On dynamics of relativistic shock waves with losses in gamma-ray burst sources

合集下载

第八届国际凝聚态理论与计算材料学会议

第八届国际凝聚态理论与计算材料学会议

大会将请专家对以下领域作专题性的特邀报告:
(1). 凝聚态物理的最新进展:
A. 自旋电子学
B. 纳米材料
C. 固体量子信息和计算
D. 玻色-爱因斯坦凝聚
E. 强关联电子系统
F. 高温超导
G. 量子霍尔效应
H. 磁学
I 表面和界面
J. 半导体物理
K. 低维凝聚态物理
L. 介观物理
M. 软凝聚态物质
N. 生物物理
structure Metallic Phases in Solid Germane (GeH4) under Pressure 锗烷在
压力下的金属相
11:45 -12:15
12:15 -13:00
午餐
张振宇 橡树岭国家实验室
柳百新
清华大学
林海青 香港中文大学 牛谦 美国德克萨斯大学
7 月 16 日
凝聚态理论专题邀请报告 I 主持人:谢心澄 地点:芙蓉厅
14:30 -14:55 14:55 -15:20 15:20 -15:45 15:45 -16:10 16:10 -16:35 16:35 -16:50
7 月 16 日
Manipulating Magnetization States of Nanostructures Two-spin decoherence in semiconductor quantum dots
稀磁半导体(Al,Cr)N 中的氮空位与高温铁磁性的第一原理研究
蒋青 刘邦贵
吉林大学 中科院物理所
15:20 -15:45 15:45 -16:10 16:10 -16:35
Theoretical and experimental studies of semiconductor dilute nitrides and devices

汉密尔顿原理

汉密尔顿原理

汉密尔顿原理The Hamiltonian principle, also known as Hamilton's principle, is a fundamental principle in classical mechanics. It states that the dynamics of a physical system are determined by a single function, known as the Hamiltonian. This principle was formulated by Sir William Rowan Hamilton in 1834 and is a powerful tool for understanding the behavior of a wide range of physical systems.汉密尔顿原理,也称为汉密尔顿原则,是古典力学中的基本原理。

它表明物理系统的动力学是由一个称为汉密尔顿量的单个函数所决定的。

这一原理是由威廉·罗恩·汉密尔顿爵士于1834年提出的,是理解各种物理系统行为的有力工具。

One of the key insights of the Hamiltonian principle is that it provides a more general formulation of the laws of motion than the standard Newtonian approach. While Newton's laws are suitable for describing the motion of simple, low-energy systems, the Hamiltonian approach can be applied to more complex systems, including those involving relativistic effects and quantum mechanics.汉密尔顿原理的一个关键见解是,它提供了比标准牛顿方法更一般的运动定律公式。

dirac方程最简

dirac方程最简

dirac方程最简The Dirac equation, in its simplest form, represents a fundamental equation in physics that describes the behavior of relativistic electrons. Derived by Paul Dirac in 1928, it combines the principles of quantum mechanics and special relativity, offering a unified framework for understanding the dynamics of elementary particles. The equation is formulated in terms of wave functions, mathematical objects that encode the probability distributions of particles' positions and momenta.在最简形式下,狄拉克方程是物理学中的一个基本方程,用于描述相对论电子的行为。

该方程由保罗·狄拉克于1928年推导得出,结合了量子力学和特殊相对论的原理,为理解基本粒子的动力学提供了一个统一的框架。

这个方程是用波函数来表示的,波函数是数学对象,用于编码粒子位置和动量的概率分布。

The Dirac equation is remarkable for its predictive power. It not only accounts for the energy levels of electrons in atoms, but also predicts the existence of antimatter particles, such as positrons, which are the antiparticles of electrons. This antimatter prediction was a groundbreaking revelation at the time of its discovery, and it has since been experimentally verified.狄拉克方程的预测能力非常显著。

【国家自然科学基金】_shock wave_期刊发文热词逐年推荐_20140801

【国家自然科学基金】_shock wave_期刊发文热词逐年推荐_20140801

辐射温度 辐射持续时间 辐射功率 跨音速压气机 超高层建筑 超高压 超薄板材 超声速风洞 超声速流 超压峰值 超压 谐振 计算数学 衰减规律 节理岩体 脉冲爆轰发动机 脉冲升时 能量 聚偏氟乙烯 缺陷 缺口膨胀环 结构安全防护 结构参数 结构健康监测 纹影系统 纳米铝 纯铁 简谐力 等温物态方程 等效粘性阻尼 等截面扩压器 端壁造型 空腔解耦 空气弹簧 稠密等离子体 稀疏波 离子加速 示踪 磁流体动力学(mhd) 磁流体力学 磁场 碰撞 硝基甲烷 破乳 相关方法 电镜扫描 电离效应 电火花放电 电弧放电 状态方程 物质点法 爆轰管 爆轰物理 爆破松动
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 爆炸力学 冲击波 激波 数值模拟 爆炸冲击波 陶瓷 边界层分离 聚焦 等离子体气动激励 相变 瓦斯爆炸 爆轰 数值计算 层裂 固体力学 ls-dyna ce/se方法 齿顶曲率 高温空气 马赫盘 饱和土 风致振动 频率 频散曲线 非连续屏障 非线性 非均匀性 静态 霍普金斯(hopkinson)压杆 震源函数 集中荷载 集中冲量法 隧道 隔离效果 随机减量技术(rdt) 陶瓷材料 降噪 阵元激波发生器 防爆墙 锥形子弹 铝粉爆炸 铝泡沫 铝 铂 金 量纲分析方法 量纲分析 重合度 进气道 迎面撞击 边界层 辐射高温计
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

半导体双语专业常见单词

半导体双语专业常见单词

Chapter 2Quantum['kwɔntəm] Mechanics[mɪ'kænɪks]量子力学accuracy['ækjurəsi]n. 精确(性), 准确(性)theoretical [,θiə'retikəl]adj. 理论的;推想的, 假设的electromagnetic wave [ɪ,lektrəʊmæg'netɪk]电磁波inconsistent[,ɪnkən'sɪstənt]adj. (思想、意见等)不一致的, 不协调的;易变的, 不稳定的, 反复无常的Energy Quanta 能量子,量子Relativity 相对论The blackbody radiation (黑体辐射)particle (粒子)unambiguous[,ʌnæm'biɡjuəs]adj. 不含糊的; 清楚的; 明确的thermal ['θə:məl] radiation热辐射photoelectric[,fəʊtəʊɪ'lektrɪk] effect (光电效应).electrodes [ɪ'lek,trəʊd]n. 电极irradiate [i/reidieit] (照射)incident light (入射光)threshold ['θreʃhəuld[ frequency 截止频率proportional to [prə'pɔ:ʃənəl]adj. 比例的, 成比例的Photoelectric[,fəʊtəʊɪ'lektrɪk]adj. 光电的intensity [in'tensiti]n. 强烈, 剧烈;(感情的)强烈程度photoelectron[,fəutəui'lektrɔn]n. 光电子kinetic [kɪ'netɪk, kaɪ-]adj. <物>动力的,由运动引起的electrode [ɪ'lek,trəʊd]n. 电极emission[ɪ'mɪʃən] n.1.排放物,散发物(尤指气体)2.排放,散发,发出(气体、光、热)eject[i'dʒekt]vt. & vi. 弹出, 喷出, 排出vt. 逐出contamination (污染)hypothesis [hai'pɔθisis]n. 假说, 假设, 前提assumption [ə'sʌmpʃən]n. 假定, 臆断photon [/fəʊ:tɔn]光子;光量子cathode['kæθ,əʊd]n. <电>(-)阴极,负极work function (功函数).equation方程kinetic energy (动能)photon. ['fəʊ,tɔn]n. <物>光子;光量子photoelectron [,fəutəui'lektrɔn]n. 光电子reciprocal ri'siprəkəl (倒数)Wave-Particle Duality [dju(:)'æliti] (波粒二象性)impinges [im/pindʒ] (冲击,撞击)diffuse reflection漫射wavelength 波长scattere.[/skætə]散射mechanism ['mekənizəm]n. (机理)forced vibration [vaɪ'breɪʃən] (受迫振动),oscillate vt. & vi. (使)摆动momentum(动量)collision [kə'liʒən]n. 碰撞, 冲突, 抵触recoils [ri/kɔil] 反冲D e B r o g l i e W a v e(德布罗意波)postulate [/pɔstju/leɪt] (假设matter waves 物质波wave-particle duality [dju(:)'æliti](波粒二象性)filament['fɪləmənt (灯丝)accelerate [æk'seləreit]vt. & vi. (使)加快, (使)增速nickel ['nikəl] (镍).Scattere [/skætə]散射diffract 衍射interference [,ɪntə'fiərəns]干涉grating ['greɪtɪŋ](光栅)magnitude 'mæɡnitju:d] (数量级)protons [/prəʊ/tɔn] (质子)neutrons [/nu:/trɔn] (中子)mechanics [mɪ'kænɪks]n. 力学;机械学;机件;过程;方法radius ['reidjəs (半径)wave theory 波动理论subatomic ['sʌbə'tɔmik]adj. 小于原子的;亚原子的,次原子的particle ['pɑ:tikl]n. 微粒, 颗粒, 〈物〉粒子;极少量;小品词conjugate [/kɔndʒəɡeit]variables [/vɛəriəbl](相关变量), simultaneous [,siməl'teinjəs]adj. 同时发生的; 同时存在的generalized[/dʒenərəlaizd]adj.1.广泛的, 普遍的, 全面的2.非具体的; 整体的angular position (角坐标)angular momentum (角动量momentum [məu'mentəm]n. 动力, 冲力, 势头;〈物〉动量profound [prə'faund]adj. 深度的; 深切的; 深远的;知识渊博的, 见解深刻的, 深奥的diameter [dai'æmitə]n. 直径;放大率electron single-slit diffraction([di'frækʃən]电子单缝衍射slit [slit]vt. 切开, 撕开n. 狭长的口子, 裂缝billiard [/bɪljəd] ball (台球)macroscopic [/mækrə/skɔpɪk] (宏观的)Microscopic [/maɪkrə/skɔpɪk] 微观的rifle [/raifl] (来福枪)bullet [/bulit] (子弹)apparatus [/æpə/reitəs] (仪器)bounced off 反弹probability density function (概率密度函数)precisely [prɪ'saɪsli:]adv. 精确地;恰好;细心地;对, 的确如此dice [dais]骰子violate ['vaiəleit]vt. 违反, 违背;亵渎;侵犯, 妨碍bizarre [bi/zɑ:] (怪诞的tick [tik]n. 钟的嘀嗒声;(表示正确无误的)记号;证券价格的增额;(寄生于体大动物的吸血小虫)壁虱vt. & vi.1.发出滴答声2.标以记号3.激怒kinetic energy 动能relativistic quantum mechanics (相对论量子力学non-relativistic quantum mechanics (非相对论量子力学) . hypotheses [hai/pɔθisiz]臆测,假定one-dimensional (一维的),constant ['kɔnstənt] (常数)portion ['pɔ:ʃən]n. 一部分, 一份vt. 把…分成份额, 分配the technique of separation of variables (分离变量法Substituting ['sʌbstitju:tiŋ]n. 取代denote [di'nəut]vt. 为…的符号; 为…的名称;指示; 指出dynamic [dai'næmik] (动力学的complex conjugate function (复共轭)normalizing condition 归一化条件coefficient [,kəʊə'fɪʃənt系数).derivative [di/rivətiv](导数)finite ['fainait]adj. 有限的, 有限度的;〈语〉限定的single-valued 单值的state superposition principle (态叠加原理)traveling wave (行波),parameter [pə'ræmitə]n. (限定性的)因素, 特性, 界限;〈物〉〈数〉参量, 参数Infinite ['infinit]adj. 无限的, 无穷的, 无边无际的Potential Well (势阱)bound particle (束缚粒子).explicit [iks'plisit]adj. 详述的, 明确的, 明晰的;直言的, 毫不隐瞒的, 露骨的discrete [dis'kri:t]adj. 分离的, 不相关联的energy levels (能级)dimension [di'menʃən]n. 尺寸, 维度standing wave (驻波quantization量子化quantum states (量子态)Barrier ['bæriə] (势垒)incident particle (入射粒子)a flux ([flʌks]of incident particles一束入射离子流originate [ə'ridʒineit]vi. 起源于, 来自, 产生transmission coefficient (透射系数),impinge [im/pindʒ]碰撞penetrate ['penitreit] (穿透)tunneling (tunnel [/tʌnəl]) effect (隧道效应contradict [,kɔntrə'dikt]vt. & vi. 反驳, 否认…的真实性vt. 与…发生矛盾, 与…抵触tunnel diode (隧道二级管)horizontal [,hɔri'zɔntəl]adj. 水平的, 与地平线平行的ionize ['aɪə,naɪz]vt. & vi. (使)电离,(使)成离子molecule分力theoretical [,θiə'retikəl]adj. 理论的;推想的, 假设的visualized ['viʒuəlaiz]vt. 在脑中使(某人或某物)形象化, 设想, 想像pulse [pʌls]n. 脉搏;脉冲vi. (心脏)跳动; 脉动attosecond阿秒periphery [pə'rɪfəri:]n. 外围;边缘spectrometry光谱测定法dynamics [dai'næmiks]n. 动力学、力学;facilitate [fə'siliteit]vt. 使便利, 减轻…的困难rectangular [rek/tæŋɡjulə](长方形的; 矩形的coulomb [/ku:lɔm]attraction (库仑引力)permittivity [/pə:mi/tiviti] (介電常數)spherical coordinates [/sfɪərɪkəl] [kəu/ɔ:dineit] (球坐标). Laplace operator (拉普拉斯算符)spherical['sfɪərɪkəl, 'sfer-]adj. 球形的,球面的;天体的coordinate[kəu'ɔ:dineit]vt. 使协调; 使调和adj. 同等的, 并列的n. 〈数〉坐标principle quantum number (主量子数);angular momentum quantum number (角量子数magnetic quantum number (磁量子数).Correspond[,kɔris'pɔnd]vi. 相符合, 相一致;相当, 相类似;通信discrete[dis'kri:t]adj. 分离的, 不相关联的,分立的symmetric对称的Bohr radius (玻尔半径emanate ['emə,neɪt]vi. 从…处传出;传出nucleus ['nju:kliəs]n. (原子)核;中心, 核心plot 绘制,作图electron cloud (电子云energy shell能量壳层yield [ji:ld]vt. & vi. 生产, 出产, 带来;evolve [i'vɔlv]vt. & vi. 演变; 进化Periodic ([,piəri'ɔdik])T able (周期表) initial [i'niʃəl]adj. 最初的, 开头的electron spin (电子自旋).spin [spin]vt. & vi. 使…旋转vt. 杜撰exclusion [ɪk'sklu:ʒən]n. 拒绝,排除n. 排外主义helium (氦),inert [ɪ/nɜ:t](惰性的valence ['veiləns]n. (化合)价,原子价deviate [/di:vieit] (偏离)。

善良与邪恶的英语作文论点

善良与邪恶的英语作文论点

善良与邪恶的英语作文论点The concept of good and evil is a fundamental theme that has been explored in literature, philosophy, and religion for centuries. Good is often associated with qualities such as kindness, compassion, and altruism, while evil is linked to traits like cruelty, selfishness, and malice. These contrasting forces shape our understanding of morality and guide our actions in the world.One argument is that good and evil are subjective concepts that vary depending on cultural, social, and personal perspectives. What may be considered good in one society could be perceived as evil in another. This relativistic view suggests that there are no absolute standards of good and evil, and that moral judgments are influenced by individual beliefs and values.On the other hand, some argue that there are universal principles of good and evil that transcend cultural differences. These principles are rooted in basic human values such as respect for life, fairness, and honesty. According to this perspective, there are certain actions that are inherently good or evil, regardless of context or interpretation.In conclusion, the concept of good and evil is a complex and multifaceted topic that continues to spark debates and discussions. Whether viewed as subjective or objective, understanding the dynamics of good and evil is essential for navigating ethical dilemmas and making moral choices in our daily lives.中文翻译:善恶的概念是一个根本性的主题,几个世纪以来在文学、哲学和宗教中得到探讨。

基于深度卷积-长短期记忆神经网络的整车道路载荷预测

基于深度卷积-长短期记忆神经网络的整车道路载荷预测
- 46 -
拟路谱技术和基于机器学习的路谱识别技术。前者首 先通过激光扫描技术获取试验场路面不平度信号,然 后对包括轮胎、衬套悬置等弹性元件的整车模型进行 动力学仿真分析 ;后 [1-4] 者首先利用合适的机器学习模 型直接根据方便测量的整车参数预测道路载荷,然后 利用整车动力学仿真分析获取底盘结构件的动态响 应载荷 。 [5-8] 通过对比这 2 种方法,发现与虚拟路谱技术 相比,基于机器学习的路谱识别技术省去了操作复杂且 代价高昂的路面不平度测量工作,且不需要在整车动力 学模型中建立轮胎模型。
经 网 络(DCNN-LSTM)模 型 ,提 出 了 基 于 数 据 驱 动 的 整 车 轮 心 载 荷 预 测 方 法 。 对 比 试 验 结 果 表 明 ,该 方 法 预 测 的 整 车 轮 心
载荷与试验场采集数据非常接近,有利于逐步取消路谱采集试验并极大地提高整车耐久性分析的效率。
主题词:道路载荷 深度学习 数据库 疲劳耐久分析 深度卷积神经网络 长短期记忆
每小块求取统计值(如均值或最大值)即可得到池化层 的输出信息。在整车道路载荷预测中,需要处理的汽车
算和求和运算,然后通过非线性转换获得卷积层的输出 信息。在池化层,输入的数据被分为很多小块,通过对
运行参数属于一维时序数据,因此 DCNN 层选用如图 2 所示的一维卷积神经网络层。
x(1) x(2)
x(S - 1) x(S)
1 前言
在现有的汽车底盘结构疲劳耐久分析流程中,为了 获得整车的道路载荷谱,通常需要在项目开发早期开展 整车道路耐久试验,该试验需要特制的试制样车、测量 设备、试验场所以及数周的试验时间。随着控制成本和 缩减开发周期的要求日益严格,道路试验成本高、周期 长的问题更加突出,亟待解决。

量子力学索引英汉对照

量子力学索引英汉对照

21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :a s t r o -p h /0501192v 1 11 J a n 2005ON DYNAMICS OF RELATIVISTIC SHOCK WA VES WITH LOSSES IN GAMMA-RAY BURST SOURCESE.V .Derishev,Vl.V .Kocharovsky,K.A.MartiyanovInstitute of Applied Physics46Ulyanov st.,603950Nizhny Novgorod,Russiamca1@appl.sci-nnov.ruAbstractGeneralization of the self-similar solution for ultrarelativistic shock waves (Bland-ford &McKee,1976)is obtained in presence of losses localized on the shock front or distributed in the downstream medium.It is shown that there are two qualitatively different regimes of shock deceleration,corresponding to small and large losses.We present the temperature,pressure and density distributions in the downstream fluid as well as Lorentz factor as a function of distance from the shock front.Keywords:relativistic shock waves,gamma-ray burstsIntroductionThe progenitors of gamma-ray bursts (GRBs)are believed to produce highly relativistic shocks at the interface between the ejected material and ambient medium (see,e.g.,Meszaros,2002;Piran,2004for review).Non-thermal spectra and short duration of GRBs place a firm lower limit to the bulk Lorentz factor of radiating plasma,which must exceed a few hundred to avoid the com-pactness problem (e.g.,Baring &Harding,1995).Consider a relativistic spherical blast wave expanding into a uniform ambi-ent medium with the Lorentz factor Γ∼300.The average energy per baryon in the fluid comoving frame behind the shock front is of the order of Γm p c 2(Taub,1948),where m p is proton mass,and the plasma in the downstream presumably forms a non-thermal particle distribution extending up to very high energies.Under these conditions,medium downstream is subject to vari-ous loss processes.The non-thermal electrons produce synchrotron radiation,which accounts for GRB afterglow emission,and (at least partially)for the prompt emission.Apart from the synchrotron radiation of charged particles there is another mechanism of energy and momentum losses connected with inelastic interactions of energetic protons with photons.These reactions cause2proton-neutron conversion as a result of charged pion creation.It should be no-ticed that for typical interstellar density the Coulomb collisions are inefficient and the charged particles instead interact collectively through the magnetic field.This allows to describe plasma motion using hydrodynamical approach, though it can break for a small fraction of the most energetic particles.When a proton turns into a neutron or another neutral particle is born,it does not interact with the magneticfield and hence the energy spent for its creation is lost from the hydrodynamical point of view.The synchrotron and inverse Compton emission,as well as energetic photons,neutrinos and neu-trons produced via photopionic reactions,escape from downstream giving rise to non-zero divergence of the energy-momentum tensor.The creation of en-ergetic neutrons is also afirst step in the production of highest-energy cosmic rays through the converter mechanism(Derishev et al.,2003).Ejection from the GRB progenitor of a mass M0with initial Lorentz factor Γ0results in two shocks propagating asunder from the contact discontinuity. The forward shock moves into the external gas and has a much greater com-pression ratio at its front than the other,reverse shock,which passes through the ejected matter.As the shocked external gas has a temperature much higher than that in the vicinity of the reverse shock,we neglect the losses in the ejecta.We discuss two models.In thefirst one we assume the energy losses to be localized close to the shock front,whereas the matter downstream the shock is considered lossless.In another model the shock front is treated as non-dissipative and the losses are distributed all over the shocked gas.Following the recipe of Blandford and McKee(1976)we generalize their well-known self-similar solutions for relativistic blast waves for the case,where the energy and momentum of the relativisticfluid is carried away by various species of neutral particles.Self-similar solutionsWe start from the energy-momentum continuity equations,where in the case of distributed losses a non-zero r.h.s.is included:∂T00r2∂(r2T0r)c∂t+1∂r−2pRELATIVISTIC SHOCK WAVES WITH LOSSES IN GRB SOURCES3χ.the downstream medium and decreasing with time as t−1.Short-dashed lines are for the case of localized losses withδ=η=0.The solid line—solution of Blandford and McKee(1976).In the case of localized losses we treat them as discontinuities of the energy, momentum and particle numberfluxes at the shock front,which are character-ized by three parametersε,δ,ηequal to the fractions of correspondingfluxes lost at the shock front in the front comoving frame.We obtain the following expressions for the pressure p2,number density n2and the Lorentz factorγ2 immediately behind the shock front:p2=22ξ2Γ2,n2=2√2(1−δ)ξ2 1+ √ξ24To find a self-similar solution we assume Γ2=t −m and introduce the simi-larity variable χ=ct −rct ,α=const ,but they also exist for non-uniformdistributions of losses if α=α(χ).The velocity,pressure and particle density are found in terms of variables Γ,χ.From the energy balance equation we find that the power law index m is in the range 3≤m ≤6.There are two regions in the parameter space where the solutions are qualitatively different.In the case of small losses,α<3or ε+2−√14δ<1+2−√14,the index m rises from 3to 6as the losses increase.The pressure,Lorentz factor and number density of the downstream are pro-portional to powers of the similarity variable whose indices are different from those in the solution of Blandford and McKee (1976).On the contrary,large losses lead to the universal deceleration law of the shock:m is equal to 6.The problem is fully integrable but solutions can not be written as explicit.In the high-loss solutions there appears an expanding spherical cavity bounded by the contact discontinuity and the temperature at its edge tends to infinity.The solutions obtained are presented in Fig.1.ConclusionWe have analyzed the dynamics of relativistic shock wave with losses due to escape of neutral particles from plasma flow.Both for localized and for dis-tributed losses there are self-similar solutions,which are different from those found previously for lossless case.We find that increasing of the losses change the dynamics of the shock deceleration qualitatively.In the case of small losses,the role of ejected material asymptotically vanishes and the Lorentz factor of the shock decreases as t −m with m varying from 1,5(no losses)to 3.In the opposite case of large losses,the shock decelerates in accordance with universal law Γ∼t −3and the energy content in the ejecta constitutes a significant fraction of the total energy budget.Also,in the presence of large losses,the temperature and the Lorentz factor of the fluid behind the shock can be non-monotonic functions of distance from the shock.AcknowledgmentsThis work was supported by the RFBR grants nos.02-02-16236and 04-02-16987,the President of the Russian Federation Program for Support of Leading Scientific Schools (grant no.NSh-1744.2003.2),and the program "Nonstation-ary Phenomena in Astronomy"of the Presidium of the Russian Academy of Science. E.V .Derishev acknowledges the support from the Russian Science Support Foundation.RELATIVISTIC SHOCK WAVES WITH LOSSES IN GRB SOURCES5 ReferencesBaring,M.G.;Harding,A.K.,1995,Adv.Sp.Res.15(5),p.153-156Blandford R.D.,and McKee C.F.,1976,Phys.Fluids19,1130.Derishev,E.V.;Aharonian,F.A.;Kocharovsky,V.V.;Kocharovsky,Vl.V.,2003,Phys.Rev.D 68,043003Meszaros P.,2002,Ann.Rev.Astron.Astrophys.40,p.137-169Piran,T.,2004,Rev.Mod.Phys.,in press,astro-ph/0405503Taub,A.H.,1948,Phys.Rev.74,p.328。

相关文档
最新文档