K12推荐学习浙江省2019年中考数学专题复习 专题八 图形折叠问题训练

合集下载

中考数学八大题型集训:专题复习(5)图形的折叠问题含解析

中考数学八大题型集训:专题复习(5)图形的折叠问题含解析

专题复习(五) 图形的折叠问题折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.类型1 三角形中的折叠问题(·宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB.若C(32,32),则该一次函数的解析式为________.【思路点拨】 利用翻折变换的性质结合锐角三角函数关系得出CO ,AO 的长,进而得出A 、B 两点的坐标,再利用待定系数法求出直线AB 的解析式.【解答】 连接OC ,过点C 作CD⊥x 轴于点D ,∵将△AOB 沿直线AB 翻折,得△ACB,C(32,32),∴AO =AC ,OD =32,DC =32,BO =BC ,则tan ∠COD =CD OD =33,故∠COD=30°,∠BOC =60°,∴△BOC 是等边三角形,且∠CAD=60°. 则sin60°=CD AC ,则AC =DCsin60°=1,故A(1,0),sin30°=CD CO =32CO =12.则CO =3,故BO =3,B 点坐标为(0,3),设直线AB 的解析式为y =kx +3,把A(1,0)代入解析式可得k =- 3. ∴直线AB 的解析式为y =-3x + 3.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.1.(·绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD∶DB=1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE∶CF=( )A.34B.45C.56D.672.(·德阳)如图,△ABC 中,∠A =60°,将△ABC 沿DE 翻折后,点A 落在BC 边上的点A′处.如果∠A′EC =70°,那么∠A′DE 的度数为________.3.(·宜宾)如图,在Rt△ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′=________.4.(·滨州)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处,若点D 的坐标为(10,8),则点E 的坐标为________.类型2 四边形及其他图形中的折叠问题(·南充)如图,在矩形纸片ABCD 中,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM),点A 和点B 都与点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)判断△AMP,△BPQ ,△CQD 和△FDM 中有哪几对相似三角形?(不需说明理由)(2)如果AM =1,sin ∠DMF =35,求AB 的长.【思路点拨】 (1)由矩形的性质得∠A =∠B =∠C =90°,由折叠的性质和等角的余角相等,可得∠BPQ =∠AMP =∠DQC ,所以△AMP∽△BPQ∽△CQD ;(2)设AP =x ,由折叠关系可得:BP =AP =EP =x ,AB =DC =2x ,AM =1,根据△AMP∽△BPQ 得:AMBP=AP BQ ,即BQ =x 2,根据△AMP∽△CQD 得:AP CD =AM CQ ,即CQ =2,从而得出AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1,根据Rt △FDM 中∠DMF 的正弦值得出x 的值,从而求出AB 的值.【解答】 (1)有三对相似三角形,即△AMP∽△BPQ∽△CQD. 理由如下:∵四边形ABCD 是矩形, ∴∠A =∠B=∠C=90°.根据折叠可知:∠APM=∠EPM,∠EPQ =∠BPQ,∴∠APM +∠BPQ=∠EPM+∠EPQ=90°. ∵∠APM +∠AMP=90°,∴∠BPQ =∠AMP,∴△AMP ∽△BPQ , 同理:△BPQ∽△CQD. ∴△AMP ∽△BPQ ∽△CQD. (2)设AP =x ,∴由折叠关系,BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得,AM BP =AP BQ ,即1x =xBQ ,得BQ =x 2.由△AMP∽△CQD 得,AP CD =AM CQ ,即x 2x =1CQ ,得CQ =2.∴AD =BC =BQ +CQ =x 2+2.∴MD =AD -1=x 2+1.∵在Rt△FDM 中,sin ∠DMF =35,∴2x x 2+1=35.解得x 1=3,x 2=13(不合题意,舍去). 即AB =6.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.1.(·南充)如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12B .24C .12 3D .16 32.(·泸州)如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为( )A.13 B.152C.272D.123.(·德阳)将抛物线y=-x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()A.6种 B.5种 C.4种 D.3种4.(·成都)如图,在□ABCD中,AB=13,AD=4,将ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.5.(·内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为________.6.(·南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是________.7.(·绵阳)如图1,在矩形ABCD中,AB=4,AD=3,将矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,顶点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.参考答案类型1 三角形中的折叠问题1.B 提示:∵△ABC 为等边三角形,∴∠A =∠B=∠C=60°.又∵折叠△ABC,使得点C 恰好与边AB 上的点D 重合,折痕为EF ,∴∠EDF =∠C=60°,CE =DE ,CF =DF.∴∠ADE+∠FDB=120°.∴∠AED =∠FDB.∴△AED∽△BDF.∴AE BD =AD BF =DEFD .设等边△ABC 边长为6个单位,CE =x ,CF =y ,AE =6-x ,BC =6-y ,∴6-x 4=26-y =x y ,解得x =145,y =72.∴x ∶y =4∶5,故选择B.2.65°3.1.54.(10,3)类型2 四边形及其他图形中的折叠问题1.D 2.A3.B 提示:由题意,易知y =-x 2+2x +3与x 轴的两个交点坐标分别为(3,0)和(-1,0),顶点坐标为(1,4),顶点关于x 轴对称点的坐标为(1,-4).当直线y =x +b 过(-1,0)时,b =1,此时直线与新的函数图象只有一个交点;当b>1时,此时直线与新的函数图象无交点;当直线y =x +b 过(3,0)时,b =-3,此时直线与新的函数图象有三个交点;观察图象,易知:当-3<b<1时,此时直线与新的函数图象有三个交点;当直线y =x +b 过(1,-4)时,b =-5,此时直线与新的函数图象有三个交点;观察图象,易知:当-5≤b<-3时,此时直线与新的函数图象有四个交点;观察图象,易知:当b<-5时,此时直线与新的函数图象有二个交点;综上,直线y =x +b 与此新图象的交点的个数的情况有5种,故选B.4.35. 6 提示:作AH⊥BC 于H.∵分别以AE ,BE 为折痕将两个角(∠D,∠C)向内折叠,点C ,D 恰好落在AB 边的点F 处,∴DE =EF ,CE =EF ,AF =AD =2,BF =CB =3.∴DC=2EF ,AB =5.∵AD∥BC,∠C =90°, ∴四边形ADCH 为矩形,∴AH =DC =2EF ,HB =BC -CH =BC -AD =1.在Rt△ABH 中,AH =AB 2-BH 2=26,∴EF = 6. 6.2≤x≤87.(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD =CE ,DC =EA ,∠ACD =∠CAE. 在△CED 与△ADE 中,⎩⎪⎨⎪⎧CE =AD ,DE =ED ,DC =EA ,∴△DEC ≌△EDA.(2)∵∠ACD=∠CAE,∴AF =CF.设DF =x ,则AF =CF =4-x ,在Rt△ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x)2,解得x =78,即DF =78.(3)由矩形PQMN 的性质得PQ∥CA, ∴PE CE =PQCA. 又∵CE=3,AC =AB 2+BC 2=5.设PE =x(0<x <3),则x 3=PQ 5,即PQ =53x.过E 作EG⊥AC 于G ,则PN∥EG,∴CP CE =PN EG. 又∵在Rt△AEC 中,EG ·AC =AE·CE,解得EG =125.∴3-x 3=PN 125,即PN =45(3-x).设矩形PQMN 的面积为S ,则S =PQ·PN=-43x 2+4x =-43(x -32)2+3(0<x <3).∴当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。

中考数学专题复习图形的折叠型题PPT课件

中考数学专题复习图形的折叠型题PPT课件

(2)请你通过操作和猜想,将第3、第4和第n次裁剪后
所得扇形的总个数(S)填入下表.
等分圆及扇形面的次数(n) 1 2 3 4 **** n
所得扇形的总个数(S)
47
***
(3)请你推断,能不能按上述操作过程,将本来的圆形 纸板剪成33个扇形?为什么?
例26、如图,若把边长为1的正方形ABCD的四个
例25、如图,⊙O表示一圆形纸板,根
O
据要求,需通过多次剪裁,把它剪成若 干个扇形面,操作过程如下:第1次剪,
第25题图
将圆形纸板等分为4个扇形;第2次剪裁,将上次得的
扇形面中的一个再等分成4个扇形;以后按第2次剪裁
的作法进行下去.(1)请你在⊙O中,用尺规作出第2次
剪裁后得到的7个扇形(保留痕迹不写作法).
角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎 样剪,才能使剩下的图形仍为正方形,且剩下图
形的面积为原正方形面积的 5 ,请说明理由(写
出证明及计算过程).
9
E
A M DA M
例22、电脑CPU蕊片由一种叫“单晶硅”的材料制
成,未切割前的单晶硅材料是一种薄型圆片,叫 “晶圆片”。现为了生产某种CPU蕊片,需要长、 宽都是1cm 的正方形小硅片若干。如果晶圆片的直 径为10.05cm。问一张这种晶圆片能否切割出所需尺 寸的小硅片66张?请说明你的方法和理由。(不计 切割损耗)
典例精析
一.折叠后求度数 例1、将一张长方形纸片按如图所示的方式折 叠,BC、BD为折痕,则∠CBD的度数为( ) A.600 B.750 C.900 D.950
例2、如图,把一个长方形纸片沿EF折叠后,点D、C
分别落在D′、C′的位置,若∠EFB=65°,则 ∠AED′等于( ) A.50° B.55° C.60° D.65°

浙江省2019届中考数学专题复习专题八图形折叠问题训练2

浙江省2019届中考数学专题复习专题八图形折叠问题训练2

专题八 图形折叠问题类型一 折叠三角形(2018·浙江台州中考)如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E.将△BDE 沿直线DE 折叠,得到△B′DE,若B′D,B′E 分别交AC 于点F ,G ,连结OF ,OG ,则下列判断错误的是( )A .△ADF≌△CGEB .△B′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB′F 的面积是一个定值【分析】A .根据等边三角形ABC 的外心的性质可知AO 平分∠BAC,根据角平分线的定理和逆定理得FO 平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,再根据三角形全等的性质可得△ADF≌△CGE;B .根据△DOF≌△GOF≌△GOE,得DF =GF =GE ,所以△ADF≌△B′GF≌△CGE,可得结论;C .根据S 四边形FOEC =S △OCF +S △OCE 判断即可;D .将S 四边形OGB′F =S △OAC -S △OFG ,根据S △OFG =12·FG·OH,FG 变化,故△OFG 的面积变化,从而四边形OGB′F的面积也变化,可作判断. 【自主解答】三角形的折叠问题一般考查轴对称的性质、勾股定理和线段的性质等,解题的关键是抓住折叠的本质是轴对称,轴对称是全等变换,找出相等的角和线段.类型二折叠平行四边形(2018·山东淄博中考)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于________.【分析】要计算周长首先需要证明E,C,D共线,DE可求,问题得解.【自主解答】关于平行四边形折叠问题,解答时需要关注:在折叠前后,折痕两边能够完全重合的部分是全等图形,它们的对应线段、对应角相等,与特殊的平行四边形相比,它缺少了特殊的条件.1.(2018·甘肃兰州中考)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48°,∠CFD=40°,则∠E为( )A .102°B .112°C .122°D .92° 类型三 折叠菱形(2018·山东烟台中考)对角线长分别为6和8的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B ,B′两点重合,MN 是折痕.若B′M=1,则CN 的长为( )A .7B .6C .5D .4【分析】连结AC ,BD ,利用菱形的性质得OC =12AC =3,OD =12BD =4,∠COD=90°,再利用勾股定理计算出CD =5,接着证明△OBM≌△ODN 得到DN =BM ,然后根据折叠的性质得BM =B′M=1,从而有DN =1,于是计算CD -DN 即可. 【自主解答】折叠是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.对于菱形的折叠,还要明确菱形的基本性质,在解题过程中要抓住菱形的性质进行分析.2.(2018·贵州遵义中考)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B ,D 重合),折痕为EF ,若DG =2,BG =6,则BE 的长为__________.3.如图,在菱形ABCD 中,tan A = 43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF⊥AD 时, BNCN的值为____.类型四 折叠矩形(2018·浙江杭州中考)折叠矩形纸片ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上.若AB =AD +2,EH =1,则AD =________.【分析】设AD =x ,则AB =x +2,利用折叠的性质得DF =AD ,EA =EF ,∠DFE =∠A=90°,则可判断四边形AEFD 为正方形,所以AE =AD =x ,再根据折叠的性质得DH =DC =x +2,则AH =AE -HE =x -1,然后根据勾股定理得到x 2+(x -1)2=(x +2)2,再解方程求出x 即可. 【自主解答】此类问题中,运用的知识点比较多,综合性强,如轴对称性、全等、相似、勾股定理、转换思想、与其他图形(圆)结合等,抓住翻折前后两个图形是全等的,把握翻折前后不变的要素是解决此类问题的关键.4.(2018·湖北宜宾中考)如图,在矩形ABCD 中,AB =3,CB =2,点E 为线段AB 上的动点,将△CBE 沿CE 折叠,使点B 落在矩形内点F 处,下列结论正确的是__________(写出所有正确结论的序号). ①当E 为线段AB 中点时,AF∥CE; ②当E 为线段AB 中点时,AF =95;③当A ,F ,C 三点共线时,AE =13-2133;④当A ,F ,C 三点共线时,△CEF≌△AEF.类型五 折叠正方形(2018·江苏宿迁中考)如图,在边长为1的正方形ABCD 中,动点E ,F 分别在边AB ,CD 上,将正方形ABCD 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,设BE =x. (1)当AM =13时,求x 的值;(2)随着点M 在边AD 上位置的变化,△PDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC 的面积为S ,求S 与x 之间的函数表达式,并求出S 的最小值.【分析】(1)利用勾股定理构建方程,即可解决问题;(2)设AM=y,则BE=EM=x,MD=1-y,在Rt△AEM中,由勾股定理得出x,y的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长;(3)作FH⊥AB于H.则四边形BCFH是矩形.连结BM交EF于O,交FH于K.根据梯形的面积公式构建二次函数,利用二次函数的性质解决最值问题即可.【自主解答】正方形的折叠同其他图形一样,要关注勾股定理、全等图形、相似等相关知识,但由于正方形的特点,所以有关正方形的折叠问题有着其他图形没有的特殊性,解题时应关注正方形本身具有的特点.5.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD 对折,使点A 与点D 重合,点B 与点C 重合.再将正方形ABCD 展开,得到折痕EF ; 操作2:再将正方形纸片的右下角向上翻折,使点C 与点E 重合,边BC 翻折至B′E 的位置,得到折痕MN ,B′E 与AB 交于点P.则P 即为AB 的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF 与MN 交于点Q ,连结CQ.求证:四边形EQCM 是菱形; (2)请在图1中证明AP∶PB=2∶1. 发现感悟若E 为正方形纸片ABCD 的边AD 上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DE AE =2.则APBP =________;(4)如图3,若DE AE =3,则APBP=________;(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.类型六 折叠圆(2018·湖北武汉中考)如图,在⊙O 中,点C 在优弧AB ︵上,将BC ︵沿BC 折叠后刚好经过AB 的中点D.若⊙O 的半径为5,AB =4,则BC 的长是( )A .2 3B .3 2 C.532D.652【分析】连结OD ,AC ,DC ,OB ,OC ,作CE⊥AB 于E ,OF⊥CE 于F ,利用垂径定理、勾股定理、折叠的性质、圆周角定理、等腰三角形的性质及正方形的性质即可求解. 【自主解答】6.如图,将半径为4 cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )A .2 3 cmB .4 3 cm C. 3 cmD. 2 cm参考答案类型一【例1】 A .如图,连接OA ,OC. ∵点O 是等边三角形ABC 的外心, ∴AO 平分∠BAC,∴点O 到AB ,AC 的距离相等. 由折叠得DO 平分∠BDB′, ∴点O 到AB ,DB′的距离相等, ∴点O 到DB′,AC 的距离相等,∴FO 平分∠DFG,∠DFO=∠OFG=12(∠FAD+∠ADF).由折叠得∠BDE=∠ODF=12(∠DAF+∠AFD),∴∠OFD+∠ODF=12(∠FAD+∠ADF+∠D AF +∠AFD)=120°,∴∠DOF=60°. 同理可得∠EOG=60°, ∴∠FOG=60°=∠DOF=∠EOG, ∴△DOF≌△GOF≌△GOE,∴OD=OG ,OE =OF ,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB, ∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG ,AF =CE ,∴△ADF≌△CGE,故选项A 正确; B .∵△DOF≌△GOF≌△GOE, ∴DF=GF =GE ,∴△ADF≌△B′GF≌△CGE,∴B′G=AD ,∴△B′FG 的周长=FG +B′F+B′G=FG +AF +CG =AC(定值),故选项B 正确; C .S 四边形FOEC =S △OCF +S △OCE =S △OCF +S △OAF =S △AOC =13(定值),故选项C 正确;D .S 四边形OGB′F =S △OFG +S △B′GF =S △OFD +S △ADF =S 四边形OFAD =S △OAD +S △OAF =S △OCG +S △OAF =S △OAC -S △OFG . 如图,过O 作OH⊥AC 于H , ∴S △OFG =12·FG·OH,由于OH 是定值,FG 变化,故△OFG 的面积变化,从而四边形OGB′F 的面积也变化,故选项D 不一定正确.故选D.类型二【例2】 ∵四边形ABCD 是平行四边形, ∴AD∥BC,CD =AB =2. 由折叠知∠DAC=∠EAC.∵∠DAC=∠ACB,∴∠ACB=∠EAC, ∴OA=OC.∵AE 过BC 的中点O , ∴AO=12BC ,∴∠BAC=90°, ∴∠ACD=90°. 由折叠知∠ACE=90°, ∴E,C ,D 共线,则DE =4, ∴△ADE 的周长为3+3+4=10.故答案为10.变式训练1.B类型三【例3】 如图,连结AC ,BD.∵点O 为菱形ABCD 的对角线的交点, ∴CD=32+42=5.∵AB∥CD,∴∠MBO=∠NDO.在△OBM 和△ODN 中,⎩⎪⎨⎪⎧∠MBO=∠NDO,OB =OD ,∠BOM=∠DON,∴△OBM≌△ODN,∴DN=BM.∵过点O 折叠菱形,使B ,B′两点重合,MN 是折痕,∴BM=B′M=1,∴DN=1,∴CN=CD -DN =5-1=4.故选D.变式训练2.2.8 3.27类型四【例4】 设AD =x ,则AB =x +2.∵把△ADE 翻折,点A 落在DC 边上的点F 处,∴DF=AD ,EA =EF ,∠DFE=∠A=90°,∴四边形AEFD 为正方形,∴AE=AD =x.∵把△CDG 翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上, ∴DH=DC =x +2.∵HE=1,∴AH=AE -HE =x -1.在Rt△ADH 中,∵AD 2+AH 2=DH 2,∴x 2+(x -1)2=(x +2)2,整理得x 2-6x -3=0,解得x 1=3+23,x 2=3-23(舍去),即AD 的长为3+2 3.故答案为3+2 3.变式训练4.①②③类型五【例5】 (1)在Rt△AEM 中,AE =1-x ,EM =BE =x ,AM =13. ∵AE 2+AM 2=EM 2,∴(1-x)2+(13)2=x 2,∴x=59. (2)△PDM 的周长不变为定值2.理由如下:设AM =y ,则BE =EM =x ,AE =1-x.在Rt△AEM 中,由勾股定理得AE 2+AM 2=EM 2,(1-x)2+y 2=x 2,解得1+y 2=2x ,∴1-y 2=2(1-x).∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△DMP,∴AE +EM +AM DM +MP +DP =AE DM , 即1-x +x +y DM +MP +DP =1-x 1-y, 解得DM +MP +DP =1-y 21-x=2, ∴△DMP 的周长为2.(3)如图,作FH⊥AB 于H.则四边形BCFH 是矩形.连结BM 交EF 于O ,交FH 于K.在Rt△AEM 中,AM =x 2-(1-x )2=2x -1.∵B,M 关于EF 对称,∴BM⊥EF,∴∠KOF=∠KHB.∵∠OKF=∠BKH,∴∠KFO=∠KBH.∵AB=BC =FH ,∠A=∠FHE=90°,∴△ABM≌△HFE,∴EH=AM =2x -1,∴CF=BH =x -2x -1,∴S=12(BE +CF)·BC =12(x +x -2x -1) =12[(2x -1)2-2x -1+1] =12(2x -1-12)2+38. 当2x -1=12时,S 有最小值为38. 变式训练5.解:(1)由折叠可得CM =EM ,∠CMQ=∠EMQ,四边形CDEF 是矩形, ∴CD∥EF,∴∠CMQ=∠EQM,∴∠EQM=∠EMQ,∴ME=EQ =MC ,又∵MC∥QE,∴四边形EQCM 是平行四边形.又∵CM=EM ,∴四边形EQCM 是菱形.(2)如图1,设正方形ABCD 的边长为1,CM =x ,则EM =x ,DM =1-x.图1在Rt△DEM 中,由勾股定理可得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x)2, 解得x =58,∴CM=58,DM =38. ∵∠PEM=∠D=90°,∴∠AEP+∠DEM=90°,∠DEM+∠EMD=90°,∴∠AEP=∠DME.又∵∠A=∠D=90°,∴△AEP∽△DME,∴AP AE =DE DM ,即AP 12=1238,解得AP =23, ∴PB=13,∴AP∶PB=2∶1. (3)4 (4)6(5)根据问题(2),(3),(4),可得当DE AE =n(n 为正整数)时,则AP BP=2n. 理由:设正方形ABCD 的边长为1,CM =x ,则EM =x ,DM =1-x. 在Rt△DEM 中,由勾股定理可得EM 2=ED 2+DM 2,即x 2=(n n +1)2+(1-x)2, 解得x =(n +1)2+n 22(n +1)2, ∴DM=1-CM =2n +12(n +1)2, 由△AEP∽△DME 可得AP AE =DE DM, 即AP 1n +1=nn +12n +12(n +1)2,解得AP =2n 2n +1, ∴PB=12n +1,∴AP BP =2n. 类型六【例6】 如图,连结OD ,AC ,DC ,OB ,OC ,作CE⊥AB 于E ,OF⊥CE 于F.∵D 为AB 的中点,∴OD⊥AB,∴AD=BD =12AB =2. 在Rt△OBD 中,OD =(5)2-22=1.∵将BC ︵沿BC 折叠后刚好经过AB 的中点D ,∴AC ︵和CD ︵所在的圆为等圆,∴AC ︵=CD ︵,∴AC=DC ,∴AE=DE =1,易得四边形ODEF 为正方形,∴OF=EF =1.在Rt△OCF 中,CF =(5)2-12=2,∴CE=CF +EF =2+1=3,而BE =BD +DE =2+1=3,∴BC=3 2.故选B. 变式训练6.B。

中考数学专题复习翻转折叠问题

中考数学专题复习翻转折叠问题

翻转折叠问题【专题点拨】图形折叠是中考中常考题型,这种题型主要考察学生对图形的认知,特别是考察轴对称的性质、全等三角形、勾股定理、相似三角形等知识综合运用。

【解题策略】有关图形折叠的相关计算,首先要熟知折叠是一种轴对称变换,即位于折痕两侧的图形关于折痕成轴对称;然后根据图形折叠的性质,即折叠前、后图形的对应边和对应角相等,对应点的连线被折痕垂直平分并结合勾股定理或相似三角形的性质进行相关计算.【典例解析】类型一:三角形折叠问题例题1:(2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为(用含a的式子表示).类型二:平行四边形折叠问题例题2:(2016·湖北武汉·3分)如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.【考点】平行四边形的性质【解析】∵四边形ABCD为平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠EAD,=∠DAE=20°,∠AED,=∠AED=180°-∠DAE-∠D=180°-20°-52°=108°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∴∠FED′=108°-72°=36°.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°类型三:矩形折叠问题例题3:(2016贵州毕节3分)如图,正方形ABCD的边长为9,将正方形折叠,使顶点D 落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解析】正方形的性质;翻折变换(折叠问题).根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)变式训练3:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°类型四:菱形折叠问题例题4:(2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中OGD正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.变式训练4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .类型五:圆的折叠问题例题5:(2015•聊城)如图,点O是圆形纸片的圆心,将这个圆形纸片按下列顺序折叠,使和都经过圆心O,则阴影部分的面积是⊙O面积的()A. 12B.13C.23D.352. 解:作OD⊥AB于点D,连接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴阴影部分的面积=S扇形AOC=×⊙O面积.故选:B.变式训练5:(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.【能力检测】1.(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.2.(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.3.(2016·浙江省绍兴市·5分)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.4.(2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是多少?5.(2015•咸宁)如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折线”).(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y=与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D 的坐标;若不能,请说明理由.【参考答案】变式训练1:(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a (用含a的式子表示).【解析】翻折变换(折叠问题).由折叠的性质得出BE=EF=a,DE=BE,则BF=2a,由含30°角的直角三角形的性质得出DF=BF=a,即可得出△DEF的周长.【解答】解:由折叠的性质得:B点和D点是对称关系,DE=BE,则BE=EF=a,∴BF=2a,∵∠B=30°,∴DF=BF=a,∴△DEF的周长=DE+EF+DF=BF+DF=2a+a=3a;故答案为:3a.变式训练2:(2016河北3分)如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图A.66°B.104°C.114°D.124°【解析】平行线的性质,折叠关系。

最新2019-2020年中考一轮《图形折叠问题》复习试卷及答案

最新2019-2020年中考一轮《图形折叠问题》复习试卷及答案

中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35° C.20° D.15°2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50° B.55° C.60° D.65°3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12 D.164.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为()A.3 B.4 C.5 D.65.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A.12 B.10 C.8 D.67.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7B.8 C.9 D. 108.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78° B.75° C.60° D.45°9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.若CE的长为7cm,则MN的长为()A. 10 B. 13 C. 15 D. 1210.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=12厘米,EF=16厘米,则边AD的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图,在矩形 OABC 中,OA=8,OC=4,沿对角线 OB 折叠后,点 A 与点 D 重合,OD 与 BC交于点 E,则点 D 的坐标是()A.(4,8)B.(5,8)C.(,) D.(,)12.将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD 边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A. B. 2 C. 3 D.13.如图,矩形纸片ABCD中,AD=3cm,点E在BC上,将纸片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,则AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为()A.3或4 B.4或3C.3或4 D.3或415.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE=AB.将矩形沿直线EF折叠,点B恰好落在AD 边上的点P处,连接BP交EF于点Q.对于下列结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( )A.①② B.②③C.①③ D.①④16.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合,若此时=,则△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图,矩形ABCD中,点E是AD的中点,将△ABE折叠后得到△GBE,延长B G交CD于点F,若CF=1,FD=2,则BC的长为( )A.3B.2C.2D.218.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于().A.2 B.3 C.4 D.519.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为()A.B.C.D.20.如图,在矩形纸片ABCD中,AB=3,AD=5.折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC 边上移动时,折痕的端点P,Q也随之移动。

浙教版初中数学中考复习-折叠问题 (共46张PPT)

浙教版初中数学中考复习-折叠问题 (共46张PPT)
7
解析:
• 【例】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不 重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点 E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( C )
• 【点拨】利用折叠的性质,说明△BEP与△CPD相似,得出y与x的关系式.
(2)外角
(3)三角函数
26
考向五:求面积
• 【例】如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延 长EF交AB于点G,连结DG,求△BEF的面积.
27
解析:
28
考向六:折叠综合问题
29
解析:
30
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• 【分析】(2)由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角 相

等,再由AP=EB,利用AAS即可得证;
34
考向六:折叠综合问题
• 【例】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处 ,折痕为EC,连结AP并延长AP交CD于点F,
• (3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
44
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
解析:
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))
45
浙教版初中数学中考复习-:折折叠叠问问题题 ((共共4466张张PPPTT))

2019年 中考数学 图形折叠问题 专题复习(含答案)

2019年 中考数学 图形折叠问题 专题复习(含答案)

2019年中考数学图形折叠问题专题复习1.如图,在△ACB中,∠ACB=100°,∠A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°2.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3B.4C.5D.63.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.1.8B.2.4C.3.2D.3.64.如图,在Rt △ABC中,AB⊥BC,AB=10,BC=8,点D是AB上一点,且AD = 4,点E为AC上一动点,将△ADE沿DE翻折得到△A/DE,连接A/C,则A/C的最小值为( )A. B.5 C.6 D.5.如图,矩形ABCD中,将四边形ABFE沿EF折叠得到四边形HGFE,已知∠CFG=400,则∠DEF= .6.如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为________.7.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,折痕为BE,则∠EBF的大小为_______.8.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为10.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.11.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .12.如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点.现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH.若HG的延长线恰好经过点D,则CD的长为 .13.如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,若AB=4,BC=3,则AG的长是__________.14.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC 沿OB折叠,使点A落在A/的位置上.若OB=,OC=2BC,则点A′的坐标 .15.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是.16.如图,已知把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠2,∠3的度数.(2)求长方形ABCD的纸片的面积S.17.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.18.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.19.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.20.已知矩形OABC在平面直角坐标系中,O为原点,A(8,0),C(0,4),如图所示.D在AB上(D可以与A、B重合),连接CD,将△BCD沿CD翻折得到△CDE.(1)如图1,若E点落在OA上,求D、E坐标;(2)如图2,F为CD中点,连接BF、EF、BE,若BEF为直角三角形,求E点坐标;(3)如图3,若F点始终为CD的中点,求F点运动路径长度.图1 图2 图3答案1.D2.B.3.D4.C;5.答案为:1106.答案为:127.答案为:45°8.答案为:75/16;9.答案为:(10,3).10.答案是:2.11.答案为:3.7512.答案为:;13.答案为:1.514.答案为:(-0.6,0.8)15.答案为:100°.16.17.18.解:(1)GF=GC.理由如下:连接GE,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EFG=90°,∵在Rt△GFE和Rt△GCE中,∴Rt△GFE≌Rt△GCE(HL),∴GF=GC;(2)设GC=x,则AG=3+x,DG=3﹣x,在Rt△ADG中,42+(3﹣x)2=(3+x)2,解得x=4/3.19.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.20.解:(1)D(8,),E(,0);(2)E();(3)F点运动路径长度为2.。

2019中考数学专题汇编全集 几何图形的折叠(10道)

2019中考数学专题汇编全集 几何图形的折叠(10道)

几何图形的折叠1. 如图,在矩形ABCD中,把△ABF翻折,点B落在CD边上的点E处,折痕为AF.把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,则∠HAF=________.第1题图45°【解析】由折叠的性质可得∠DAH=∠GAH,∠BAF=∠EAF,∵∠DAH+∠GAH+∠BAF+∠EAF=90°,∴2∠GAH+2∠EAF=90°,∴∠GAH+∠EAF=45°,∴∠HAF=45°.2. 如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边上的A′处,若AB=3,∠EF A=60°,则四边形A′B′EF的周长是________.第2题图5+3【解析】由折叠知,∠EF A=∠EF A′=60°,又BC∥AD,∴∠A′EF=∠EF A=60°,∴△A′EF为等边三角形,∴A′F=EF=A′E,又∠B′A′F=90°,∴∠B′A′E=30°,∵AB=A′B′=3,∴B′E =1,A′E=2,∴C四边形A′B′EF=A′B′+B′E+A′F+EF=3+1+2+2=5+ 3.3. (2018淄博)在如图所示的▱ABCD中,AB=2,AD=3,将△ACD 沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于________.第3题图10【解析】∵四边形ABCD是平行四边形,∴CD=AB=2,又∵△ACE是由△ACD折叠而来,∴由折叠的性质可知AE=AD=3,CE=CD=2,∴△ADE的周长为3+3+2+2=10.4. 如图,在矩形纸片ABCD中,AB=6,BC=10,BC边上有一点E,BE=4,将纸片折叠,使A点与E点重合,折痕MN交AD于点M,则线段AM的长为________.第4题图132 【解析】如解图,过点M 作MF ⊥BC 于点F ,∵四边形ABCD 是矩形,∴∠DAB =∠B =90°,∴四边形ABFM 是矩形,∴BF =AM ,FM =AB =6,∵将纸片折叠,使A 点与E 点重合,折痕MN 交AD 于M 点,∴AM =ME ,设AM =x ,则EF =BF =x ,∴EF =x -4,在Rt △MEF 中,ME 2=EF 2+MF 2,∴x 2=(x -4)2+62,解得x =132,∴AM =132.第4题解图5. 如图,在△ABC 中,AB =AC =8,cos B =34,点D 在BC 边上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与BC 边交于点F .若BD =2,那么EF =________.第5题图3215 【解析】如解图,过点A 作AH ⊥BC 于点H , ∵AB =AC =8,cosB =34, ∴BH =6=CH ,BC =12, 由折叠可得,BD =DE =2,∠E=∠ABC =∠C ,AB =AE =6, 又∵∠AFC =∠DFE , ∴△AFC ∽△DFE , ∴DF AF =EF CF =DE AC =14.设EF =x ,则CF =4x ,AF =8-x , ∴DF=14AF =2-14x , ∵BD +DF +CF =BC , ∴2+2-14x +4x =12, 解得x =3215,∴EF =3215.第5题解图6. 如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且∠AFG =60°,GE =2BG ,则折痕EF 的长为________.第6题图2 【解析】∵∠AFG =60°,∴∠FGE =60°,∠GFE =∠DFE =60°,∴△EFG 为等边三角形,∵∠FGH =∠D =90°,∴在Rt △EGH 中,∠EGH =30°,∴GE =2EH ,GH =30tan EH =3EH ,∵GE =2BG ,∴EH =EC =BG ,∴CD =GH =3EH =3BG ,∴BC =BG +GE +EC =BG +2BG +BG =4BG ,∵S 矩形ABCD =43,∴BC ·CD =4BG ·3BG =43,∴BG =1,GE =2,∴EF =GE =2.7. 如图,在Rt △ABC 中,∠ACB =90°,BC =6,CD 是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,则AE的长为________.第7题图23【解析】∵CD是斜边AB上的中线,∴CD=BD=AD,∴∠B=∠BCD,由折叠性质得BD=DE,∠BCD=∠DCE,∠B=∠DEC,∴∠DEC=∠DCE,∵DE∥AC,∴∠DEC=∠ACE,∴∠DEC=∠ACE=∠BCD,∵∠ACB=90°,∴∠BCD=30°,∴∠B=30°,∴AC=AD=DE,又∵DE∥AC,∴四边形ACDE是平行四边形,∵CD =DE,∴四边形ACDE是菱形,∴AC=AE,在Rt△ABC中,∠B=30°,AC=33BC=33×6=23,∴AE=2 3.8. (2018襄阳)如图,将面积为322的矩形ABCD沿对角线BD 折叠,点A的对应点为点P,连接AP交BC于点E.若BE=2,则AP的长为__________.第8题图1623【解析】∵点A与点P关于BD对称,∴BD垂直平分AP ,∴∠1+∠2=90°,又∵∠3+∠2=90°,∴∠1=∠3,在矩形ABCD 中,∠ABE =∠BAD =90°,∴△ABE ∽△DAB ,∴AD AB AB BE =,∵BE =2,∴AD =12AB 2,∵S 矩形ABCD =AB ·AD =AB ·12AB 2=322,∴AB =4,AD =82,∴由勾股定理得BD =22AD AB +=12,∵S 四边形ABPD =S 矩形ABCD ,∴12AP ·BD =322,∴AP =1623.第8题解图9. 如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处.若AB =6,BE ∶EC =4∶1,则线段DE 的长为________.第9题图210 【解析】由矩形ABCD ,得∠B =∠C =90°,CD =AB ,AD ∥BC .由△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处,得△DFE ≌△DCE ,∴DF =DC ,∠DFE =∠C =90°,∵DF =AB ,∠AFD =90°,∴∠AFD =∠B ,由AD ∥BC 得∠DAF =∠AEB ,∴在△ABE 和△DF A 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DF AB AFD B DAF AEB ,∴△ABE ≌△DF A . ∵BE ∶EC=4∶1,∴设CE =x ,BE =4x ,则AD =BC =5x ,由△ABE ≌△DF A ,得AF =BE =4x ,在Rt △ADF 中,由勾股定理得DF =3x ,又∵DF =CD =AB =6,∴x =2,在Rt △DCE 中,DE =22DC CE +=22+62=210.10. 如图,在矩形纸片ABCD 中,AB =9,BC =6,在矩形边上有一点P ,且DP =3,将矩形纸片折叠,使点B 与点P 重合,折痕所在直线交矩形两边于点E ,F ,则EF 长为________.第10题图 62或210 【解析】①如解图①,当点P 在边CD 上时,∵PD =3,CD =AB =9,∴CP =BC =6,∵△EPF 由△EBF 折叠而来,∴PF =FB ,∠EPF =∠ABC =90°,又∵∠PEB =∠EBF =90°,∴四边形PFBE 是正方形,∴EF =62;②如解图②,当点P 在边AD 上时,过E 作EQ ⊥AB 于点Q ,∵PD =3,AD =6,∴AP =3,∴PB =AP 2+AB 2=310,∵EF 垂直平分PB ,∴∠FEQ +∠EFQ =∠PBA +∠EFQ ,∴∠FEQ =∠PBA ,∵∠A =∠EQF ,∴△ABP ∽△QEF ,∴PB FE =AB QE ,∴310FE =96,∴EF =210.综上所述,EF 长为62或210.第10题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题八 图形折叠问题类型一 折叠三角形(2018·浙江台州中考)如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E.将△BDE 沿直线DE 折叠,得到△B′DE,若B′D,B′E 分别交AC 于点F ,G ,连结OF ,OG ,则下列判断错误的是( )A .△ADF≌△CGEB .△B′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB′F 的面积是一个定值【分析】A .根据等边三角形ABC 的外心的性质可知AO 平分∠BAC,根据角平分线的定理和逆定理得FO 平分∠DFG,由外角的性质可证明∠DOF=60°,同理可得∠EOG=60°,∠FOG=60°=∠DOF=∠EOG,再根据三角形全等的性质可得△ADF≌△CGE;B .根据△DOF≌△GOF≌△GOE,得DF =GF =GE ,所以△ADF≌△B′GF≌△CGE,可得结论;C .根据S 四边形FOEC =S △OCF +S △OCE 判断即可;D .将S 四边形OGB′F =S △OAC -S △OFG ,根据S △OFG =12·FG·OH,FG 变化,故△OFG 的面积变化,从而四边形OGB′F的面积也变化,可作判断. 【自主解答】三角形的折叠问题一般考查轴对称的性质、勾股定理和线段的性质等,解题的关键是抓住折叠的本质是轴对称,轴对称是全等变换,找出相等的角和线段.类型二折叠平行四边形(2018·山东淄博中考)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于________.【分析】要计算周长首先需要证明E,C,D共线,DE可求,问题得解.【自主解答】关于平行四边形折叠问题,解答时需要关注:在折叠前后,折痕两边能够完全重合的部分是全等图形,它们的对应线段、对应角相等,与特殊的平行四边形相比,它缺少了特殊的条件.1.(2018·甘肃兰州中考)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F.若∠ABD=48°,∠CFD=40°,则∠E为( )A .102°B .112°C .122°D .92° 类型三 折叠菱形(2018·山东烟台中考)对角线长分别为6和8的菱形ABCD 如图所示,点O 为对角线的交点,过点O 折叠菱形,使B ,B′两点重合,MN 是折痕.若B′M=1,则CN 的长为( )A .7B .6C .5D .4【分析】连结AC ,BD ,利用菱形的性质得OC =12AC =3,OD =12BD =4,∠COD=90°,再利用勾股定理计算出CD =5,接着证明△OBM≌△ODN 得到DN =BM ,然后根据折叠的性质得BM =B′M=1,从而有DN =1,于是计算CD -DN 即可. 【自主解答】折叠是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.对于菱形的折叠,还要明确菱形的基本性质,在解题过程中要抓住菱形的性质进行分析.2.(2018·贵州遵义中考)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B ,D 重合),折痕为EF ,若DG =2,BG =6,则BE 的长为__________.3.如图,在菱形ABCD 中,tan A = 43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF⊥AD 时, BNCN的值为____.类型四 折叠矩形(2018·浙江杭州中考)折叠矩形纸片ABCD 时,发现可以进行如下操作:①把△ADE 翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把△CDG 翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上.若AB =AD +2,EH =1,则AD =________.【分析】设AD =x ,则AB =x +2,利用折叠的性质得DF =AD ,EA =EF ,∠DFE=∠A=90°,则可判断四边形AEFD 为正方形,所以AE =AD =x ,再根据折叠的性质得DH =DC =x +2,则AH =AE -HE =x -1,然后根据勾股定理得到x 2+(x -1)2=(x +2)2,再解方程求出x 即可. 【自主解答】此类问题中,运用的知识点比较多,综合性强,如轴对称性、全等、相似、勾股定理、转换思想、与其他图形(圆)结合等,抓住翻折前后两个图形是全等的,把握翻折前后不变的要素是解决此类问题的关键.4.(2018·湖北宜宾中考)如图,在矩形ABCD 中,AB =3,CB =2,点E 为线段AB 上的动点,将△CBE 沿CE 折叠,使点B 落在矩形内点F 处,下列结论正确的是__________(写出所有正确结论的序号). ①当E 为线段AB 中点时,AF∥CE; ②当E 为线段AB 中点时,AF =95;③当A ,F ,C 三点共线时,AE =13-2133;④当A ,F ,C 三点共线时,△CEF≌△AEF.类型五 折叠正方形(2018·江苏宿迁中考)如图,在边长为1的正方形ABCD 中,动点E ,F 分别在边AB ,CD 上,将正方形ABCD 沿直线EF 折叠,使点B 的对应点M 始终落在边AD 上(点M 不与点A ,D 重合),点C 落在点N 处,MN 与CD 交于点P ,设BE =x. (1)当AM =13时,求x 的值;(2)随着点M 在边AD 上位置的变化,△PDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC 的面积为S ,求S 与x 之间的函数表达式,并求出S 的最小值.【分析】(1)利用勾股定理构建方程,即可解决问题;(2)设AM=y,则BE=EM=x,MD=1-y,在Rt△AEM中,由勾股定理得出x,y的关系式,可证Rt△AEM∽Rt△DMP,根据相似三角形的周长比等于相似比求△DMP的周长;(3)作FH⊥AB于H.则四边形BCFH是矩形.连结BM交EF于O,交FH于K.根据梯形的面积公式构建二次函数,利用二次函数的性质解决最值问题即可.【自主解答】正方形的折叠同其他图形一样,要关注勾股定理、全等图形、相似等相关知识,但由于正方形的特点,所以有关正方形的折叠问题有着其他图形没有的特殊性,解题时应关注正方形本身具有的特点.5.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:将正方形ABCD 对折,使点A 与点D 重合,点B 与点C 重合.再将正方形ABCD 展开,得到折痕EF ; 操作2:再将正方形纸片的右下角向上翻折,使点C 与点E 重合,边BC 翻折至B′E 的位置,得到折痕MN ,B′E 与AB 交于点P.则P 即为AB 的三等分点,即AP∶PB=2∶1.解决问题(1)在图1中,若EF 与MN 交于点Q ,连结CQ.求证:四边形EQCM 是菱形; (2)请在图1中证明AP∶PB=2∶1. 发现感悟若E 为正方形纸片ABCD 的边AD 上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DE AE =2.则APBP =________;(4)如图3,若DE AE =3,则APBP=________;(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.类型六 折叠圆(2018·湖北武汉中考)如图,在⊙O 中,点C 在优弧AB ︵上,将BC ︵沿BC 折叠后刚好经过AB 的中点D.若⊙O 的半径为5,AB =4,则BC 的长是( )A .2 3B .3 2 C.532D.652【分析】连结OD ,AC ,DC ,OB ,OC ,作CE⊥AB 于E ,OF⊥CE 于F ,利用垂径定理、勾股定理、折叠的性质、圆周角定理、等腰三角形的性质及正方形的性质即可求解. 【自主解答】6.如图,将半径为4 cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )A .2 3 cmB .4 3 cm C. 3 cmD. 2 cm参考答案类型一【例1】 A .如图,连接OA ,OC. ∵点O 是等边三角形ABC 的外心, ∴AO 平分∠BAC,∴点O 到AB ,AC 的距离相等. 由折叠得DO 平分∠BDB′, ∴点O 到AB ,DB′的距离相等, ∴点O 到DB′,AC 的距离相等,∴FO 平分∠DFG,∠DFO=∠OFG=12(∠FAD+∠ADF).由折叠得∠BDE=∠ODF=12(∠DAF+∠AFD),∴∠OFD+∠ODF=12(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°. 同理可得∠EOG=60°, ∴∠FOG=60°=∠DOF=∠EOG, ∴△DOF≌△GOF≌△GOE,∴OD=OG ,OE =OF ,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB, ∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG ,AF =CE ,∴△ADF≌△CGE,故选项A 正确; B .∵△DOF≌△GOF≌△GOE, ∴DF=GF =GE ,∴△ADF≌△B′GF≌△CGE,∴B′G=AD ,∴△B′FG 的周长=FG +B′F+B′G=FG +AF +CG =AC(定值),故选项B 正确; C .S 四边形FOEC =S △OCF +S △OCE =S △OCF +S △OAF =S △AOC =13(定值),故选项C 正确;D .S 四边形OGB′F =S △OFG +S △B′GF =S △OFD +S △ADF =S 四边形OFAD =S △OAD +S △OAF =S △OCG +S △OAF =S △OAC -S △OFG . 如图,过O 作OH⊥AC 于H , ∴S △OFG =12·FG·OH,由于OH 是定值,FG 变化,故△OFG 的面积变化,从而四边形OGB′F 的面积也变化,故选项D 不一定正确.故选D.类型二【例2】 ∵四边形ABCD 是平行四边形, ∴AD∥BC,CD =AB =2. 由折叠知∠DAC=∠EAC.∵∠DAC=∠ACB,∴∠ACB=∠EAC, ∴OA=OC.∵AE 过BC 的中点O ,∴AO=12BC , ∴∠BAC=90°,∴∠ACD=90°.由折叠知∠ACE=90°,∴E,C ,D 共线,则DE =4,∴△ADE 的周长为3+3+4=10.故答案为10.变式训练1.B类型三【例3】 如图,连结AC ,BD.∵点O 为菱形ABCD 的对角线的交点, ∴CD=32+42=5.∵AB∥CD,∴∠MBO=∠NDO.在△OBM 和△ODN 中,⎩⎪⎨⎪⎧∠MBO=∠NDO,OB =OD ,∠BOM=∠DON,∴△OBM≌△ODN,∴DN=BM.∵过点O 折叠菱形,使B ,B′两点重合,MN 是折痕,∴BM=B′M=1,∴DN=1,∴CN=CD -DN =5-1=4.故选D.变式训练2.2.8 3.27类型四【例4】 设AD =x ,则AB =x +2.∵把△ADE 翻折,点A 落在DC 边上的点F 处,∴DF=AD ,EA =EF ,∠DFE=∠A=90°,∴四边形AEFD 为正方形,∴AE=AD =x.∵把△CDG 翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上, ∴DH=DC =x +2.∵HE=1,∴AH=AE -HE =x -1.在Rt△ADH 中,∵AD 2+AH 2=DH 2,∴x 2+(x -1)2=(x +2)2,整理得x 2-6x -3=0,解得x 1=3+23,x 2=3-23(舍去),即AD 的长为3+2 3.故答案为3+2 3.变式训练4.①②③类型五【例5】 (1)在Rt△AEM 中,AE =1-x ,EM =BE =x ,AM =13. ∵AE 2+AM 2=EM 2,∴(1-x)2+(13)2=x 2,∴x=59. (2)△PDM 的周长不变为定值2.理由如下:设AM =y ,则BE =EM =x ,AE =1-x.在Rt△AEM 中,由勾股定理得AE 2+AM 2=EM 2,(1-x)2+y 2=x 2,解得1+y 2=2x ,∴1-y 2=2(1-x).∵∠EMP=90°,∠A=∠D,∴Rt△AEM∽Rt△DMP,∴AE +EM +AM DM +MP +DP =AE DM , 即1-x +x +y DM +MP +DP =1-x 1-y, 解得DM +MP +DP =1-y 21-x=2, ∴△DMP 的周长为2.(3)如图,作FH⊥AB 于H.则四边形BCFH 是矩形.连结BM 交EF 于O ,交FH 于K.在Rt△AEM 中,AM =x 2-(1-x )2=2x -1.∵B,M 关于EF 对称,∴BM⊥EF,∴∠KOF=∠KHB.∵∠OKF=∠BKH,∴∠KFO=∠KBH.∵AB=BC =FH ,∠A=∠FHE=90°,∴△ABM≌△HFE,∴EH=AM =2x -1,∴CF=BH =x -2x -1,∴S=12(BE +CF)·BC =12(x +x -2x -1) =12[(2x -1)2-2x -1+1] =12(2x -1-12)2+38. 当2x -1=12时,S 有最小值为38. 变式训练5.解:(1)由折叠可得CM =EM ,∠CMQ=∠EMQ,四边形CDEF 是矩形, ∴CD∥EF,∴∠CMQ=∠EQM,∴∠EQM=∠EMQ,∴ME=EQ =MC ,又∵MC∥QE,∴四边形EQCM 是平行四边形.又∵CM=EM ,∴四边形EQCM 是菱形.(2)如图1,设正方形ABCD 的边长为1,CM =x ,则EM =x ,DM =1-x.图1在Rt△DEM 中,由勾股定理可得EM 2=ED 2+DM 2,即x 2=(12)2+(1-x)2, 解得x =58,∴CM=58,DM =38. ∵∠PEM=∠D=90°,∴∠AEP+∠DEM=90°,∠DEM+∠EMD=90°,∴∠AEP=∠DME.又∵∠A=∠D=90°,∴△AEP∽△DME,∴AP AE =DE DM ,即AP 12=1238,解得AP =23, ∴PB=13,∴AP∶PB=2∶1. (3)4 (4)6(5)根据问题(2),(3),(4),可得当DE AE =n(n 为正整数)时,则AP BP=2n. 理由:设正方形ABCD 的边长为1,CM =x ,则EM =x ,DM =1-x. 在Rt△DEM 中,由勾股定理可得EM 2=ED 2+DM 2,即x 2=(n n +1)2+(1-x)2, 解得x =(n +1)2+n 22(n +1)2, ∴DM=1-CM =2n +12(n +1)2, 由△AEP∽△DME 可得AP AE =DE DM, 即AP 1n +1=nn +12n +12(n +1)2,解得AP =2n 2n +1, ∴PB=12n +1,∴AP BP =2n.类型六【例6】 如图,连结OD ,AC ,DC ,OB ,OC ,作CE⊥AB 于E ,OF⊥CE 于F.∵D 为AB 的中点,∴OD⊥AB,∴AD=BD =12AB =2. 在Rt△OBD 中,OD =(5)2-22=1.∵将BC ︵沿BC 折叠后刚好经过AB 的中点D ,∴AC ︵和CD ︵所在的圆为等圆,∴AC ︵=CD ︵,∴AC=DC ,∴AE=DE =1,易得四边形ODEF 为正方形,∴OF=EF =1.在Rt△OCF 中,CF =(5)2-12=2,∴CE=CF +EF =2+1=3,而BE =BD +DE =2+1=3,∴BC=3 2.故选B. 变式训练6.B。

相关文档
最新文档