 当以 3 3 / min的速率向容器内注入液体时,液面的面积将以m 2/ min 的m速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据 t 时刻液面的面积,写出 t 与 ( y) 之间的关系式;(2) 求曲线 x( y) 的方程 .(注: m 表示长度单位米, min 表示时间单位分 .) 十 、(本题满分 10 分)设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b)内可导, 且 f (x) 0.若极限 limf (2xa)存在,证x axa明:(1) 在(a,b)内 f(x)>0;(2)在 (a,b)内存在点b 2 a 22 ,使b;f (x)dxf ( )a,使 f ( )(b2a 2)2 b(3) 在 (a,b) 内存在与 (2)中 相异的点f ( x) dx. a a十一、(本题满分10 分)220若矩阵 A82a相似于对角阵,试确定常数 a 的值;并求可逆矩阵P使P1AP.006十二、(本题满分8 分)已知平面上三条不同直线的方程分别为l1 :ax2by3c0 ,l 2:bx2cy3a0,l 3:cx2ay3b0 .试证这三条直线交于一点的充分必要条件为 a b c 0.2003 年考研数学(二)真题评注一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)1( 1) 若 x0时, (1ax 2 ) 4 1 与 xsin x 是等价无穷小,则a=-4.1【分析】 根据等价无穷小量的定义,相当于已知lim(1ax 2 ) 41 ,反过来求 a. 注意在计算过程中xxsin x应尽可能地应用无穷小量的等价代换进行化简.11【详解】当 x0 时, (1 ax 2 ) 4 1 ~ax 2 , x sin x ~ x 2 .42 11 ax 2(141于是,根据题设有ax )lim 41,故 a=-4.lim2ax 0 x sin xx 0 x4( 2 ) 设 函 数 y=f(x) 由 方 程 xy 2 ln xy 4 所 确 定 ,则 曲 线 y=f(x) 在点 (1,1)处的切线方程是x-y=0 .【分析 】 先求出在点 (1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】等式 xy 2 ln xy 4 两边直接对 x 求导,得y xy2 4y3 y ,x将 x=1,y=1 代入上式,有y (1) 1. 故过点 (1,1)处的切线方程为y 1 1 (x 1) ,即x y 0.【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点 .( 3) y2 x 的麦克劳林公式中 x n 项的系数是( l n2) n .n!【分析 】 本题相当于先求y=f(x) 在点 x=0 处的 n 阶导数值 f (n ) ( 0) ,则麦克劳林公式中 x n 项的系数是f (n) (0).n!【详解】 因为y2 x ln 2 , y2x (ln 2)2 ,, y ( x)2 x (ln 2)n ,于是有y(n ) (0) ( l n2) nxny ( n) (0)(ln 2)n,故麦克劳林公式中项的系数是n!.n!【评注】 本题属常规题型,在一般教材中都可找到答案.( 4) 设曲线的极坐标方程为e a (a0) ,则该曲线上相应于从0变到2的一段弧与极轴所围成的图形的面积为1(e4 a1).4a【分析】利用极坐标下的面积计算公式S 12 ( )d即可 . 2【详解】所求面积为S 122()d122ad 2 0 2 0e=1e2a21(e4 a1) .4a4a.【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂111(5)设为3维列向量,T是的转置.若T T=3.1 11,则111【分析】本题的关键是矩阵T1,必可分解为一列乘一行的形式,而行向量一般可选第一的秩为行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由T1111111 1 =11 1 1,知 1 ,于是111111T1111 3.1a1【评注】一般地,若 n 阶矩阵 A 的秩为 1,则必有A a2 b1 b2bn .a n101(6)设三阶方阵A,B 满足A2B A B E ,其中E为三阶单位矩阵,若A020 ,则B2 011.2【分析】先化简分解出矩阵B,再取行列式即可.【详解】由A2B A B E知,(A2E)B A E,即(A E)(A E)B A E,易知矩阵 A+E 可逆,于是有(A E)B E.再两边取行列式,得A EB 1,0011因为AE0102.,所以B2002【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 1)设{ a n}, { b n}, { c n}均为非负数列,且lim a n0 , lim b n 1, lim c n,则必有n n n(A)a n b n对任意n成立.(B)b n c n对任意n成立.(C)极限 lim a n c n不存在.(D) 极限lim b n c n不存在 .[D]n n【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B) ;而极限lim a n c n是 0型未定式,可能存在也可能不存在,举反例说明即可;极限lim b n c n属 1型,必为无穷n n大量,即不存在 .【详解】用举反例法,取a n 21,c n11,2,) ,则可立即排除(A),(B),(C) ,因此, b n n(n正确选项为 (D).n2【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.n( 2)设a n 3 n 1 x n 11x n dx ,则极限lim na n等于20n33(A)(1e) 2 1 .(B)(1e1) 2 1 .33(C)(1e1) 2 1 .(D)(1e) 21.[B]【分析】先用换元法计算积分,再求极限.【详解】因为3n3a n n 1 x n 11 x n dx=202nnn 11 x n d (1x n ) 013n=(1 x n ) 2n 1 n01{[1 (n3)n] 21} ,n n1n 33可见lim na n=lim {[ 1 ()n] 21}(1 e 1 ) 2 1.n n n1【评注】本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.( 3)已知y x是微分方程 y y( x) 的解,则(x) 的表达式为ln x x y y y 2y 2(A )x2.(B)x 2.22(C)x2 .(D)x2.[ A ] y y【分析】将 y x代入微分方程,再令的中间变量为u,求出(u) 的表达式,进而可计算出 ( x ) .ln x y【详解】将 y x代入微分方程y y( x) ,得ln x x yln x11(ln x),即(ln x)1.ln 2 x2 ln x ln x令 lnx=u ,有(u)1(x y2.应选 (A). u2 ,故) =x2y【评注】本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.( 4)设函数f(x)在(, ) 内连续,其导函数的图形如图所示,则f(x) 有(D)一个极小值点和两个极大值点 .(E)两个极小值点和一个极大值点 .(F)两个极小值点和两个极大值点 .(D)三个极小值点和一个极大值点 .[C ]yO x【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共 4 个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有 3 个,而x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0 左侧一阶导数为正,右侧一阶导数为负,可见x=0 为极大值点,故f(x) 共有两个极小值点和两个极大值点,应选(C).【评注】本题属新题型,类似考题2001 年数学一、二中曾出现过,当时考查的是已知f(x) 的图象去推导 f ( x) 的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过 .(5)设 I 14tan x dx , I 24xdx , 则xtan x(A) I 1 I 2 1.(B) 1 I 1 I 2 .(C)I 2I 11.(D)1I 2 I 1 .[ B]【分析】 直接计算 I 1,I2 是困难的,可应用不等式tanx>x, x>0.【详解 】 因为当 x>0 时,有 tanx>x ,于是tan x1,x1,从而有I 14 t a nx,dxxtan xx4I 2 4x,dx4tan x可见有I 1I 2且 I 2,可排除 (A),(C),(D) ,故应选 (B).4【评注 】 本题没有必要去证明I 11 ,因为用排除法,(A),(C),(D) 均不正确,剩下的 (B)一定为正确选项 .(6)设向量组 I : 1 , 2 ,, r 可由向量组 II :1,2,,s 线性表示,则(A)当 r s 时,向量组 II 必线性相关 .(B) 当 r s 时,向量组 II 必线性相关 . (C) 当 rs 时,向量组 I 必线性相关 .(D)当 rs 时,向量组 I 必线性相关 .[ D ]【分析 】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I : 1 ,2 ,, r 可由向量组II : 1,2 ,, s 线性表示, 则当 r s 时,向量组 I 必线性相关 . 或其逆否命题: 若向量组 I : 1 , 2 ,, r可由向量组 II : 1 , 2 ,, s 线性表示,且向量组 I 线性无关,则必有 rs . 可见正确选项为 (D). 本题也可通过举反例用排除法找到答案 .1 0101 ,【详解 】 用排除法:如1 ,1,2 ,则12 ,但2 线性无关,10 11 1 ,排除(A) ;1, 2 ,10 , 则 2 可 由 1线性表示,但 1线性无关,排除 (B);0 01 , 11 ,1 线性无关,排除 (C). 故正确选项为 (D).1 0 1,21 ,1 可由2 线性表示,但【评注 】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三、(本题满分10 分)ln(1ax 3 ) ,x0,x arcsin xx0,设函数 f (x)6,e ax x 2ax1x0,,x sin x4问 a 为何值时, f(x) 在 x=0 处连续; a 为何值时, x=0 是 f(x) 的可去间断点?【分析】分段函数在分段点 x=0 连续,要求既是左连续又是右连续,即f (00) f (0) f (00).【详解】 f (00)lim f ( x)lim ln(1ax 3 )lim ax 3x 0x0x arcsin x x 0 x arcsin x= lim 3ax 2lim3ax2 12x0x 01x111x23ax 26a.= lim1x 2x02f (00)lim f (x)lim e ax x2ax1x 0x0x sinx4= 4 lim e ax x 22ax1 4 lim ae ax2x a2a 2 4.x 0x x 02x令 f (0 0) f (0 0) ,有 6a2a 2 4 ,得a 1或a 2 .当 a=-1 时,lim f ( x)6f(0),即 f(x) 在 x=0 处连续 .x0当 a=-2 时,lim f ( x)12 f (0),因而 x=0 是 f(x) 的可去间断点 .x0【评注】本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四、(本题满分9 分)x12t 2 ,d2y.设函数 y=y(x) 由参数方程 1 2 ln t e u(t1) 所确定,求y dx21udu x9【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当 x=9 时,可相应地确定参数 t 的取值 .【详解 】由dye 12ln t 22et , dx4t ,dt 12 ln t t1 2ln tdtdydy 2ete得dt1 2 ln t 2(1,dxdx 4t2 ln t )dt所以d 2 y d dy 1e12 1dx 2dt ( dx )dx=2 (1 2 ln t )2 t 4tdte= 4t 2(1 2ln t) 2.当 x=9 时,由 x1 2t2 及 t>1 得 t=2, 故d 2 yee2 .dx 2x 94t 2 (1 2ln t) 2t216(1 2 ln 2)五 、(本题满分 9 分)xe arctan x计算不定积分(1x 2 )3 dx.2【分析 】 被积函数含有根号1 x2 ,典型地应作代换: x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换: arctanx=t ,即 x=tant.【详解 】 设 xtant ,则xe arctan xdx e t tan t2tdt = tsin tdt.(13 =(1 tan 2 3sec ex 2 ) 2t) 2ttdttt又esin e dcos= ( e t cost e t costdt)=e t cost e t sinte t sin tdt ,故t1 t ( s i n c o s) .e s i nt d t 2 ettCxe arctan x1 e arctan x ( x 1因此3 dx =) C(1 x 2 ) 2 2 1 x 21 x 2(x1)e arctan x=C.2 1 x 2【 评注 】本题也可用分布积分法:xe arctan xx de arctan x3dx =(1x 2 ) 21 x 2xe arctan x e arctan xdx=1 x2 (1 3x 2 ) 2= xe arctan x1 de arctan x1 x 21 x 2xe arctan x e arctan xxe arctan xdx ,=1 x 21 x 23(1 x 2 ) 2移项整理得arctan xdx = (xarctan xxe 31)e C.(1 x 2 ) 22 1 x 2本题的关键是含有反三角函数,作代换 arctan x t 或 tant=x.六 、(本题满分 12 分)设函数 y=y(x) 在 (, ) 内具有二阶导数,且y 0, x x( y) 是 y=y(x) 的反函数 .(1)试将 x=x(y) 所满足的微分方程d 2x ( y sin x)( dx) 30 变换为 y=y(x) 满足的微分方程;dy 2 dy3(2) 求变换后的微分方程满足初始条件y(0) 0, y (0)的解 .2【分析 】 将dx转化为dy 比较简单, dx 11,关键是应注意:dydx dy =dyydxd 2 x d ( dx ) = d ( 1 ) dxdy 2 dy dy dx y dyy1 y = y2y( y )3.然后再代入原方程化简即可.【详解】(1) 由反函数的求导公式知dxdy 1y,于是有d 2 x d dx d 1 dx y 1ydy 2dy (dy)=dx(y)dy=y 2y( y )3.代入原微分方程得y y sin x.(*)(2) 方程 ( * )所对应的齐次方程y y0 的通解为Y C1e x C2 e x .设方程 ( * ) 的特解为y* A cos x B sin x ,代入方程 ( * ),求得A0, B1,故 y*1sin x ,从而y y sin x 的通解是212y Y y*C1 e x C2e x sin x.32由y(0) 0, y (0),得 C11,C21.故所求初值问题的解为21s i nx.y e x e x2【评注】本题的核心是第一步方程变换 .七、(本题满分 12 分)讨论曲线 y 4 ln x k 与 y4x ln 4 x 的交点个数.【分析】问题等价于讨论方程ln 4 x 4 ln x 4x k 0 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数) .【详解】设(x)ln 4x 4 ln x4x k ,y则有( x)4(ln 3x1x) .4-kx不难看出, x=1 是(x) 的驻点.O1x当 0x1时,(x)0 ,即( x) 单调减少;当x>1时, ( x)0 ,即(x) 单调增加,故 (1) 4 k 为函数(x) 的最小值.当 k<4,即 4-k>0 时,( x) 0无实根,即两条曲线无交点;当 k=4,即 4-k=0 时,( x) 0有唯一实根,即两条曲线只有一个交点;当k>4,即 4-k<0 时,由于lim( x)lim [ln x(ln 3 x4)4x k ] x 0x 0lim( x)lim [ln x(ln 3 x4)4x k] x x ;,故( x) 0有两个实根,分别位于(0,1)与(1,) 内,即两条曲线有两个交点.【评注】讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标 .八、(本题满分12 分)设位于第一象限的曲线y=f(x) 过点(2 , 1),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段 PQ 被 x 轴平分 .(3)求曲线 y=f(x) 的方程;(4)已知曲线 y=sinx 在[ 0,] 上的弧长为l ,试用 l 表示曲线y=f(x) 的弧长 s.【分析】 (1)先求出法线方程与交点坐标Q,再由题设线段PQ 被 x 轴平分,可转化为微分方程,求解此微分方程即可得曲线 y=f(x) 的方程 .(2)将曲线 y=f(x) 化为参数方程,再利用弧长公式bx 2y 2 dt 进行计算即可.sa【详解】 (1)曲线 y=f(x) 在点 P(x,y) 处的法线方程为Y y 1( X x) ,y其中 (X,Y) 为法线上任意一点的坐标. 令 X=0,则Y y x,y故 Q 点的坐标为(0, y x).由题设知y1( y y x )0 ,即 2 ydy xdx0.2y积分得x 2 2 y2 C (C为任意常数).由 y2x21知 C=1,故曲线y=f(x) 的方程为2x22y 2 1.(2) 曲线 y=sinx 在 [0,]上的弧长为l1cos2 xdx 2 2 1 cos2 xdx.00曲线 y=f(x)的参数方程为x c o ts,y0t.2 s i nt,2 2故 s2 sin2 t 1cos2 t dt12 1 sin 2 t dt ,0220令 t u ,则21 s2l =2 2012 1 cos2 udu1 cos2 u ( du)2202l.4【评注】注意只在第一象限考虑曲线y=f(x) 的弧长,所以积分限应从0 到,而不是从0 到2 .2九、(本题满分10 分)有一平底容器,其内侧壁是由曲线x( y)( y0) 绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m.根据设计要求,当以 3 3 / min的速率向容器内注入液体时,m液面的面积将以m2/ min 的速率均匀扩大(假设注入液体前,容器内无液体) .(3)根据 t 时刻液面的面积,写出t 与( y) 之间的关系式;(4)求曲线 x( y) 的方程.(注: m 表示长度单位米,min 表示时间单位分 .)【分析】液面的面积将以m 2 / min 的速率均匀扩大,因此t 时刻液面面积应为:22t ,而液面为圆,其面积可直接计算出来,由此可导出t 与( y) 之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t,它们之间也可建立积分关系式,求导后转化为微分方程求解即可 .【详解】 (1)设在 t 时刻,液面的高度为y,则由题设知此时液面的面积为2 ( y)4t ,从而t2 ( y) 4.(2)液面的高度为 y 时,液体的体积为y2 (u)du 3t 3 2 ( y) 12. 0上式两边对y 求导,得2 ( y) 6 ( y) ( y) ,即( y) 6( y).解此微分方程,得y( y)Ce 6,其中C为任意常数,由 (0) 2 知C=2,故所求曲线方程为yx 2e6 .【评注】作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十、(本题满分10 分)设函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b)内可导,且f (x)0. 若极限lim f (2x a)存在,证x a x a 明:(2)在 (a,b)内 f(x)>0;(3)在 (a,b)内存在点,使b2 a 22;bf ( x)dx f ()a(3)在 (a,b) 内存在与 (2) 中相异的点,使f ()(b 2 a 2 )2bf (x)dx.a a【分析】 (1)由limf (2x a)f(x)>0.(2) 要证的结论显含x a存在知, f(a)=0, 利用单调性即可证明x af(a),f(b) ,应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3)注意利用 (2)的结论证明即可 .【详解】 (1)因为 lim f (2x a)存在,故 lim f (2 x a) f (a) 0.又 f ( x)0 ,于是f(x)在(a,b)x a x a x a 内单调增加,故f (x) f (a)0, x(a,b).设 F(x)= x2, g(x)xx b) ,则 g ( x) f ( x) 0 ,故 F (x), g( x) 满足柯西中值定理(2) f (t )dt (aa的条件,于是在 (a,b)内存在点,使F (b) F (a)b2 a 2(x 2 ),g (b)g(a)b a xf (t )dt f (t) dt)xf (t )dt(a a a即b 2 a 22.bf ( )f ( x)dx a(3) 因 f ( ) f ( ) f (0) f ( ) f (a) ,在 [ a, ] 上应用拉格朗日中值定理, 知在 (a, ) 内存在一点,使 f ( )f ( )(a) ,从而由 (2) 的结论得b 2 a 22,bf ()( a)f ( x) dxa即有f ( )(b2a 2 )2bf (x)dx.a a【评注 】 证明 (3),关键是用( 2)的结论:222bb 2 a22f ( )(ba )af (x) dxb f ( x)dxf( )( a)aaf ( ) f ( )( a)( 根据 (2) 结论 )f ( )f (a)f ( )( a) ,可见对 f(x) 在区间 [ a, ] 上应用拉格朗日中值定理即可 .十 一、(本题满分 10 分)2 2 0若矩阵 A8 2 a 相似于对角阵,试确定常数 a 的值;并求可逆矩阵 P 使 P 1AP.0 0 6【分析 】 已知 A 相似于对角矩阵,应先求出 A 的特征值,再根据特征值的重数与线性无关特征向量 的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求 P ,则是常识问题 .【详解 】 矩阵 A 的特征多项式为2 2 0EA82 a (6)[(2) 216]6= (6)2( 2) ,故 A 的特征值为126, 32.由于 A 相似于对角矩阵 ,故对应1 26 应有两个线性无关的特征向量,即3 r (6E A) 2 ,于是有 r (6E A) 1.42 0 2 1 0 由6EA8 4 a 0 0 a ,0 0知 a=0.于是对应于1 26 的两个线性无关的特征向量可取为110 ,22 .1当 32 时,42 0 2 1 0 2EA8 4 0 0 0 1 ,80 0 02x 1x 2 0,1 解方程组2 的特征向量2 .x 30,得对应于330 11令P0 2 21 0,则 P 可逆,并有 P 1AP.十二 、(本题满分 8 分)已知平面上三条不同直线的方程分别为l 1 : ax 2by 3c 0 , l 2 : bx 2cy 3a 0 , l 3 : cx2ay 3b0 .试证这三条直线交于一点的充分必要条件为a b c 0.【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为 2.【详解 】 方法一 :必要性设三条直线 l 1, l 2 ,l 3 交于一点,则线性方程组ax 2by 3c, bx 2cy 3a,(*)cx 2ay3b,a 2b a 2b 3c有唯一解,故系数矩阵Ab 2c 与增广矩阵 Ab 2c 3a 的秩均为 2,于是 A 0.c 2ac2a3ba 2b 3c由于Ab 2c 3a 6(ab c)[ a 2 b 2c 2abac bc]c2a3b=3(a b c)[( a b) 2 (b c)2(ca) 2 ] ,但根据题设( a b ) 2 ( b ) 2 ( c a ) 2 0 ,故ca b c 0.充分性:由 a b c 0 ,则从必要性的证明可知,A 0,故秩 (A)3.由于a 2b 2(ac 2 ) 2[ ( )b2 ]b 2cba ab=2[( a 1 b) 2 3 b 2 ]0 ,故秩 (A)=2.2 4 于是,秩(A)= 秩 ( A) =2.因此方程组 (*) 有唯一解,即三直线l 1 , l 2 , l 3 交于一点 .方法二 :必要性x 0设三直线交于一点 ( x 0 , y 0 ) ,则 y 0 为 Ax=0 的非零解,其中1a 2b 3c Ab 2c 3a .c 2a3b于是 A0 .a 2b 3c而Ab 2c 3a 6(a b c)[ a 2 b 2c 2 ab ac bc ]c 2a3b=3( a b)[( a ) 2 ( b c ) 2 ( c a ) 2 ] ,cb 但根据题设( a b ) 2 ( b ) 2 ( c a ) 2 0 ,故ca b c 0.充分性:考虑线性方程组ax2by3c,bx2cy3a,(*)cx2ay3b,将方程组 (*) 的三个方程相加,并由a+b+c=0 可知,方程组 (*) 等价于方程组ax2by3c,(* *)bx2cy3a.a2b2(2)2[()2]因为b2c ac b a a b b=-[ a2 b 2(a b) 2 ] 0 ,故方程组 (* *)有唯一解,所以方程组(*)有唯一解,即三直线l1 ,l 2 , l3交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
考研数学二历年真题(2003—2012)题目

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
2003-数二真题标准答案及解析

2003 年考研数学(二)真题一、 填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)1( 1) 若 x0 时, (1 ax 2 ) 41 与 xsin x 是等价无穷小,则 a=.( 2 ) 设 函 数 y=f(x)由 方 程 xy 2ln x y 4所 确 定 , 则 曲 线 y=f(x) 在 点 (1,1) 处 的 切 线 方 程是.( 3)y 2 x 的麦克劳林公式中 x n 项的系数是 __________.( 4) 设曲线的极坐标方程为e a (a0) ,则该曲线上相应于从0变到2的一段弧与极轴所围成的图形的面积为 __________.(5) 设 为 3 维列向量,T 是T的转置. 若T=.11 11 1 1,则11110 1 ( 6) 设三阶方阵 A,B 满足 A 2 BA B E ,其中 E 为三阶单位矩阵,若 A 02 0 ,则2 0 1B ________.二、选择题 (本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 1)设 { a n }, { b n }, { c n } 均为非负数列,且lim a n0 , lim b n1 , lim c n,则必有nnn(A) a n b n 对任意 n 成立 .(B) b n c n 对任意 n 成立 .(C)极限 lim a n c n 不存在 .(D) 极限 lim b n c n 不存在 .[]nn3 n( 2)设 a nn 1x n 1 1 x n dx , 则极限 lim na n 等于2 0 n33 (A)(1 e)21 . (B)(1e 1 ) 2 1 .33(C)(1e 1) 2 1 .(D)(1 e) 2 1.[]( 3)已知 yx 是微分方程 y y ( x) 的解,则 ( x) 的表达式为ln x xyyy 2y 2(A )x 2.(B)x2 .x 2x 2(C)y 2 .(D)y 2 .[]( 4)设函数 f(x) 在 ( , ) 内连续,其导函数的图形如图所示,则f(x) 有(A) 一个极小值点和两个极大值点 . (B) 两个极小值点和一个极大值点 . (C) 两个极小值点和两个极大值点 .(D) 三个极小值点和一个极大值点 .[ ]yOx(5)设 I 1 4 tan xdx , I 2 4 xxdx , 则tan x(A) I 1 I 2 1.(B) 1 I 1 I 2 .(C)I 2I 11.(D)1 I 2I 1 .[](6)设向量组 I : 1, 2 ,, r 可由向量组 II :1,2 , , s 线性表示,则(A) 当 r s 时,向量组 II 必线性相关 . (B)当 r s 时,向量组 II 必线性相关 .(C) 当 rs 时,向量组 I 必线性相关 .(D) 当 r s 时,向量组 I 必线性相关 .[]三 、(本题满分 10 分)ln(1 ax 3 ), x0,x arcsin xx 0,设函数 f (x)6,e ax x 2ax 1 x0,,xx sin4问 a 为何值时, f(x) 在 x=0 处连续; a 为何值时, x=0 是 f(x) 的可去间断点?四 、(本题满分 9 分)x 1 2t2 ,d 2y.设函数 y=y(x) 由参数方程1 2 ln t eu(t 1) 所确定,求du dx 2x 9 y1u五 、(本题满分 9 分)计算不定积分xe arctan xdx.(1 3x 2 )2六 、(本题满分 12 分)设函数 y=y(x) 在 (, ) 内具有二阶导数,且 y0, x x( y) 是 y=y(x) 的反函数 .(1)试将 x=x(y) 所满足的微分方程d 2x ( ysin x)( dx) 30 变换为 y=y(x) 满足的微分方程;dy 2dy (2) 求变换后的微分方程满足初始条件y(0)0, y (0)3的解 .2七 、(本题满分 12 分)讨论曲线 y4 ln x k 与 y4x ln 4 x 的交点个数 .八 、(本题满分 12 分)设位于第一象限的曲线y=f(x) 过点 ( 2 , 1) ,其上任一点P(x,y) 处的法线与 y 轴的交点为 Q ,且线22段 PQ 被 x 轴平分 .(1) 求曲线 y=f(x) 的方程;(2) 已知曲线 y=sinx 在 [ 0, ] 上的弧长为 l ,试用 l 表示曲线 y=f(x) 的弧长 s. 九 、(本题满分 10 分)有一平底容器,其内侧壁是由曲线x ( y)( y 0) 绕 y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m.根据设计要求, 当以 3 3 / min的速率向容器内注入液体时,液面的面积将以m 2/ min 的m速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据 t 时刻液面的面积,写出 t 与 ( y) 之间的关系式;(2) 求曲线 x( y) 的方程 .(注: m 表示长度单位米, min 表示时间单位分 .) 十 、(本题满分 10 分)设函数 f(x) 在闭区间 [a,b] 上连续, 在开区间 (a,b)内可导, 且 f (x) 0.若极限 limf (2xa)存在,证x axa明:(1) 在(a,b)内 f(x)>0;(2)在 (a,b)内存在点b 2 a 22 ,使b;f (x)dxf ( )a,使 f ( )(b2a 2)2 b(3) 在 (a,b) 内存在与 (2)中 相异的点f ( x) dx. a a十一、(本题满分10 分)220若矩阵 A82a相似于对角阵,试确定常数 a 的值;并求可逆矩阵P使P1AP.006十二、(本题满分8 分)已知平面上三条不同直线的方程分别为l1 :ax2by3c0 ,l 2:bx2cy3a0,l 3:cx2ay3b0 .试证这三条直线交于一点的充分必要条件为 a b c 0.2003 年考研数学(二)真题评注一、填空题 (本题共 6 小题,每小题 4 分,满分 24 分 . 把答案填在题中横线上)1( 1) 若 x0时, (1ax 2 ) 4 1 与 xsin x 是等价无穷小,则a=-4.1【分析】 根据等价无穷小量的定义,相当于已知lim(1ax 2 ) 41 ,反过来求 a. 注意在计算过程中xxsin x应尽可能地应用无穷小量的等价代换进行化简.11【详解】当 x0 时, (1 ax 2 ) 4 1 ~ax 2 , x sin x ~ x 2 .42 11 ax 2(141于是,根据题设有ax )lim 41,故 a=-4.lim2ax 0 x sin xx 0 x4( 2 ) 设 函 数 y=f(x) 由 方 程 xy 2 ln xy 4 所 确 定 ,则 曲 线 y=f(x) 在点 (1,1)处的切线方程是x-y=0 .【分析 】 先求出在点 (1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】等式 xy 2 ln xy 4 两边直接对 x 求导,得y xy2 4y3 y ,x将 x=1,y=1 代入上式,有y (1) 1. 故过点 (1,1)处的切线方程为y 1 1 (x 1) ,即x y 0.【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点 .( 3) y2 x 的麦克劳林公式中 x n 项的系数是( l n2) n .n!【分析 】 本题相当于先求y=f(x) 在点 x=0 处的 n 阶导数值 f (n ) ( 0) ,则麦克劳林公式中 x n 项的系数是f (n) (0).n!【详解】 因为y2 x ln 2 , y2x (ln 2)2 ,, y ( x)2 x (ln 2)n ,于是有y(n ) (0) ( l n2) nxny ( n) (0)(ln 2)n,故麦克劳林公式中项的系数是n!.n!【评注】 本题属常规题型,在一般教材中都可找到答案.( 4) 设曲线的极坐标方程为e a (a0) ,则该曲线上相应于从0变到2的一段弧与极轴所围成的图形的面积为1(e4 a1).4a【分析】利用极坐标下的面积计算公式S 12 ( )d即可 . 2【详解】所求面积为S 122()d122ad 2 0 2 0e=1e2a21(e4 a1) .4a4a.【评注】本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂111(5)设为3维列向量,T是的转置.若T T=3.1 11,则111【分析】本题的关键是矩阵T1,必可分解为一列乘一行的形式,而行向量一般可选第一的秩为行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】由T1111111 1 =11 1 1,知 1 ,于是111111T1111 3.1a1【评注】一般地,若 n 阶矩阵 A 的秩为 1,则必有A a2 b1 b2bn .a n101(6)设三阶方阵A,B 满足A2B A B E ,其中E为三阶单位矩阵,若A020 ,则B2 011.2【分析】先化简分解出矩阵B,再取行列式即可.【详解】由A2B A B E知,(A2E)B A E,即(A E)(A E)B A E,易知矩阵 A+E 可逆,于是有(A E)B E.再两边取行列式,得A EB 1,0011因为AE0102.,所以B2002【评注】本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共 6 小题,每小题 4 分,满分 24 分 . 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)( 1)设{ a n}, { b n}, { c n}均为非负数列,且lim a n0 , lim b n 1, lim c n,则必有n n n(A)a n b n对任意n成立.(B)b n c n对任意n成立.(C)极限 lim a n c n不存在.(D) 极限lim b n c n不存在 .[D]n n【分析】本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B) ;而极限lim a n c n是 0型未定式,可能存在也可能不存在,举反例说明即可;极限lim b n c n属 1型,必为无穷n n大量,即不存在 .【详解】用举反例法,取a n 21,c n11,2,) ,则可立即排除(A),(B),(C) ,因此, b n n(n正确选项为 (D).n2【评注】对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.n( 2)设a n 3 n 1 x n 11x n dx ,则极限lim na n等于20n33(A)(1e) 2 1 .(B)(1e1) 2 1 .33(C)(1e1) 2 1 .(D)(1e) 21.[B]【分析】先用换元法计算积分,再求极限.【详解】因为3n3a n n 1 x n 11 x n dx=202nnn 11 x n d (1x n ) 013n=(1 x n ) 2n 1 n01{[1 (n3)n] 21} ,n n1n 33可见lim na n=lim {[ 1 ()n] 21}(1 e 1 ) 2 1.n n n1【评注】本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.( 3)已知y x是微分方程 y y( x) 的解,则(x) 的表达式为ln x x y y y 2y 2(A )x2.(B)x 2.22(C)x2 .(D)x2.[ A ] y y【分析】将 y x代入微分方程,再令的中间变量为u,求出(u) 的表达式,进而可计算出 ( x ) .ln x y【详解】将 y x代入微分方程y y( x) ,得ln x x yln x11(ln x),即(ln x)1.ln 2 x2 ln x ln x令 lnx=u ,有(u)1(x y2.应选 (A). u2 ,故) =x2y【评注】本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.( 4)设函数f(x)在(, ) 内连续,其导函数的图形如图所示,则f(x) 有(D)一个极小值点和两个极大值点 .(E)两个极小值点和一个极大值点 .(F)两个极小值点和两个极大值点 .(D)三个极小值点和一个极大值点 .[C ]yO x【分析】答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共 4 个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】根据导函数的图形可知,一阶导数为零的点有 3 个,而x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0 左侧一阶导数为正,右侧一阶导数为负,可见x=0 为极大值点,故f(x) 共有两个极小值点和两个极大值点,应选(C).【评注】本题属新题型,类似考题2001 年数学一、二中曾出现过,当时考查的是已知f(x) 的图象去推导 f ( x) 的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过 .(5)设 I 14tan x dx , I 24xdx , 则xtan x(A) I 1 I 2 1.(B) 1 I 1 I 2 .(C)I 2I 11.(D)1I 2 I 1 .[ B]【分析】 直接计算 I 1,I2 是困难的,可应用不等式tanx>x, x>0.【详解 】 因为当 x>0 时,有 tanx>x ,于是tan x1,x1,从而有I 14 t a nx,dxxtan xx4I 2 4x,dx4tan x可见有I 1I 2且 I 2,可排除 (A),(C),(D) ,故应选 (B).4【评注 】 本题没有必要去证明I 11 ,因为用排除法,(A),(C),(D) 均不正确,剩下的 (B)一定为正确选项 .(6)设向量组 I : 1 , 2 ,, r 可由向量组 II :1,2,,s 线性表示,则(A)当 r s 时,向量组 II 必线性相关 .(B) 当 r s 时,向量组 II 必线性相关 . (C) 当 rs 时,向量组 I 必线性相关 .(D)当 rs 时,向量组 I 必线性相关 .[ D ]【分析 】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I : 1 ,2 ,, r 可由向量组II : 1,2 ,, s 线性表示, 则当 r s 时,向量组 I 必线性相关 . 或其逆否命题: 若向量组 I : 1 , 2 ,, r可由向量组 II : 1 , 2 ,, s 线性表示,且向量组 I 线性无关,则必有 rs . 可见正确选项为 (D). 本题也可通过举反例用排除法找到答案 .1 0101 ,【详解 】 用排除法:如1 ,1,2 ,则12 ,但2 线性无关,10 11 1 ,排除(A) ;1, 2 ,10 , 则 2 可 由 1线性表示,但 1线性无关,排除 (B);0 01 , 11 ,1 线性无关,排除 (C). 故正确选项为 (D).1 0 1,21 ,1 可由2 线性表示,但【评注 】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三、(本题满分10 分)ln(1ax 3 ) ,x0,x arcsin xx0,设函数 f (x)6,e ax x 2ax1x0,,x sin x4问 a 为何值时, f(x) 在 x=0 处连续; a 为何值时, x=0 是 f(x) 的可去间断点?【分析】分段函数在分段点 x=0 连续,要求既是左连续又是右连续,即f (00) f (0) f (00).【详解】 f (00)lim f ( x)lim ln(1ax 3 )lim ax 3x 0x0x arcsin x x 0 x arcsin x= lim 3ax 2lim3ax2 12x0x 01x111x23ax 26a.= lim1x 2x02f (00)lim f (x)lim e ax x2ax1x 0x0x sinx4= 4 lim e ax x 22ax1 4 lim ae ax2x a2a 2 4.x 0x x 02x令 f (0 0) f (0 0) ,有 6a2a 2 4 ,得a 1或a 2 .当 a=-1 时,lim f ( x)6f(0),即 f(x) 在 x=0 处连续 .x0当 a=-2 时,lim f ( x)12 f (0),因而 x=0 是 f(x) 的可去间断点 .x0【评注】本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四、(本题满分9 分)x12t 2 ,d2y.设函数 y=y(x) 由参数方程 1 2 ln t e u(t1) 所确定,求y dx21udu x9【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当 x=9 时,可相应地确定参数 t 的取值 .【详解 】由dye 12ln t 22et , dx4t ,dt 12 ln t t1 2ln tdtdydy 2ete得dt1 2 ln t 2(1,dxdx 4t2 ln t )dt所以d 2 y d dy 1e12 1dx 2dt ( dx )dx=2 (1 2 ln t )2 t 4tdte= 4t 2(1 2ln t) 2.当 x=9 时,由 x1 2t2 及 t>1 得 t=2, 故d 2 yee2 .dx 2x 94t 2 (1 2ln t) 2t216(1 2 ln 2)五 、(本题满分 9 分)xe arctan x计算不定积分(1x 2 )3 dx.2【分析 】 被积函数含有根号1 x2 ,典型地应作代换: x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换: arctanx=t ,即 x=tant.【详解 】 设 xtant ,则xe arctan xdx e t tan t2tdt = tsin tdt.(13 =(1 tan 2 3sec ex 2 ) 2t) 2ttdttt又esin e dcos= ( e t cost e t costdt)=e t cost e t sinte t sin tdt ,故t1 t ( s i n c o s) .e s i nt d t 2 ettCxe arctan x1 e arctan x ( x 1因此3 dx =) C(1 x 2 ) 2 2 1 x 21 x 2(x1)e arctan x=C.2 1 x 2【 评注 】本题也可用分布积分法:xe arctan xx de arctan x3dx =(1x 2 ) 21 x 2xe arctan x e arctan xdx=1 x2 (1 3x 2 ) 2= xe arctan x1 de arctan x1 x 21 x 2xe arctan x e arctan xxe arctan xdx ,=1 x 21 x 23(1 x 2 ) 2移项整理得arctan xdx = (xarctan xxe 31)e C.(1 x 2 ) 22 1 x 2本题的关键是含有反三角函数,作代换 arctan x t 或 tant=x.六 、(本题满分 12 分)设函数 y=y(x) 在 (, ) 内具有二阶导数,且y 0, x x( y) 是 y=y(x) 的反函数 .(1)试将 x=x(y) 所满足的微分方程d 2x ( y sin x)( dx) 30 变换为 y=y(x) 满足的微分方程;dy 2 dy3(2) 求变换后的微分方程满足初始条件y(0) 0, y (0)的解 .2【分析 】 将dx转化为dy 比较简单, dx 11,关键是应注意:dydx dy =dyydxd 2 x d ( dx ) = d ( 1 ) dxdy 2 dy dy dx y dyy1 y = y2y( y )3.然后再代入原方程化简即可.【详解】(1) 由反函数的求导公式知dxdy 1y,于是有d 2 x d dx d 1 dx y 1ydy 2dy (dy)=dx(y)dy=y 2y( y )3.代入原微分方程得y y sin x.(*)(2) 方程 ( * )所对应的齐次方程y y0 的通解为Y C1e x C2 e x .设方程 ( * ) 的特解为y* A cos x B sin x ,代入方程 ( * ),求得A0, B1,故 y*1sin x ,从而y y sin x 的通解是212y Y y*C1 e x C2e x sin x.32由y(0) 0, y (0),得 C11,C21.故所求初值问题的解为21s i nx.y e x e x2【评注】本题的核心是第一步方程变换 .七、(本题满分 12 分)讨论曲线 y 4 ln x k 与 y4x ln 4 x 的交点个数.【分析】问题等价于讨论方程ln 4 x 4 ln x 4x k 0 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数) .【详解】设(x)ln 4x 4 ln x4x k ,y则有( x)4(ln 3x1x) .4-kx不难看出, x=1 是(x) 的驻点.O1x当 0x1时,(x)0 ,即( x) 单调减少;当x>1时, ( x)0 ,即(x) 单调增加,故 (1) 4 k 为函数(x) 的最小值.当 k<4,即 4-k>0 时,( x) 0无实根,即两条曲线无交点;当 k=4,即 4-k=0 时,( x) 0有唯一实根,即两条曲线只有一个交点;当k>4,即 4-k<0 时,由于lim( x)lim [ln x(ln 3 x4)4x k ] x 0x 0lim( x)lim [ln x(ln 3 x4)4x k] x x ;,故( x) 0有两个实根,分别位于(0,1)与(1,) 内,即两条曲线有两个交点.【评注】讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标 .八、(本题满分12 分)设位于第一象限的曲线y=f(x) 过点(2 , 1),其上任一点P(x,y)处的法线与y轴的交点为Q,且线2 2段 PQ 被 x 轴平分 .(3)求曲线 y=f(x) 的方程;(4)已知曲线 y=sinx 在[ 0,] 上的弧长为l ,试用 l 表示曲线y=f(x) 的弧长 s.【分析】 (1)先求出法线方程与交点坐标Q,再由题设线段PQ 被 x 轴平分,可转化为微分方程,求解此微分方程即可得曲线 y=f(x) 的方程 .(2)将曲线 y=f(x) 化为参数方程,再利用弧长公式bx 2y 2 dt 进行计算即可.sa【详解】 (1)曲线 y=f(x) 在点 P(x,y) 处的法线方程为Y y 1( X x) ,y其中 (X,Y) 为法线上任意一点的坐标. 令 X=0,则Y y x,y故 Q 点的坐标为(0, y x).由题设知y1( y y x )0 ,即 2 ydy xdx0.2y积分得x 2 2 y2 C (C为任意常数).由 y2x21知 C=1,故曲线y=f(x) 的方程为2x22y 2 1.(2) 曲线 y=sinx 在 [0,]上的弧长为l1cos2 xdx 2 2 1 cos2 xdx.00曲线 y=f(x)的参数方程为x c o ts,y0t.2 s i nt,2 2故 s2 sin2 t 1cos2 t dt12 1 sin 2 t dt ,0220令 t u ,则21 s2l =2 2012 1 cos2 udu1 cos2 u ( du)2202l.4【评注】注意只在第一象限考虑曲线y=f(x) 的弧长,所以积分限应从0 到,而不是从0 到2 .2九、(本题满分10 分)有一平底容器,其内侧壁是由曲线x( y)( y0) 绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为 2 m.根据设计要求,当以 3 3 / min的速率向容器内注入液体时,m液面的面积将以m2/ min 的速率均匀扩大(假设注入液体前,容器内无液体) .(3)根据 t 时刻液面的面积,写出t 与( y) 之间的关系式;(4)求曲线 x( y) 的方程.(注: m 表示长度单位米,min 表示时间单位分 .)【分析】液面的面积将以m 2 / min 的速率均匀扩大,因此t 时刻液面面积应为:22t ,而液面为圆,其面积可直接计算出来,由此可导出t 与( y) 之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t,它们之间也可建立积分关系式,求导后转化为微分方程求解即可 .【详解】 (1)设在 t 时刻,液面的高度为y,则由题设知此时液面的面积为2 ( y)4t ,从而t2 ( y) 4.(2)液面的高度为 y 时,液体的体积为y2 (u)du 3t 3 2 ( y) 12. 0上式两边对y 求导,得2 ( y) 6 ( y) ( y) ,即( y) 6( y).解此微分方程,得y( y)Ce 6,其中C为任意常数,由 (0) 2 知C=2,故所求曲线方程为yx 2e6 .【评注】作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十、(本题满分10 分)设函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b)内可导,且f (x)0. 若极限lim f (2x a)存在,证x a x a 明:(2)在 (a,b)内 f(x)>0;(3)在 (a,b)内存在点,使b2 a 22;bf ( x)dx f ()a(3)在 (a,b) 内存在与 (2) 中相异的点,使f ()(b 2 a 2 )2bf (x)dx.a a【分析】 (1)由limf (2x a)f(x)>0.(2) 要证的结论显含x a存在知, f(a)=0, 利用单调性即可证明x af(a),f(b) ,应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3)注意利用 (2)的结论证明即可 .【详解】 (1)因为 lim f (2x a)存在,故 lim f (2 x a) f (a) 0.又 f ( x)0 ,于是f(x)在(a,b)x a x a x a 内单调增加,故f (x) f (a)0, x(a,b).设 F(x)= x2, g(x)xx b) ,则 g ( x) f ( x) 0 ,故 F (x), g( x) 满足柯西中值定理(2) f (t )dt (aa的条件,于是在 (a,b)内存在点,使F (b) F (a)b2 a 2(x 2 ),g (b)g(a)b a xf (t )dt f (t) dt)xf (t )dt(a a a即b 2 a 22.bf ( )f ( x)dx a(3) 因 f ( ) f ( ) f (0) f ( ) f (a) ,在 [ a, ] 上应用拉格朗日中值定理, 知在 (a, ) 内存在一点,使 f ( )f ( )(a) ,从而由 (2) 的结论得b 2 a 22,bf ()( a)f ( x) dxa即有f ( )(b2a 2 )2bf (x)dx.a a【评注 】 证明 (3),关键是用( 2)的结论:222bb 2 a22f ( )(ba )af (x) dxb f ( x)dxf( )( a)aaf ( ) f ( )( a)( 根据 (2) 结论 )f ( )f (a)f ( )( a) ,可见对 f(x) 在区间 [ a, ] 上应用拉格朗日中值定理即可 .十 一、(本题满分 10 分)2 2 0若矩阵 A8 2 a 相似于对角阵,试确定常数 a 的值;并求可逆矩阵 P 使 P 1AP.0 0 6【分析 】 已知 A 相似于对角矩阵,应先求出 A 的特征值,再根据特征值的重数与线性无关特征向量 的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求 P ,则是常识问题 .【详解 】 矩阵 A 的特征多项式为2 2 0EA82 a (6)[(2) 216]6= (6)2( 2) ,故 A 的特征值为126, 32.由于 A 相似于对角矩阵 ,故对应1 26 应有两个线性无关的特征向量,即3 r (6E A) 2 ,于是有 r (6E A) 1.42 0 2 1 0 由6EA8 4 a 0 0 a ,0 0知 a=0.于是对应于1 26 的两个线性无关的特征向量可取为110 ,22 .1当 32 时,42 0 2 1 0 2EA8 4 0 0 0 1 ,80 0 02x 1x 2 0,1 解方程组2 的特征向量2 .x 30,得对应于330 11令P0 2 21 0,则 P 可逆,并有 P 1AP.十二 、(本题满分 8 分)已知平面上三条不同直线的方程分别为l 1 : ax 2by 3c 0 , l 2 : bx 2cy 3a 0 , l 3 : cx2ay 3b0 .试证这三条直线交于一点的充分必要条件为a b c 0.【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为 2.【详解 】 方法一 :必要性设三条直线 l 1, l 2 ,l 3 交于一点,则线性方程组ax 2by 3c, bx 2cy 3a,(*)cx 2ay3b,a 2b a 2b 3c有唯一解,故系数矩阵Ab 2c 与增广矩阵 Ab 2c 3a 的秩均为 2,于是 A 0.c 2ac2a3ba 2b 3c由于Ab 2c 3a 6(ab c)[ a 2 b 2c 2abac bc]c2a3b=3(a b c)[( a b) 2 (b c)2(ca) 2 ] ,但根据题设( a b ) 2 ( b ) 2 ( c a ) 2 0 ,故ca b c 0.充分性:由 a b c 0 ,则从必要性的证明可知,A 0,故秩 (A)3.由于a 2b 2(ac 2 ) 2[ ( )b2 ]b 2cba ab=2[( a 1 b) 2 3 b 2 ]0 ,故秩 (A)=2.2 4 于是,秩(A)= 秩 ( A) =2.因此方程组 (*) 有唯一解,即三直线l 1 , l 2 , l 3 交于一点 .方法二 :必要性x 0设三直线交于一点 ( x 0 , y 0 ) ,则 y 0 为 Ax=0 的非零解,其中1a 2b 3c Ab 2c 3a .c 2a3b于是 A0 .a 2b 3c而Ab 2c 3a 6(a b c)[ a 2 b 2c 2 ab ac bc ]c 2a3b=3( a b)[( a ) 2 ( b c ) 2 ( c a ) 2 ] ,cb 但根据题设( a b ) 2 ( b ) 2 ( c a ) 2 0 ,故ca b c 0.充分性:考虑线性方程组ax2by3c,bx2cy3a,(*)cx2ay3b,将方程组 (*) 的三个方程相加,并由a+b+c=0 可知,方程组 (*) 等价于方程组ax2by3c,(* *)bx2cy3a.a2b2(2)2[()2]因为b2c ac b a a b b=-[ a2 b 2(a b) 2 ] 0 ,故方程组 (* *)有唯一解,所以方程组(*)有唯一解,即三直线l1 ,l 2 , l3交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2003年数二真题、标准答案及解析

2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为(A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01x dx x02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰;(3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη 十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1]1(1{[1)1(1231023-++=++n n n n n n n x n,可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx x x I ,dx xxI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4t a n 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200x ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x a x ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u 所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由tet t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dt dx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故.)c o s (s i n 21s i n C t t e t d t e t t +-=⎰因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan =.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0)(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有 (22dy dx dy d dyx d ==dy dx y dx d ⋅'1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X y y Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ 曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l=【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而.4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a b a a a dt t f x dt t f dt t f a b a g b g a F b F ))(()()()()()()()(222, 即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
2003年全国硕士研究生入学考试(数学二)试题及答案解析

2003年全国硕士研究生入学考试(数学二)试题及答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 .【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim412=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x .于是,根据题设有 14141limsin )1(lim22412=-=-=-→→a xaxxx ax x x ,故a=-4.【评注】 本题属常规题型.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可. 【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342,将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是!)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中nx 项的系数是.!)0()(n fn【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',nx x y)2(ln 2,)(= ,于是有n n y)2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn =【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-aeaπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可.【详解】 所求面积为 θθθρπθπd ed S a ⎰⎰==20220221)(21==πθ20241a ea)1(414-aeaπ.【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,T α是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα,则 ααT= 3 .【分析】 本题的关键是矩阵T αα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21 .【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 202010100=-=-E A , 所以 =B 21 .【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限nn n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取na n 2=,1=n b ,),2,1(21 ==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa nn nn n +=⎰+-12311, 则极限n n na ∞→lim 等于(A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限. 【详解】 因为dx x xa nn nn n +=⎰+-12311=)1(1231nn nn x d x n++⎰+=}1])1(1{[1)1(1231023-++=++nn n nn n nx n,可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n nn【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知xx y ln =是微分方程)(y x x yy ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy -(B) .22xy(C) .22yx - (D) .22yx [ A ]【分析】 将xx y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(yxϕ.【详解】将x x y ln =代入微分方程)(yxx yy ϕ+=',得)(l n ln 1ln1ln 2x x xx ϕ+=-,即 xx 2ln1)(ln -=ϕ.令 lnx=u ,有 21)(uu -=ϕ,故 )(yx ϕ=.22x y- 应选(A). 【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题.(5)设⎰=41tan πdx xx I ,dx xx I ⎰=42tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0. 【详解】 因为当 x>0 时,有tanx>x ,于是1tan >xx ,1tan <xx ,从而有4t a n 41ππ>=⎰dx xx I , 4tan 42ππ<=⎰dx xx I ,可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B).【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :rααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e x x ax x f ax问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即 ).00()0()00(+==-f f f【详解】 xx axxx ax x f f x x x arcsin lim arcsin )1ln(lim)(lim )00(303-=-+==----→→→=113lim 1113lim22022--=----→→xax xaxx x=.6213lim22a xaxx -=--→ 4sin1lim )(lim )00(2x x ax x ex f f axx x --+==+++→→=.4222lim 41lim4222+=-+=--+++→→a xa x aexax x eaxx axx令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由tet ttedt dy tln 2122ln 21ln 21+=⋅+=+,t dtdx 4=,得,)ln 21(24ln 212t e t t etdtdx dt dy dxdy +=+==所以dtdx dxdy dtd dxy d 1)(22==ttt e412)ln 21(122⋅⋅+-⋅=.)ln 21(422t t e+-当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===et t edxy d t x五 、(本题满分9分) 计算不定积分.)1(232arctan dx x xex⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xex⎰+232arctan )1(=tdt t t e t2232sec )tan1(tan ⎰+=.sin tdt e t ⎰又t d e tdt e t t cos sin ⎰⎰-==)cos cos (tdt e t e t t ⎰--=tdt e t e t e t t t sin sin cos ⎰-+-, 故.)c o s (s i n 21s i n C t t e t d t e tt+-=⎰因此dx x xex⎰+232arctan )1(=C xxx ex++-+)111(2122arctan=.12)1(2arctan C xex x++-【评注】本题也可用分布积分法:dx x xex⎰+232arctan )1(=xdexx arctan 21⎰+=dx x exxexx⎰+-+232arctan 2arctan )1(1=xxdexxxearctan 22arctan 111⎰+-+=dx x xexex xexxx⎰+-+-+232arctan 2arctan 2arctan )1(11,移项整理得dx x xex⎰+232arctan )1(=.12)1(2arctan C xex x++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dydx x y dyx d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.【分析】 将dydx 转化为dxdy 比较简单,dydx =y dxdy '=11,关键是应注意:)(22dydx dyd dyx d ==dydx y dxd ⋅')1(=32)(1y y y y y '''-='⋅'''-.然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知y dydx '=1,于是有)(22dydx dyd dyx d ==dydx y dxd ⋅')1(=32)(1y y y y y '''-='⋅'''-.代入原微分方程得.s i n x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为 .21x x e C e C Y -+= 设方程( * )的特解为x B x A y s i n c o s *+=, 代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是.s i n 2121*x eC e C y Y y xx-+=+=-由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为.s i n 21x ee y xx--=-【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4,则有 .)1(l n 4)(3xx x x +-='ϕ 4-k不难看出,x=1是)(x ϕ的驻点. O 1 x当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k -=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点; 当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln[ln lim )(lim 3k x x x x x x ϕ;+∞=-+-=+∞→+∞→]4)4(ln[ln lim )(lim 3k x x x x x x ϕ,故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分. (1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为 )(1x X y y Y -'-=-,其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=,故Q 点的坐标为).,0(y x y '+由题设知0)(21='++y x y y ,即 .02=+xdx ydy积分得 C y x =+222 (C 为任意常数).由2122==x y知C=1,故曲线y=f(x)的方程为.1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为 .c o s 12c o s 1222dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o st y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=22222sin121cos 21sin ππ,令u t -=2π,则du u du u s ⎰⎰+=-+=2222cos 121)(cos 121ππ=.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m. 根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前, 容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.)【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u yϕϕπ上式两边对y 求导,得 )()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数,由2)0(=ϕ知C=2, 故所求曲线方程为.26yex π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0; (2) 在(a,b)内存在点ξ,使)(2)(22ξξf dxx f ab ba=-⎰;(3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'badx x f aa b f .)(2))((22ξξη【分析】 (1) 由ax a x f ax --+→)2(lim存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f ax --+→)2(lim存在,故.0)()2(lim ==-+→a f a x f ax 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=> (2) 设F(x)=2x ,)()()(b x a dt t f x g xa≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x xa baaadt t f x dtt f dt t f ab a g b g a F b F ))(()()()()()()()(222,即)(2)(22ξξf dxx f ab ba=-⎰.(3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dxx f ab ba-'=-⎰ξηξ,即有 ⎰-=-'badx x f aa b f .)(2))((22ξξη【评注】 证明(3),关键是用(2)的结论: ⎰-=-'badx x f aa b f )(2))((22ξξη⇔))((2)(22a f dxx f ab ba-'=-⎰ξηξ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 ) ))(()()(a f a f f -'=-⇔ξηξ, 可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分) 若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=6028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(6280222---=------=-λλλλλλaA E=)2()6(2+-λλ, 故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-000001200480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ当23-=λ时, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--00100012800480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*) 有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a cc bb a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b aca cbc b aA 323232的秩均为2,于是.0=A由于 ])[(6323232222bc ac ab c b a c b a baca c bcb a A ---++++=---= =])()())[((3222a c cb b ac b a -+-+-++, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A 由于])([2)(22222b b a a b ac cbb a ++-=-==0]43)21[(222≠++-b b a ,故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中.323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b aca c bc b aA 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a baca c bcb aA ---++++-== =])()())[((3222a c c b b a c b a -+-+-++-, 但根据题设 0)()()(222≠-+-+-a c c b b a ,故 .0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为])([2)(22222b b a a b ac cbb a ++-=-==-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
考研数学二历年真题(2003—2012)__杨玉坤

2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++ ,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10)22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ . (11) 设1ln ,z f x y ⎛⎫=+ ⎪⎝⎭其中函数()f u 可微,则2z zxy x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x yy +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<. (21)(本题满分10 分)(I)证明方程1x x x ++= n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根; (II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=. (3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xx dx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**AB,分别为A 、B 的伴随矩阵。
2003-数二真题、标准答案及解析

2003年考研数学(二)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= .(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 .(3) x y 2=的麦克劳林公式中nx 项的系数是__________.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为__________.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = .(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则B =________.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ ](2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ ](3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ ](4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有 (A) 一个极小值点和两个极大值点.(B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ ](5)01xdx x 02tan , 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ ] (6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关.(C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ ]三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d五 、(本题满分9分)计算不定积分.)1(232arctan dx x xe x ⎰+六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为y=y(x)满足的微分方程;(2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数. 八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(1) 求曲线 y=f(x)的方程;(2) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s. 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(1) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式; (2) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f ax --+→)2(lim 存在,证明:(1) 在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使)(2)(22ξξf dxx f a b ba=-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'ba dx x f aa b f .)(2))((22ξξη十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P十二 、(本题满分8分)已知平面上三条不同直线的方程分别为 :1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2003年考研数学(二)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) 若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,则a= -4 . 【分析】 根据等价无穷小量的定义,相当于已知1sin )1(lim 4120=-→xx ax x ,反过来求a. 注意在计算过程中应尽可能地应用无穷小量的等价代换进行化简.【详解】 当0→x 时,241241~1)1(ax ax ---,2~sin x x x . 于是,根据题设有 14141lim sin )1(lim 2204120=-=-=-→→a xax x x ax x x ,故a=-4.(2) 设函数y=f(x)由方程4ln 2y x xy =+所确定,则曲线y=f(x)在点(1,1)处的切线方程是 x-y=0 .【分析】 先求出在点(1,1)处的导数,然后利用点斜式写出切线方程即可.【详解】 等式4ln 2y x xy =+两边直接对x 求导,得 y y xy x y '=+'+342, 将x=1,y=1代入上式,有 .1)1(='y 故过点(1,1)处的切线方程为 )1(11-⋅=-x y ,即 .0=-y x【评注】 本题属常规题型,综合考查了隐函数求导与求切线方程两个知识点.(3) xy 2=的麦克劳林公式中nx 项的系数是 !)2(l n n n.【分析】 本题相当于先求y=f(x)在点x=0处的n 阶导数值)0()(n f,则麦克劳林公式中n x 项的系数是.!)0()(n f n 【详解】 因为 2ln 2x y =',2)2(ln 2x y ='',n x x y)2(ln 2,)(= ,于是有nn y )2(l n )0()(=,故麦克劳林公式中nx 项的系数是.!)2(ln !)0()(n n y nn = 【评注】 本题属常规题型,在一般教材中都可找到答案.(4) 设曲线的极坐标方程为)0(>=a e a θρ ,则该曲线上相应于θ从0变到π2的一段弧与极轴所围成的图形的面积为)1(414-ae aπ . 【分析】 利用极坐标下的面积计算公式θθρβαd S ⎰=)(212即可. 【详解】 所求面积为θθθρπθπd e d S a ⎰⎰==20220221)(21==πθ20241a e a )1(414-ae aπ. 【评注】 本题考查极坐标下平面图形的面积计算,也可化为参数方程求面积,但计算过程比较复杂.(5) 设α为3维列向量,Tα是α的转置. 若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111T αα,则ααT = 3 .【分析】 本题的关键是矩阵Tαα的秩为1,必可分解为一列乘一行的形式,而行向量一般可选第一行(或任一非零行),列向量的元素则为各行与选定行的倍数构成.【详解】 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=111111111Tαα=[]111111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-,知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111α,于是[].3111111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ααT【评注】 一般地,若n 阶矩阵A 的秩为1,则必有[].2121n n b b b a a a A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=(6) 设三阶方阵A,B 满足E B A B A =--2,其中E 为三阶单位矩阵,若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=102020101A ,则=B 21. 【分析】 先化简分解出矩阵B ,再取行列式即可. 【详解】 由E B A B A =--2知,E A B E A +=-)(2,即 E A B E A E A +=-+))((,易知矩阵A+E 可逆,于是有 .)(E B E A =- 再两边取行列式,得 1=-B E A ,因为 2002010100=-=-E A , 所以 =B 21.【评注】 本题属基本题型,综合考查了矩阵运算与方阵的行列式,此类问题一般都应先化简再计算.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项.(2)设dx x xa n n nn n +=⎰+-123101, 则极限n n na ∞→lim 等于 (A) 1)1(23++e . (B) 1)1(231-+-e .(C) 1)1(231++-e . (D) 1)1(23-+e . [ B ]【分析】 先用换元法计算积分,再求极限.【详解】 因为dx x x a n n n n n +=⎰+-123101=)1(12310n n nn x d x n ++⎰+=}1])1(1{[1)1(1231023-++=++n n n n n n n x n, 可见 n n na ∞→lim =.1)1(}1])1(1{[lim 23123-+=-++-∞→e n n n n【评注】 本题属常规题型,综合考查了定积分计算与求数列的极限两个知识点,但定积分和数列极限的计算均是最基础的问题,一般教材中均可找到其计算方法.(3)已知x x y ln =是微分方程)(y x x y y ϕ+='的解,则)(yxϕ的表达式为 (A ) .22xy - (B) .22x y(C) .22yx - (D) .22y x [ A ]【分析】 将x x y ln =代入微分方程,再令ϕ的中间变量为u ,求出)(u ϕ的表达式,进而可计算出)(y xϕ. 【详解】将x x y ln =代入微分方程)(yxx y y ϕ+=',得)(ln ln 1ln 1ln 2x x x x ϕ+=-,即 xx 2ln 1)(ln -=ϕ. 令 lnx=u ,有 21)(u u -=ϕ,故 )(y xϕ=.22xy - 应选(A).【评注】 本题巧妙地将微分方程的解与求函数关系结合起来,具有一定的综合性,但问题本身并不复杂,只要仔细计算应该可以找到正确选项.(4)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(D) 一个极小值点和两个极大值点. (E) 两个极小值点和一个极大值点. (F) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ]【4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(5)设⎰=401tan πdx xx I ,dx x xI ⎰=402tan π, 则(A) .121>>I I (B) .121I I >>(C) .112>>I I (D) .112I I >> [ B ] 【分析】 直接计算21,I I 是困难的,可应用不等式tanx>x, x>0.【详解】 因为当 x>0 时,有tanx>x ,于是 1tan >x x ,1tan <x x ,从而有 4t a n 401ππ>=⎰dx x x I ,4tan 42ππ<=⎰dx x x I , 可见有 21I I >且42π<I ,可排除(A),(C),(D),故应选(B). 【评注】 本题没有必要去证明11<I ,因为用排除法,(A),(C),(D)均不正确,剩下的(B) 一定为正确选项.(6)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项.三 、(本题满分10分)设函数 ,0,0,0,4sin1,6,arcsin )1ln()(23>=<⎪⎪⎪⎩⎪⎪⎪⎨⎧--+-+=x x x xx ax x e xx ax x f ax 问a 为何值时,f(x)在x=0处连续;a 为何值时,x=0是f(x)的可去间断点?【分析】 分段函数在分段点x=0连续,要求既是左连续又是右连续,即).00()0()00(+==-f f f【详解】 xx ax x x ax x f f x x x arcsin lim arcsin )1ln(lim )(lim )00(30300-=-+==----→→→ =113lim 1113lim 22022--=----→→x ax x ax x x=.6213lim220a x ax x -=--→ 4sin1lim )(lim )00(200xx ax x e x f f ax x x --+==+++→→=.4222lim 41lim 420220+=-+=--+++→→a x ax ae xax x e ax x ax x 令)00()00(+=-f f ,有 4262+=-a a ,得1-=a 或2-=a .当a=-1时,)0(6)(lim 0f x f x ==→,即f(x)在x=0处连续.当a=-2时,)0(12)(lim 0f x f x ≠=→,因而x=0是f(x)的可去间断点.【评注】 本题为基本题型,考查了极限、连续与间断等多个知识点,其中左右极限的计算有一定难度,在计算过程中应尽量利用无穷小量的等价代换进行简化.四 、(本题满分9分)设函数y=y(x)由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【分析】 本题为参数方程求二阶导数,按参数方程求导的公式进行计算即可. 注意当x=9 时,可相应地确定参数t 的取值.【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx 4=, 得 ,)ln 21(24ln 212t e t t etdtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==tt t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e +- 当x=9时,由221t x +=及t>1得t=2, 故.)2ln 21(16)ln 21(42222922+-=+-===e t t e dx y d t x 五 、(本题满分9分)计算不定积分 .)1(232arctan dx x xe x⎰+【分析】 被积函数含有根号21x +,典型地应作代换:x=tant, 或被积函数含有反三角函数arctanx ,同样可考虑作变换:arctanx=t ,即 x=tant.【详解】 设t x tan =,则dx x xe x ⎰+232arctan )1(=tdt t t e t 2232sec )tan 1(tan ⎰+=.sin tdt e t ⎰ 又t d e tdt e t t cos sin ⎰⎰-= =)cos cos (tdt e t e t t ⎰-- =tdt e t e t e t t t sin sin cos ⎰-+-, 故 .)c o s (s i n 21s i n C t t e t d t e t t +-=⎰ 因此 dx x xe x⎰+232arctan )1(=C x x x e x ++-+)111(2122arctan=.12)1(2arctan C xe x x++- 【评注】本题也可用分布积分法: dx x xe x ⎰+232arctan )1(=x de x xarctan 21⎰+=dx x e x xe x x⎰+-+232arctan 2arctan )1(1=x xde x x xe arctan 22arctan 111⎰+-+ =dx x xe x e x xe x x x⎰+-+-+232arctan 2arctan 2arctan )1(11, 移项整理得dx x xe x⎰+232arctan )1(=.12)1(2arctan C x e x x ++-本题的关键是含有反三角函数,作代换t x =arctan 或tant=x.六 、(本题满分12分)设函数y=y(x)在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是y=y(x)的反函数.(1) 试将x=x(y)所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为y=y(x)满足的微分方程; (2) 求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 【分析】 将dy dx 转化为dx dy 比较简单,dy dx =y dxdy'=11,关键是应注意: )(22dy dx dy d dyx d ==dy dx y dx d ⋅')1( =32)(1y y y y y '''-='⋅'''-. 然后再代入原方程化简即可.【详解】 (1) 由反函数的求导公式知 y dy dx '=1,于是有)(22dy dx dy d dyx d ==dy dx y dx d ⋅')1(=32)(1y y y y y '''-='⋅'''-. 代入原微分方程得.sin x y y =-'' ( * )(2) 方程( * )所对应的齐次方程0=-''y y 的通解为.21x x e C e C Y -+=设方程( * )的特解为x B x A y sin cos *+=,代入方程( * ),求得21,0-==B A ,故x y sin 21*-=,从而x y y sin =-''的通解是 .sin 2121*x e C e C y Y y x x -+=+=- 由23)0(,0)0(='=y y ,得1,121-==C C . 故所求初值问题的解为 .s i n 21x e e y x x --=- 【评注】 本题的核心是第一步方程变换.七 、(本题满分12分)讨论曲线k x y +=ln 4与x x y 4ln 4+=的交点个数.【分析】 问题等价于讨论方程04ln 4ln 4=-+-k x x x 有几个不同的实根. 本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x 轴交点的个数).【详解】 设=)(x ϕk x x x -+-4ln 4ln 4则有 .)1(ln 4)(3xx x x +-='ϕ 不难看出,x=1是)(x ϕ的驻点. 当10<<x 时,0)(<'x ϕ,即)(x ϕ单调减少;当x>1时,0)(>'x ϕ,即)(x ϕ单调增加,故k-=4)1(ϕ为函数)(x ϕ的最小值.当k<4,即4-k>0时,0)(=x ϕ无实根,即两条曲线无交点;当 k=4,即4-k=0时,0)(=x ϕ有唯一实根,即两条曲线只有一个交点;当 k>4,即4-k<0时,由于+∞=-+-=++→→]4)4(ln [ln lim )(lim 300k x x x x x x ϕ; +∞=-+-=+∞→+∞→]4)4(ln [ln lim )(lim 3k x x x x x x ϕ, 故0)(=x ϕ有两个实根,分别位于(0,1)与),1(+∞内,即两条曲线有两个交点.【评注】 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.八 、(本题满分12分)设位于第一象限的曲线y=f(x)过点)21,22(,其上任一点P(x,y)处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.(3) 求曲线 y=f(x)的方程;(4) 已知曲线y=sinx 在],0[π上的弧长为l ,试用l 表示曲线y=f(x)的弧长s.【分析】 (1) 先求出法线方程与交点坐标Q ,再由题设线段PQ 被x 轴平分,可转化为微分方程,求解此微分方程即可得曲线y=f(x)的方程. (2) 将曲线 y=f(x) 化为参数方程,再利用弧长公式dt y x s ba ⎰'+'=22进行计算即可.【详解】 (1) 曲线y=f(x)在点P(x,y)处的法线方程为)(1x X yy Y -'-=-, 其中(X,Y)为法线上任意一点的坐标. 令X=0,则y x y Y '+=, 故Q 点的坐标为).,0(y x y '+由题设知 0)(21='++y x y y ,即 .02=+xdx ydy 积分得 C y x =+222 (C 为任意常数). 由2122==x y 知C=1,故曲线y=f(x)的方程为 .1222=+y x(2) 曲线y=sinx 在[0,π]上的弧长为.cos 12cos 120202dx x dx x l ⎰⎰+=+=ππ曲线y=f(x)的参数方程为⎪⎩⎪⎨⎧==,s i n 22,c o s t y t x .20π≤≤t 故 dt t dt t t s ⎰⎰+=+=2022022sin 121cos 21sin ππ, 令u t -=2π,则du u du u s ⎰⎰+=-+=202022cos 121)(cos 121ππ =.4222l l =【评注】 注意只在第一象限考虑曲线y=f(x)的弧长,所以积分限应从0到2π,而不是从0到.2π 九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).(3) 根据t 时刻液面的面积,写出t 与)(y ϕ之间的关系式;(4) 求曲线)(y x ϕ=的方程.(注:m 表示长度单位米,min 表示时间单位分.) 【分析】 液面的面积将以min /2m π的速率均匀扩大,因此t 时刻液面面积应为:t ππ+22,而液面为圆,其面积可直接计算出来,由此可导出t 与)(y ϕ之间的关系式;又液体的体积可根据旋转体的体积公式用定积分计算,已知t 时刻的液体体积为3t ,它们之间也可建立积分关系式,求导后转化为微分方程求解即可.【详解】 (1) 设在t 时刻,液面的高度为y ,则由题设知此时液面的面积为t y πππϕ+=4)(2, 从而 .4)(2-=y t ϕ(2) 液面的高度为y 时,液体的体积为.12)(33)(022-==⎰y t du u y ϕϕπ上式两边对y 求导,得)()(6)(2y y y ϕϕπϕ'=,即 ).(6)(y y ϕπϕ'=解此微分方程,得yCe y 6)(πϕ=,其中C 为任意常数, 由2)0(=ϕ知C=2,故所求曲线方程为.26y e x π=【评注】 作为应用题,本题比较好地综合考查了定积分在几何上的应用与微分方程的求解.十 、(本题满分10分)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.0)(>'x f 若极限ax a x f a x --+→)2(lim 存在,证明:(2) 在(a,b)内f(x)>0;(3) 在(a,b)内存在点ξ,使)(2)(22ξξf dx x f a b b a =-⎰; (3) 在(a,b) 内存在与(2)中ξ相异的点η,使⎰-=-'b adx x f a a b f .)(2))((22ξξη 【分析】 (1) 由ax a x f a x --+→)2(lim 存在知,f(a)=0, 利用单调性即可证明f(x)>0. (2) 要证的结论显含f(a),f(b),应将要证的结论写为拉格朗日中值定理或柯西中值定理的形式进行证明. (3) 注意利用(2)的结论证明即可.【详解】 (1) 因为ax a x f a x --+→)2(lim 存在,故.0)()2(lim ==-+→a f a x f a x 又0)(>'x f ,于是f(x)在(a,b)内单调增加,故).,(,0)()(b a x a f x f ∈=>(2) 设F(x)=2x ,)()()(b x a dt t f x g xa ≤≤=⎰, 则0)()(>='x f x g ,故)(),(x g x F 满足柯西中值定理的条件,于是在(a,b)内存在点ξ,使ξ=''=--=--⎰⎰⎰x x a ba a a dt t f x dt t f dt t f ab a g b g a F b F ))(()()()()()()()(222,即 )(2)(22ξξf dx x f a b b a =-⎰. (3) 因)()()0()()(a f f f f f -=-=ξξξ,在],[ξa 上应用拉格朗日中值定理,知在),(ξa 内存在一点η,使))(()(a f f -'=ξηξ,从而由(2) 的结论得))((2)(22a f dx x f a b b a -'=-⎰ξηξ, 即有 ⎰-=-'b a dx x f a a b f .)(2))((22ξξη 【评注】 证明(3),关键是用(2)的结论:⎰-=-'b a dx x f a a b f )(2))((22ξξη⇔))((2)(22a f dx x f a b b a-'=-⎰ξηξ ))(()(a f f -'=⇔ξηξ ( 根据(2) 结论 )))(()()(a f a f f -'=-⇔ξηξ,可见对f(x)在区间],[ξa 上应用拉格朗日中值定理即可.十 一、(本题满分10分)若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=60028022a A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使.1Λ=-AP P 【分析】 已知A 相似于对角矩阵,应先求出A 的特征值,再根据特征值的重数与线性无关特征向量的个数相同,转化为特征矩阵的秩,进而确定参数a. 至于求P ,则是常识问题.【详解】 矩阵A 的特征多项式为]16)2)[(6(600280222---=------=-λλλλλλa A E=)2()6(2+-λλ,故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故对应621==λλ应有两个线性无关的特征向量,即2)6(3=--A E r ,于是有 .1)6(=-A E r由 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-00000012000480246a a A E , 知a=0.于是对应于621==λλ的两个线性无关的特征向量可取为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001ξ, .0212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=ξ 当23-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=--0001000128000480242A E , 解方程组⎩⎨⎧==+,0,02321x x x 得对应于23-=λ的特征向量.0213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=ξ 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001220110P ,则P 可逆,并有.1Λ=-AP P 十二 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a【分析】 三条直线相交于一点,相当于对应线性方程组有唯一解,进而转化为系数矩阵与增广矩阵的秩均为2.【详解】 方法一:必要性设三条直线321,,l l l 交于一点,则线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)有唯一解,故系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a c c b b a A 222与增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=b a c a c b c b a A 323232的秩均为2,于是.0=A 由于 ])[(6323232222bc ac ab c b a c b a ba c a cb cb aA ---++++=---= =])()())[((3222a c c b b a c b a -+-+-++,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:由0=++c b a ,则从必要性的证明可知,0=A ,故秩.3)(<A由于 ])([2)(22222b b a a b ac cb b a ++-=-= =0]43)21[(222≠++-b b a , 故秩(A)=2. 于是,秩(A)=秩)(A =2.因此方程组(*)有唯一解,即三直线321,,l l l 交于一点.方法二:必要性设三直线交于一点),(00y x ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100y x 为Ax=0的非零解,其中 .323232⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=b a c a c b c b a A 于是 0=A .而 ])[(6323232222bc ac ab c b a c b a ba c a c bcb a A ---++++-== =])()())[((3222ac c b b a c b a -+-+-++-,但根据题设 0)()()(222≠-+-+-a c c b b a ,故.0=++c b a充分性:考虑线性方程组⎪⎩⎪⎨⎧-=+-=+-=+,32,32,32b ay cx a cy bx c by ax (*)将方程组(*)的三个方程相加,并由a+b+c=0可知,方程组(*)等价于方程组⎩⎨⎧-=+-=+.32,32a cy bx c by ax (* *)因为 ])([2)(22222b b a a b ac cb b a ++-=-= =-0])([222≠+++b a b a ,故方程组(* *)有唯一解,所以方程组(*)有唯一解,即三直线321,,l l l 交于一点.【评注】本题将三条直线的位置关系转化为方程组的解的判定,而解的判定问题又可转化为矩阵的秩计算,进而转化为行列式的计算,综合考查了多个知识点.。
考研数学二历年真题及答案详解(2003—2014)

2013年全国硕士研究生入学统一考试数学二试题一、选择题 1—8小题.每小题4分,共32分.1.设2)(),(sin 1cos παα<=-x x x x ,当0→x 时,()x α ( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小 (C )与x 同阶但不等价无穷小 (D )与x 等价无穷小2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛∞→12lim n f n n ( )(A )2 (B )1 (C )-1 (D )-2 3.设⎩⎨⎧∈∈=]2,[,2),0[,sin )(πππx x x x f ,⎰=x dt t f x F 0)()(则( )(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点.(C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导.4.设函数⎪⎪⎩⎪⎪⎨⎧≥<<-=+-e x xx e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ⎰∞+收敛,则( )(A )2-<α (B )2>a (C )02<<-a (D )20<<α 5.设函数()xy f xyz =,其中f 可微,则=∂∂+∂∂y z x z y x ( ) (A ))('2xy yf (B ))('2xy yf -(C ))(2xy f x (D ))(2xy f x- 6.设k D 是圆域{}1|),(22≤+=y x y x D 的第k 象限的部分,记⎰⎰-=kD k dxdy x y I )(,则( ) (A )01>I (B )02>I (C )03>I (D )04>I 7.设A,B,C均为n 阶矩阵,若AB=C,且B可逆,则(A )矩阵C 的行向量组与矩阵A 的行向量组等价. (B )矩阵C 的列向量组与矩阵A 的列向量组等价. (C )矩阵C 的行向量组与矩阵B 的行向量组等价. (D )矩阵C 的列向量组与矩阵B 的列向量组等价.8.矩阵⎪⎪⎪⎭⎫ ⎝⎛1111a a b a a 与矩阵⎪⎪⎪⎭⎫ ⎝⎛00000002b 相似的充分必要条件是(A )2,0==b a (B )0=a ,b 为任意常数 (C )0,2==b a (D )2=a ,b 为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9. =⎪⎭⎫⎝⎛+-→xx x x 1)1ln(2lim . 10.设函数dt e x f x t ⎰--=11)(,则)(x f y =的反函数)(1y f x -=在0=y 处的导数==0|y dydx. 11.设封闭曲线L 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤-=663cos πθπθr t 为参数,则L 所围成的平面图形的面积为 .12.曲线上⎪⎩⎪⎨⎧+==21ln arctan ty tx 对应于1=t 处的法线方程为 .13.已知xx x x x xe y xe e y xe e y 2322231,,-=-=-=是某个二阶常系数线性微分方程三个解,则满足1)0(',0)0(==y y 方程的解为 .14.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A = .三、解答题15.(本题满分10分)当0→x 时,x x x 3cos 2cos cos 1-与nax 是等价无穷小,求常数n a ,. 16.(本题满分10分) 设D 是由曲线3x y =,直线a x =)0(>a 及x 轴所转成的平面图形,y x V V ,分别是D 绕x 轴和y轴旋转一周所形成的立体的体积,若y x V V =10,求a 的值. 17.(本题满分10分)设平面区域D 是由曲线8,3,3=+==y x x y y x 所围成,求⎰⎰Ddxdy x 2. 18.(本题满分10分)设奇函数)(x f 在[]1,1-上具有二阶导数,且1)1(=f ,证明: (1)存在)1,0(∈ξ,使得()1'=ξf ;(2)存在)1,1(-∈η,使得1)()(='+''ηηf f . 19.(本题满分10分)求曲线)0,0(133≥≥=+-y x y xy x 上的点到坐标原点的最长距离和最短距离. 20.(本题满分11) 设函数xx x f 1ln )(+= ⑴求)(x f 的最小值; ⑵设数列{}n x 满足11ln 1<++n n x x ,证明极限n n x ∞→lim 存在,并求此极限.21.(本题满分11) 设曲线L 的方程为)1(ln 21412e x x x y ≤≤-=. (1)求L 的弧长.(2)设D 是由曲线L ,直线e x x ==,1及x 轴所围成的平面图形,求D 的形心的横坐标. 22.本题满分11分) 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=b B a A 110,011,问当b a ,为何值时,存在矩阵C ,使得B CA AC =-,并求出所有矩阵C .23(本题满分11分)设二次型23322112332211321)()(2),,(x b x b x b x a x a x a x x x f +++++=.记⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=321321,b b b a a a βα.(1)证明二次型f 对应的矩阵为 TTββαα+2;(2)若βα,正交且为单位向量,证明f 在正交变换下的标准形为 22212y y +.2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)曲线221x xy x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++=⎪+++⎝⎭ .(11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y ==的解为y = .(13) 曲线()20y x x x =+<上曲率为2的点的坐标是 . (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<.(21)(本题满分10 分)(I)证明方程1x x x ++=n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根;(II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限. (22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭,1100β⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解.(23)(本题满分11 分)已知1010111001A a a ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T T f x x x x A A x =的秩为2,(I) 求实数a 的值;(II) 求正交变换x Qy =将f 化为标准形.2011年全国硕士研究生入学统一考试数学二试题一、 选择题:1~8小题,每小题4分,共32分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年全国硕士研究生入学统一考试数学二试题一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-的渐近线条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -(3) 设1230(1,2,3),n n n a n S a a a a >==++++ ,则数列{}n S 有界是数列{}n a 收敛的( )(A) 充分必要条件 (B) 充分非必要条件 (C) 必要非充分条件 (D) 非充分也非必要(4) 设2sin d ,(1,2,3),k x k I e x x k π==⎰则有( )(A) 123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I << (5) 设函数(,f x y )为可微函数,且对任意的,x y 都有(,)(,)0,0,x y x y x y∂∂><∂∂则使不等式1122(,)(,)f x y f x y >成立的一个充分条件是( )(A) 1212,x x y y >< (B) 1212,x x y y >> (C) 1212,x x y y << (D) 1212,x x y y <> (6) 设区域D 由曲线sin ,,12y x x y π==±=围成,则5(1)d d Dx y x y -=⎰⎰( )(A) π (B) 2 (C) -2 (D) -π(7) 设1100c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,2201c ⎛⎫ ⎪= ⎪ ⎪⎝⎭α ,3311c ⎛⎫ ⎪=- ⎪ ⎪⎝⎭α ,4411c -⎛⎫⎪= ⎪ ⎪⎝⎭α ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为 ( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若()123,,P =ααα,()1223,,Q =+αααα则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 设()y y x =是由方程21yx y e -+=所确定的隐函数,则202x d y dx== .(10) 22222111lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭ . (11) 设1ln ,z f x y ⎛⎫=+⎪⎝⎭其中函数()f u 可微,则2z z x y x y ∂∂+=∂∂ . (12) 微分方程()2d 3d 0y x x y y +-=满足条件11x y==的解为y = .(13) 曲线()20y x x x =+<. (14) 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .三、解答题:15-23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分)已知函数()11sin x f x x x+=-,记()0lim x a f x →=,(I)求a 的值;(II)若0x →时,()f x a -与kx 是同阶无穷小,求常数k 的值.(16)(本题满分 10 分)求函数()222,x y f x y xe+-=的极值.(17)(本题满分12分)过(0,1)点作曲线:ln L y x =的切线,切点为A ,又L 与x 轴交于B 点,区域D 由L 与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.(18)(本题满分 10 分)计算二重积分d Dxy σ⎰⎰,其中区域D 为曲线()1cos 0r θθπ=+≤≤与极轴围成.(19)(本题满分10分)已知函数()f x 满足方程()()2()0f x f x f x '''+-=及()()2x f x f x e ''+=, (I) 求()f x 的表达式;(II) 求曲线220()()d xy f x f t t =-⎰的拐点.(20)(本题满分10分)证明21ln cos 112x x x x x ++≥+-,(11)x -<<. (21)(本题满分10 分)(I)证明方程1x x x ++= n n-1+()1n >的整数,在区间1,12⎛⎫⎪⎝⎭内有且仅有一个实根; (II)记(I)中的实根为n x ,证明lim n n x →∞存在,并求此极限.(22)(本题满分11 分)设100010001001a a A a a⎛⎫ ⎪⎪= ⎪⎪⎝⎭,1100β⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(I) 计算行列式A ;(II) 当实数a 为何值时,方程组Ax β=有无穷多解,并求其通解. (23)(本题满分11 分)已知1010111001A a a ⎛⎫⎪⎪= ⎪- ⎪-⎝⎭,二次型()()123,,T Tf x x x x A A x =的秩为2,(I) 求实数a的值;将f化为标准形.(II) 求正交变换x Qy2011年全国硕士研究生入学统一考试数学二试题2010年考研数学二真题一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.(2)当0x→时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==. ()C 11,6a b =-=-. ()D 11,6a b =-=.(3)设函数(),zf x y =的全微分为dz xdx ydy =+,则点()0,0( )()A 不是(),f x y 的连续点. ()B 不是(),f x y 的极值点. ()C 是(),f x y 的极大值点. ()D 是(),f x y 的极小值点.(4)设函数(),f x y 连续,则()()222411,,yxydx f x y dy dy f x y dx -+=⎰⎰⎰⎰( )()A ()2411,xdx f x y dy -⎰⎰. ()B ()241,xxdx f x y dy -⎰⎰.()C ()2411,ydy f x y dx -⎰⎰.()D .()221,y dy f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点()1,1上的曲率圆为222x y +=,则()f x 在区间()1,2内( )()A 有极值点,无零点. ()B 无极值点,有零点.()C 有极值点,有零点. ()D 无极值点,无零点.(6)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0xFx f t dt =⎰的图形为( )()A .()B .()C .()D .(7)设A 、B 均为2阶矩阵,**A B ,分别为A 、B 的伴随矩阵。
若A =2B =3,,则分块矩阵00A B ⎛⎫⎪⎝⎭的伴随矩阵为( )()A .**0320B A⎛⎫ ⎪⎝⎭()B .**2B 3A 0⎛⎫⎪⎝⎭()C .**03A 2B0⎛⎫ ⎪⎝⎭()D .**02A 3B 0⎛⎫⎪⎝⎭(8)设A P ,均为3阶矩阵,TP 为P 的转置矩阵,且T 100P AP=010002⎛⎫ ⎪ ⎪ ⎪⎝⎭,若P=Q=+ααααααα1231223(,,),(,,),则Q AQ T为( ) ()A .210110002⎛⎫⎪⎪ ⎪⎝⎭()B .110120002⎛⎫⎪⎪ ⎪⎝⎭ ()C .200010002⎛⎫⎪⎪ ⎪⎝⎭()D .100020002⎛⎫⎪⎪ ⎪⎝⎭二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)曲线2221-x=0ln(2)u t e du y t t -⎧⎪⎨⎪=-⎩⎰在(0,0)处的切线方程为 (10)已知+1k xe dx ∞=-∞⎰,则k =(11)n 1lim e sin 0xnxdx -→∞=⎰(12)设()y y x =是由方程xy 1ye x +=+确定的隐函数,则2x=0d y=dx 2(13)函数2x y x =在区间(]01,上的最小值为(14)设αβ,为3维列向量,T β为β的转置,若矩阵T αβ相似于200000000⎛⎫⎪ ⎪ ⎪⎝⎭,则T=βα三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分9分)求极限()[]401cos ln(1tan )limsin x x x x x→--+(16)(本题满分10 分)计算不定积分ln(1dx +⎰ (0)x >(17)(本题满分10分)设(),,z f x y x y xy =+-,其中f 具有2阶连续偏导数,求dz 与2zx y∂∂∂(18)(本题满分10分) 设非负函数()y y x = ()0x ≥满足微分方程20xy y '''-+=,当曲线()y y x = 过原点时,其与直线1x =及0y =围成平面区域D 的面积为2,求D 绕y 轴旋转所得旋转体体积。
(19)(本题满分10分)求二重积分()D x y dxdy -⎰⎰,其中()()(){}22,112,D x y x y y x=-+-≤≥(20)(本题满分12分) 设()y y x =是区间-ππ(,)内过(的光滑曲线,当-0x π<<时,曲线上任一点处的法线都过原点,当0x π≤<时,函数()y x 满足0y y x ''++=。