河南师范大学附属中学2015届高三周练(5.4)数学(理)试题(扫描版)

合集下载

河南省2015届普通高中毕业班适应性测试数学(理)试题(扫描版)

河南省2015届普通高中毕业班适应性测试数学(理)试题(扫描版)

2015年河南省普通高中毕业班高考适应性测试理科数学试题参考答案及评分标准(13) 40 (14)3- (15)( (16)①②③ 三、解答题(17) 解:(Ⅰ)由2142n n n a a a +=++,得21211244(2)n n n n a a a a ++++=++=+. 因为0n a >12n a +=+.因为12122log (2)1log (2)2n n n n n b a b a +++===+,又121log (2)2b a =+=, 所以数列{}n b 是首项为2,公比为12的等比数列.……………………………………………………6分(Ⅱ)由(Ⅰ)知,112()2n n b -=⋅,则112()2n n c n -=. 012111112()4()2(1)()2()2222n n n S n n --=⨯+⨯+⋅⋅⋅+-+,① 121111112()4()2(1)()2()22222n n n S n n -=⨯+⨯+⋅⋅⋅+-+.② ①-②得:01211111112()2()2()2()2()222222n n n S n -=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅ 12[1()]122()1212n n n -=-⋅-14(42)()2n n =-+. 所以218(2)()2n n S n -=-+.……………………………………………………………………………12分(18) 解:(Ⅰ)设“该射手通过测试”为事件A ,“向甲靶射击两次都命中”为事件B ,“向甲靶射击两次中只命中一次,则再向乙靶射击一次,命中”为事件C .事件B ,C 互斥,且A B C =+.所以该射手通过测试的概率212333213()()()()(1).444316P A P B P C C =+=+⋅-⋅= ………………5分(Ⅱ)由题意,0,1,2X =. ……………………………………………………………………………6分212313321(0)(1);(1)(1)(1);4164438P X P X C ==-===⋅-⋅-=13(2)().16P X P A === ……9分 所以该射手在这次测试中命中的次数X 的分布列为该射手在这次测试中命中的次数的数学期望为11137()012.168164E X =⨯+⨯+⨯=……………12分 (19)解:(Ⅰ)在图1中,6,3,90,60.AC BC ABC ACB ==∠=︒∴∠=︒因为CD 为ACB ∠的平分线,所以30,BCD ACD CD ∠=∠=︒∴=…………………………2分4,30, 2.CE DCE DE =∠=︒∴=则222CD DE EC +=,所以90,.CDE DE DC ∠=︒⊥………………………………………………4分在图2中,又因为平面BCD ⊥平面ACD ,平面BCD 平面ACD CD =,DE ⊂平面ACD ,所以DE ⊥平面B C D . ……………………………………………………………………………………6分(Ⅱ)在图2中,作BH CD ⊥于H ,因为平面BCD ⊥平面ACD ,平面BCD 平面ACD CD =,BH ⊂平面BCD ,所以BH ⊥平面ACD ……………7分以点H 为坐标原点,HC 为y 轴,HB 为z 轴建立如图所示的空间直角坐标系H xyz -.则3(0,0,0),(0,(0,0,),(3,2H D B A33(0,,),(3,2DB AD ∴==-…………………8分 设平面ABD 的一个法向量为(,,)x y z =n ,则19题图1 19题图2 xyz0,0,DB AD ⎧⋅=⎪⎨⋅=⎪⎩n n所以3(,,))0,2(,,)(0.x y z x y z ⎧⋅=⎪⎨⎪⋅-=⎩即30,230.y z x +=⎪-=⎩取1x =,得1)=-n .……9分 又平面ADE 的一个法向量为(0,0,1)=m , ………10分设二面角B AD E --的大小为θ,则cos ||||θ⋅==m n m n 所以二面角B AD E--的余弦值为…………………………………………………………12分 (20) 解:(Ⅰ)由椭圆定义知,48a =,即2a =.……………………………………………………1分又设00(,)M x y ,则00003.4y y x a x a ⋅=-+- 把2200221x y a b+=代入得220222220(1)3,4x b b a x a a -=-=--所以23b =. ……………………………………4分 故椭圆方程为22143x y +=.……………………………………………………………………………5分 (Ⅱ)显然直线l 的斜率存在,故设其方程为(3)y k x =+,又设11223344(,),(,),(,),(,),A x y B x y C x y D x y 由22(3),143y k x x y =+⎧⎪⎨+=⎪⎩得 2222(34)2436120.k x k x k +++-= 222223(24)4(34)(3612)00.5k k k k ∆=-⨯+->⇒<< 由韦达定理得212224.34k x x k +=-+ …………………………………………………………………7分 因为2(1,0)F ,由22AF F Cλ=得, 111133331(1,)(1,),1,x y x y x y x y λλλ---=-∴=+=-. 代入椭圆方程得22111(1)()143x y λλ-+-+=,与2211143x y +=联立消去1y 得1532x λ-=. 同理可得2532x μ-=,所以12103()3.22x x λμ-++==- 所以2122243342k x x k +=-=-+,解之得213(0,)45k =∈,所以1.2k =± 所求直线方程为1(3)2y x =±+,即230x y ++=或230.x y -+= …………………………12分(21) 解:(Ⅰ)因为2(),ln x f x x =其定义域为(0,1)(1,).+∞………………………………………1分2(2ln 1)(),(ln )x x f x x -'=由()0f x '>得()f x 的单调递增区间为)+∞, ……………………3分由()0f x '<得()f x 的单调递减区间为 ……………………………………………5分(Ⅱ)由(Ⅰ)知,当1x >时,()f x 的最小值为2f e ==; ……………………7分 令22()(3),(1,)xg x x x e x =-+∈+∞,则222111()(3)(2)(3)222x x g x x x e x x e '=--+=--+, 由()0g x '>得函数()g x 在区间(1,2)上单调递增;由()0g x '<得函数()g x 在区间(2,)+∞上单调递减.所以22()(3)(2)2.xg x x x e g e =-+=≤ …………………………………………………………………11分所以当1x >时,222()()(3)ln x x f x g x x x e x =>=-+,整理即得2(3)ln 0.xx x e x +-> …………12分(22) 证明:(Ⅰ)连接CF ,OF ,因为AC 为直径,则CF AB ⊥,因为,O D 分别为,AC BC 的中点,所以OD ∥AB ,所以CF OD ⊥.因为OF OC =,则EOF EOC ∠=∠,且OD OD =,则OCD OFD ∆≅∆,所以90OCD OFD ∠=∠=,所以,,,O C D F 四点共圆. ………………………5分(Ⅱ)设圆的半径为r ,因为OF FD ⊥,所以FD 是圆的切线.所以2(2)DF DE DE r =⋅+()DE DO r =⋅+ 1122DE DO DE r DE AB DE AC =⋅+⋅=⋅+⋅ 故22DF DE AB DE AC =⋅+⋅………………………10分(23)解:(Ⅰ)由直线l 的参数方程为1cos ,sin ,x t y t αα=-+⎧⎨=⎩,消去参数t 得tan (1)y x α=+.曲线C 的极坐标方程为)4πρθ=+,展开得2cos 2sin ρθθ=+,化为直角坐标方程得22220x y x y +--=,即22(1)(1)2x y -+-=.……………………………………………………5分(Ⅱ)因为圆C 的直角坐标方程22(1)(1)2x y -+-=,圆心为(1,1),所以圆心到直线tan (1)y x α=+的距离d =, 化简得27tan 8tan 10αα-+=,解之得tan 1α=或1tan .7α= ………………………………10分 (24)解:(Ⅰ)14114()(11)11411a b a b a b+=++++++++1144(5)411b a a b ++=++++19(5.44+=≥ 等号成立条件为14411b a a b ++=++,而2a b +=,∴15,.33a b == ………………………………5分 (Ⅱ)由均值不等式得22222222222,2,2a b a a b a b b b a a b ab +++≥≥≥. 三式相加得2222222222222(1),a b a b a b ab ab ab a b ++++++≥= 所以2222(1).a b a b a b a b ++++≥……………………………………………………………10分。

河南省安阳市2015届高三毕业班调研考试数学(理)试题(扫描版)

河南省安阳市2015届高三毕业班调研考试数学(理)试题(扫描版)

2015届高三毕业班调研考试数学(理科)·答案一、选择题:本大题共12小题,每小题5分.二、填空题:本大题共4小题,每小题5分.三、解答题(18)解:(Ⅰ)从茎叶图可知,空气质量为一级的有4天,为二级的有6天,超标的有5天,记“从这15天的PM2.5日均监测数据中,随机抽出三天的监测数据,至少有一天空气质量达到一级”为事件A,则311315C58()1.C91P A=-=……………………………………(6分)(Ⅱ)由题意可知ξ的可能值为0,1,2,3,则031221510510510333151515C C C C C C244520 (0),(1),(2),C91C91C91 P P Pξξξ=========30510315C C 2(3).C 91P ξ=== 所以ξ的分布列为 ξ 0 1 2 3P2491 4591 2091 2912445202()0123191919191E ξ=⨯+⨯+⨯+⨯=(或5()3115E ξ=⨯=).…………………(12分)(Ⅱ)取DE 的中点M ,连接,FM BM ,AG ∥BF ,CD ∥FM ,且AG CD G =,BF FM F =,∴平面ACD ∥平面BFM ,∴平面ACD 与平面BCE 所成的角等于平面BFM 与平面BCE 所成的角,由(Ⅰ)知BF ⊥平面CDE ,∴BF FM ⊥,BF EF ⊥,∴EFM ∠为平面BFM 与平面BCE 所成二面角的平面角,……………………………(9分)易知,DE AD DE AG ⊥⊥,∴DE ⊥平面,ACD DE CD ∴⊥,∴CDE △为等腰直角三角形,∴2cos cos 2EFM ECD ∠=∠=, ∴平面ACD 与平面BCE 所成锐二面角的余弦值为22.……………………………(12分)(21)解:(Ⅰ)()1a x af x x x-'=-=,()f x 的定义域为()0,+∞,…………………(1分)当0a …时,()0f x '>,所以()f x 在()0,+∞上单调递增;当0a >时,令()0f x '=,得x a =,此时()f x ,()f x '随x 的变化情况如下表:所以()f x 的单调递减()0,a ,单调区间为递增区间为(),a +∞.综上可得:当0a …时, ()f x 在()0,+∞上单调递增,无减区间;当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(),a +∞.………………(4分)(Ⅱ)由题意得()min 0f x …,由(Ⅰ)知,当0a >时,()()min 1ln f x f a a a a ==--, 则()1ln 0f a a a a =--…,令()1ln g a a a a =--,可得()ln g a a '=-,因此()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max 10g a g ==,故1l n 0a a a --…成立的解只有1a =;……………………………………………………………………………(6分)当0a …时, ()f x 在()0,+∞上单调递增,0x →,()f x →-∞,故不合题意. 综上可知实数a 的取值集合为{}1.…………………………………………………………(8分)(Ⅲ)要证明原不等式,只要证()11ln 111ln 1n n n n ⎛⎫⎛⎫+<<++ ⎪ ⎪⎝⎭⎝⎭,即证111ln 11n n n⎛⎫<+< ⎪+⎝⎭,令11x n =+,只要证()11ln 112x x x x -<<-<…,…………(9分)由(Ⅰ)可知,当1a =时,()1ln f x x x =--在(]1,2上单调递增,因此()()10f x f >=,即ln 1x x <-.………………………………………………………………………………(10分)令()1ln 1x x x ϕ=+-(12)x <…,则()221110x x x x xϕ-'=-=>,所以()x ϕ在(]1,2上单x()0,aa(),a +∞()f x ' -+()f x↘极小值↗调递增,因此()()10x ϕϕ>=,即1ln 10x x+->,综上可知原命题成立.……………(12分)(23)解:(Ⅰ)因为圆C 的极坐标方程为2cos ρθ=,则22cos ρρθ=,即222x y x +=,所以圆C 的直角坐标方程为()2211x y -+=.……………………………(2分)因为tan 2α=,α是锐角,所以211cos 51tan αα==+,2sin 5α=,又直线l 的极坐标方程()5cos 2ρθα+=, 所以5cos cos 5sin sin 2αρθαρθ⋅-⋅=,即直线l 的直角坐标方程220x y --=.………………………………………………(5分)(Ⅱ)联立2220,220,x x y x y ⎧-+=⎨--=⎩得2,0x y =⎧⎨=⎩或2,54,5x y ⎧=⎪⎪⎨⎪=-⎪⎩取()2,0A ,24(,)55B -,设点(,)M x y 是圆D 上的任一点,因为AB 为圆D 的直径,则0AM BM ⋅=,而(2,)AM x y =-,24(,)55BM x y =-+,所以()242()()055x x y y --++=,即225512440x y x y +-++=,………………………(8分)化为标准方程为22624()()555x y -++=,所以圆D 的参数方程为625cos ,55225sin .55x y ϕϕ⎧=+⎪⎪⎨⎪=-+⎪⎩(ϕ为参数)………………………………(10分)。

河南省八市重点高中2015届高三教学质量监测考试+数学(理)试题(解析版)

河南省八市重点高中2015届高三教学质量监测考试+数学(理)试题(解析版)

2015年河南省八市重点高中高考数学模拟试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x||x+1|≤2},B={x|y=lg(x2﹣x﹣2)},则A∩∁R B()A.[3,﹣1)B.[3,﹣1] C.[﹣1,1] D.(﹣1,1]【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:求出集合A,B的等价条件,即可得到结论.【解析】:解:A={x||x+1|≤2}={x|﹣3≤x≤1},B={x|y=lg(x2﹣x﹣2)}={x|x2﹣x﹣2>0}={x|x >2或x<﹣1},则∁R B={x|﹣1≤x≤2},则A∩∁R B={x|﹣1≤x≤1},故选:C【点评】:本题主要考查集合的基本运算,要求熟练掌握集合的交并补运算,比较基础.2.(5分)如图所示的复平面上的点A,B分别对应复数z1,z2,则=()A.﹣2i B.2i C.2 D.﹣2【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:由图求出z1,z2,代入后利用复数代数形式的乘除运算化简求值.【解析】:解:由图可知,z1=﹣1+i,z2=2+2i,则.故选:A.【点评】:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.(5分)设函数f(x),g(x)分别为定义在R上的奇函数和偶函数且满足f(x)+g(x)=x3﹣x2+1,则f(1)=()A.﹣l B.l C.﹣2 D.2【考点】:函数奇偶性的性质.【专题】:函数的性质及应用.【分析】:根据题意,计算出f(1)+g(1)、﹣f(1)+g(1)的值即可.【解析】:解:由题可知:f(1)+g(1)=1﹣1+1=1,f(﹣1)+g(﹣1)=﹣1﹣1+1=﹣1,由∵f(x),g(x)分别为定义在R上的奇函数和偶函数,∴﹣f(1)+g(1)=﹣1,所以f(1)=1,故选:B.【点评】:本题考查函数的奇偶性,属于基础题.4.(5分)已知双曲线=1(a>0,b>0)的离心率为2,则双曲线的渐近线方程为()A.B.C.D.【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:根据题意,得双曲线的渐近线方程为y=±x,再由双曲线离心率为2,得到c=2a,由定义知b==a,代入即得此双曲线的渐近线方程.【解析】:解:∵双曲线C方程为:=1(a>0,b>0)∴双曲线的渐近线方程为y=±x又∵双曲线离心率为2,∴c=2a,可得b== a因此,双曲线的渐近线方程为y=±x故选:D.【点评】:本题给出双曲线的离心率,求双曲线的渐近线方程,着重考查了双曲线的标准方程与基本概念,属于基础题.5.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种【考点】:计数原理的应用.【专题】:计算题;概率与统计.【分析】:根据题意,分2步进行【分析】:①在4个人中任取2人,作为一个整体,②将这个整体与其他3人进行全排列,对应3个活动小组,分别计算这2步的情况数目,由分步计数原理计算可得答案.【解析】:解:根据题意,分析可得,4个人中有2个人分在同一个组,在4个人中任取2人,作为一个整体,有C42=6种情况,将这个整体与其他3人进行全排列,对应3个活动小组,有A33=6种情况,则共有6×6=36种不同的报名方法,故选:C.【点评】:本题考查分步计数原理的运用,关键是认真分析题意,确定计算的步骤.6.(5分)已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A.B.C.D.【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:由该棱锥的三视图判断出该棱锥的几何特征,以及相关几何量的数据,再求出该棱锥外接球的半径和体积.【解析】:解:由该棱锥的三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,做出其直观图所示:则PA=2,AC=2,PC=,PA⊥面ABCD,所以PC即为该棱锥的外接球的直径,则R=,即该棱锥外接球的体积V==,故选:C.【点评】:本题考查了由三视图求几何体的外接球的体积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.7.(5分)执行如图的程序框图,当k的值为2015时,则输出的S值为()A.B.C.D.【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,可得程序框图的功能是计算并输出S=0+++…+的值,用裂项法即可求值.【解析】:解:模拟执行程序框图,可得第一次循环,S=0+,n=1<2015;第二次循环,S=0++,n=2<2015;第二次循环,S=0++,n=3<2015;…当n=2015时,S=0+++…+=1﹣…+﹣=1﹣=,此时满足2015≥2015,退出循环,输出S的值为:.故选:C.【点评】:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型⇒③解模.8.(5分)已知,则=()A.B.C.D.【考点】:两角和与差的正弦函数;三角函数中的恒等变换应用.【专题】:三角函数的求值;三角函数的图像与性质.【分析】:首先对函数的关系式进行灵活的恒等变换,进一步利用诱导公式和2倍角公式进行变形,进一步求出结果.【解析】:解:===又由于===由==1﹣故原式=故选:B【点评】:本题考查的知识要点:三角函数关系式的恒等变换,诱导公式的应用,及相关的运算问题,主要考查学生对关系式的灵活变换能力.9.(5分)已知x,y满足区域D:,给出下面4个命题:p1:∀x,y∈D,2x﹣y≥2p2:∂x,y∈D,2x﹣y≤2p3:∂x,y∈D,p4:∀x,y∈D,,其中真命题是()A.p1,p3 B.p2,p3 C.p1,p4 D.p2,p4【考点】:简单线性规划.【专题】:计算题;作图题;不等式的解法及应用;简易逻辑.【分析】:由题意作出其平面区域,令z=2x﹣y,由几何意义可知﹣6≤z≤3;再由表示区域内的点(x,y)与定点(﹣2,﹣1)的连线的斜率,从而确定答案即可.【解析】:解:由题意作出其平面区域,如图所示的阴影部分△ABC,令z=2x﹣y,则由图象可知,直线2x﹣y﹣z=0经过点C时,z取得最大值,经过点A时,z取得最小值;由于C(2,1),A(﹣1,4);故﹣6≤z≤3;故p2:∂x,y∈D,2x﹣y≤2正确;而表示区域内的点(x,y)与定点(﹣2,﹣1)的连线的斜率,故结合图象可知,≤≤5,故p4:∀x,y∈D,正确;故选D.【点评】:本题考查了全称命题与特称命题的真假性的判断及简单线性规划,作图要细致认真,属于中档题.10.(5分)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点坐标为(3,y0)时,△AEF为正三角形,则此时△OAB的面积为()A.B.C.D.【考点】:抛物线的简单性质.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:过F作AE的垂线,垂足为H,则H为AE的中点,利用A点坐标为(3,y0),可求p,可得抛物线的方程,求出直线AF的方程,与抛物线方程联立求出A,B的坐标,即可求出△OAB的面积.【解析】:解:如图所示,过F作AE的垂线,垂足为H,则H为AE的中点,因为A点坐标为(3,y0),所以AE=3+,EH=p,所以2p=3+,所以p=2,所以y2=4x,此时A(3,2),k AF=,所以直线AF的方程为(x﹣1),代入抛物线方程可得3(x﹣1)2=4x,解得x=3或,所以y=2或﹣,所以△AOB的面积为=,故选:A.【点评】:本题考查抛物线的定义、标准方程,以及简单性质的应用,求出抛物线方程、直线AF的方程是解题的关键.11.(5分)已知函数f(x)=﹣5,若对任意的,都有f(x1)﹣g(x2)≥2成立,则a的取值范围是()A.(0,+∞)B.[1,+∞)C.(﹣∞,0)D.(﹣∞,﹣1]【考点】:利用导数研究函数的单调性;抽象函数及其应用.【专题】:函数的性质及应用;导数的综合应用.【分析】:根据不等式恒成立,利用参数分类法进行转化为a≥x﹣x2lnx在≤x≤2上恒成立,构造函数h(x)=x﹣x2lnx,求函数的导数,利用函数单调性和导数之间的关系求出函数的最值即可.【解析】:解:函数g(x)的导数g′(x)=3x2﹣2x=x(3x﹣2),∴函数g(x)在[,]上递减,则[,2]上递增,g([)=,g(2)=8﹣4﹣5=﹣1,若对任意的,都有f(x1)﹣g(x2)≥2成立,即当≤x≤2时,f(x)≥1恒成立,即恒成立,即a≥x﹣x2lnx在≤x≤2上恒成立,令h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x,h′′(x)=﹣3﹣2lnx,当在≤x≤2时,h′′(x)=﹣3﹣2lnx<0,即h′(x)=1﹣2xlnx﹣x在≤x≤2上单调递减,由于h′(1)=0,∴当≤x≤1时,h′(x)>0,当1≤x≤2时,h′(x)<0,∴h(x)≤h(1)=1,∴a≥1.故选:B.【点评】:本题主要考查不等式恒成立问题,构造函数利用参数分离法结合函数单调性和导数之间的关系转化为求函数的最值是解决本题的关键.12.(5分)已知定义域为R的连续函数f(x),若f(x)满足对于∀x∈R,∂m∈R(m≠0),都有f(m+x)=﹣mf(x)成立,则称函数f(x)为“反m倍函数”,给出下列“反m倍函数”的结论:①若f(x)=1是一个“反m倍函数”,则m=﹣1;②f(x)=sinπx是一个“反1倍函数”;③f(x)=x2是一个“反m倍函数”;④若f(x)是一个“反2倍函数”,则f(x)至少有一个零点,其中正确结论的个数是()A.l B.2 C. 3 D. 4【考点】:抽象函数及其应用.【专题】:函数的性质及应用.【分析】:根据“反m倍函数”的定义分别进行判断即可.【解析】:解:根据“反m倍函数”的定义,∵∀x∈R,∂m∈R(m≠0),都有f(m+x)=﹣mf(x)成立,∴f(m+x)+mf(x)=0成立,①若f(x)=1,则f(x+m)+mf(x)=0,∴m+1=0,即m=﹣1,故①正确,②若f(x)=sinπx,则f(1+x)+f(x)=sinπ(x+1)+sinπx=﹣sinπx+sinπx=0,故②正确,③若f(x)=x2,则(x+m)2+mx2=0,即(m+1)x2+2mx+m2=0,则,此时方程无解,故不存在m,故③错误.④若f(x+2)+2f(x)=0,取x=0,若f(2),f(0)有一个为0即正确,若都不为0,则f (2),f(0)互为相反数,则f(2)f(0)<0,∴在区间(0,2)内一定有零点,故④正确,故正确的是①②④,故选:C.【点评】:本题主要考查命题的真假判断,根据抽象函数的表达式结合“反m倍函数”的定义是解决本题的关键.二、填空题:(本太题共4小题,每小题5分,共20分)13.(5分)已知的展开式中含x2项的系数为12,则展开式的常数项为160.【考点】:二项式系数的性质.【专题】:二项式定理.【分析】:先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中含x2项的系数,再根据x2项的系数为12,求得a的值,即可求得展开式中的常数项的值.【解析】:解:由于的展开式的通项公式为T r+1=•a r•x3﹣r,令3﹣r=2,可得r=1,故展开式中含x2项的系数为6a=12,可得a=2.再令3﹣r=0,可得r=3,故展开式的常数项为•23=160,故答案为:160.【点评】:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.14.(5分)已知不等式,照此规律,总结出第n(n∈N*)个不等式为1+<.【考点】:归纳推理.【专题】:推理和证明.【分析】:从已知的三个不等式分析,从左边各加数的分母以及右边分子与分母的关系入手得到规律.【解析】:解:由已知三个不等式可以写成1+,1+,1+,照此规律得到第n个不等式为1+<;故答案为:1+<(n∈N+).【点评】:本题考查了归纳推理;关键是由已知的三个不等式发现与序号的关系,总结规律.15.(5分)如图,已知Rt△ABC中,点O为斜边BC的中点,且AB=8,AC=6,点E为边AC上一点,且,若,则λ=.【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:根据已知条件及图形得出:,,并且,所以由即可得到=﹣20,进行数量积的运算即可求得λ.【解析】:解:,;∵∠BAC=90°,∴;又;∴;∴.故答案为:.【点评】:考查向量加法的平行四边形法则,向量加法的几何意义,以及数量积的运算,两非零向量垂直的充要条件.16.(5分)巳知△ABC的内角A、B、C对应的边分别为a,b,c,且关于x的方程2a2+2x2+b2=2bx+2ax只有一个零点,,S△ABC=sinA•sinB,则边c=1.【考点】:余弦定理;正弦定理.【分析】:由关于x的方程的判别式等于零求得b=a;根据,求得cosC=﹣,C=;由正弦定理求得a=csinA,b=csinB,代入S△ABC=sinA•sinB,求得边c的值.【解析】:解:△ABC中,关于x的方程2a2+2x2+b2=2bx+2ax,即2x2﹣2bx﹣2ax+2a2+b2=0,根据此方程有唯一解,可得△=﹣8(2a2+b2)=0,∴b=a.又,∴3acosC+c•cosA=0,即3sinAcosC+sinCcosA=0,故2sinAcosC+sin(A+C)=0,即2acosC+b=0,即2acosC+a=0,∴cosC=﹣,C=.由余弦定理可得c2=a2+b2﹣2ab•cosC=5a2,∴c=a.∵==,∴a=csinA,b=csinB,∴S△ABC=sinA•sinB=•sinC=csinA•csinB,∴c2=1,∴c=1.【点评】:本题主要考查二次函数的性质,正弦定理和余弦定理的应用,属于中档题.三、解答题:(共4个小题,每1小题12分,共48分)17.(12分)已知数列{a n}的前n项和为S n,对于任意的正整数n,直线x+y=2n总是把圆平均分为两部分,各项均为正数的等比数列{b n}中,b6=b3b4,且b3和b5的等差中项是2a3.(1)求数列{a n},{b n}的通项公式;(2)若c n=a n b n,求数列{c n}的前n项和T n.【考点】:数列的求和.【专题】:点列、递归数列与数学归纳法.【分析】:(1)由直线与圆的位置关系可得S n=n2,所以a1=S1=1,所以a n=2n﹣1;由b6=b3b4,得b1=1,又b3和b5的等差中项是2a3,得q=2,从而;(2)根据T n=1+3×2+5×22+…+(2n﹣1)×2n﹣1,与2T n=2+3×22+5×23+…+(2n﹣1)×2n,可得﹣T n,即得T n=3+(2n﹣3)2n.【解析】:解:(1)由于x+y=2n总是将圆平均分为两部分,所以,即S n=n2,所以a1=S1=1,当n≥2时=2n﹣1,经检验n=1时也成立,所以a n=2n﹣1;等比数列{b n}中由于b6=b3b4,即,故b1=1,设公比q>0,由b3和b5的等差中项是2a3,及2a3=2×(2×3﹣1)=10,可知b3+b5=20,所以q2+q4=20,解得q=2,从而;(2)若c n=a n b n,则T n=a1b1+a2b2+…+a n b n,所以T n=1+3×2+5×22+…+(2n﹣1)×2n﹣1,2T n=2+3×22+5×23+…+(2n﹣1)×2n,两式相减,得﹣(2n﹣1)2n==﹣3+2×2n﹣(2n﹣1)2n=﹣3+(3﹣2n)2n,所以T n=3+(2n﹣3)2n.【点评】:本题考查等比数列的通项公式、等差中项的应用、错位相减法求和,考查转化与化归思想、运算求解能力和数据处理能力,属于中档题.18.(12分)某市在2 015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N (115,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如右图所示的频率分布直方图(1)试估计该校数学的平均成绩(同一维中的数据用该区间的中点值作代表);(2)这50名学生中成绩在120分(含120分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望附:若,则P(u﹣ς<X<u+ς)=0.6826,P(u﹣2ς<X<u+2ς)=0.9544,P(u﹣3ς<X<u+3ς)=0.9974.【考点】:频率分布直方图;离散型随机变量的期望与方差.【专题】:应用题;概率与统计.【分析】:(1)根据频率和为1,求出成绩在[120,130)的频率,再计算这组数据的平均数;(2)根据正态分布的特征,计算50人中成绩在130分以上以及[120,140]的学生数,得出X的可能取值,计算对应的概率,列出X的分布列,计算期望值.【解析】:解:(1)根据频率分布直方图,得;成绩在[120,130)的频率为1﹣(0.01×10+0.024×10+0.03×10+0.016×10+0.008×10)=1﹣0.88=0.12;所以估计该校全体学生的数学平均成绩为85×0.1+95×0.24+105×0.3+115×0.16+125×0.12+135×0.08=8.5+22.8+31.5+18.4+15+10.8=107,所以该校的数学平均成绩为107;(2)因为=0.0013,根据正态分布:P(115﹣3×5<X<115+3×5)=0.9974,所以P(X≥130)=,又0.0013×10000=13,所以前13名的成绩全部在130分以上;根据频率分布直方图得,这50人中成绩在130分以上(包括130分)的有0.08×50=4人,而在[120,140]的学生共有0.12×50+0.08×50=10,所以X的可能取值为0、1、2、3,所以P(X=0)===,P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为数学期望值为EX=0×+1×+2×+3×=1.2.【点评】:本题考查了频率分布直方图的应用问题,也考查了正态分布的应用问题,考查了离散型随机变量的分布列与期望的计算问题,是综合性题目.19.(12分)如图所示的多面体ABC﹣EFGH中,AB∥EG,AC∥EH,且△ABC与△EGH相似,AE⊥平面EFGH,EF=FG=,且AC=EH,AE=EG(1)求证,BF⊥EG;(2)求二面角F﹣BG﹣H的余弦值.【考点】:二面角的平面角及求法;直线与平面垂直的性质.【专题】:空间位置关系与距离;空间角.【分析】:(1)取EG的中点O,连结OF、OB,通过线面垂直的判定定理及性质定理即得结论;(2)以O为原点,以OF、OG、OB所在直线的方向分别为x、y、z轴的正方向建立空间直角坐标系,则所求值即为平面GBF的一个法向量与平面GBH的一个法向量的夹角的余弦值的绝对值的相反数,计算即可.【解析】:(1)证明:∵AB∥EG,且△ABC∽△EGH,AC=EH,∴AB=EG,取EG的中点O,连结OF、OB,∴OB∥AE,又∵AE⊥平面EFGH,∴OB⊥平面EFGH,又∵EG⊂平面EFGH,∴OB⊥EG,又∵EF=FG=,∴OF⊥EG,∵OF∩OB=O,∴EG⊥平面OBF,∵BF⊂平面OBF,∴BF⊥EG;(2)解:由(1)知OF、OG、OB两两垂直,如图,以O为原点,以OF、OG、OB所在直线的方向分别为x、y、z轴的正方向建立空间直角坐标系,∵GH=1,EH=,∠EGH=90°,∴EG==2,∵EF=FG=,∴OF=1,∵AE=EG,∴OB=2,∴F(1,0,0),G(0,1,0),B(0,0,2),H(﹣1,1,0),∴=(1,﹣1,0),=(0,﹣1,2),=(﹣1,0,0),设平面GBF的一个法向量为=(x1,y1,z1),由,得,令z1=1,得=(2,2,1),设平面GBH的一个法向量为=(x2,y2,z2),同理可得=(0,2,1),∴===,由图可知,二面角F﹣BG﹣H为钝角,∴其余弦值为.【点评】:本题考查空间线面位置关系的判断及求二面角,考查空间想象能力、运算求解能力及推理论证能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆=1(a>b>0)的左右焦点分割为F1,F2,左右端点分别为曲A1,A2,抛物线y2=4x与椭圆相交于A,B两点且其焦点与F2重合,AF2=(Ⅰ)求椭圆的方程;(Ⅱ)过点作直线l与椭圆相交于P,Q两点(不与A1,A2重合),求与夹角的大小.【考点】:椭圆的简单性质.【专题】:计算题;压轴题;向量与圆锥曲线.【分析】:(Ⅰ)根据题意,设A(x0,y0),(x0>0,y0>0),求出抛物线y2=4x的焦点坐标,可得c2=1,进而分析可得A的坐标,代入椭圆的方程可得有+=1,解可得a2=4,进而可得b2=3,即可得椭圆的方程;(Ⅱ)根据题意,分两种情况讨论:①当直线l的斜率不存在时,l的方程为x=,②当直线l的斜率存在且不为0时,设其斜率为k,则直线的方程为y=k(x﹣);每种情况下求出与的值,再求其乘积均可得•=﹣1,由向量数量积的性质分析可得答案.【解析】:解:(Ⅰ)根据题意,设A(x0,y0),(x0>0,y0>0),抛物线y2=4x与椭圆相交于A,B两点且其焦点与F2重合,而抛物线y2=4x的焦点为(1,0),则C2=1,由题意可得AF2=x0+=x0+1=,故x0=;所以y02=4×=,则y0=,则A(,),有+=1,解可得a2=4,又由c2=1,则b2=3,故椭圆的方程为+=1;(Ⅱ)①当直线l的斜率不存在时,l的方程为x=,由于,可得=1﹣=,所以y=±,所以P(,)Q(,﹣),因为A 2(2,0),所以=﹣1,=1,所以•=﹣1,所以所以A2P与A2Q垂直,②当直线l的斜率存在且不为0时,设其斜率为k,则直线的方程为y=k(x﹣);联立可得,⇒49(3+4k2)x2﹣112k2x+16k2﹣12×49=0,设P(x1,y1),Q(x2,y2),A2(2,0),则x1+x2=,x1•x2=,=,═•==﹣1,所以A2P与A2Q垂直,综合可得所以与夹角的大小为90°.【点评】:本题考查直线与椭圆方程的综合运用,涉及抛物线的简单性质,解题注意圆锥曲线的方程的标准形式,本题求出抛物线的焦点是解题的突破点之一.21.(12分)已知函数f(x)=alnx﹣x+1,g(x)=﹣x2+(a+1)x+1.(1)若对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)若函数h(x)在其定义城内存在实数x0,使得h(x0+k)=h(x0)+h(k)(k≠0且为常数)成立,则称函数h(x)为保k阶函数,已知H(x)=f(x)﹣(a﹣1)x+a﹣1为保a阶函数,求实数a的取值范围.【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】:导数的综合应用.【分析】:(1)把对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,转化为a(x﹣lnx)≤x2﹣2x恒成立,再由x﹣lnx>0得恒成立.构造函数F(x)=,利用导数求其最小值得答案;(2)由H(x)=f(x)﹣(a﹣1)x+a﹣1=alnx﹣x+1﹣ax+x+a﹣1=alnx﹣ax+a(x>0),根据保a阶函数的概念列式,整理得到ln(x0+a)﹣(x0+a)+1=lnx0﹣x0+1+lna﹣a+1,即ln(x0+a)=lnx0+lna+1,转化为,由x0>0可得实数a的取值范围是.【解析】:解:(1)∵对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,即alnx﹣x+1≥﹣x2+(a+1)x+1恒成立,a(x﹣lnx)≤x2﹣2x恒成立,∵x∈[1,e],∴lnx≤lne=1≤x,∵上式等号不能同时成立,∴lnx<x,即x﹣lnx>0,∴恒成立.令F(x)=,∴a≤F(x)min(x∈[1,e]),由于,由于1≤x≤e,∴x﹣1>0,x+2﹣2lnx=x+2(1﹣lnx)>0,∴F′(x)>0.∴函数F(x)=在区间[1,e]上单调递增,∴F(x)≥F(1)=.∴a≤﹣1;(2)∵H(x)=f(x)﹣(a﹣1)x+a﹣1=alnx﹣x+1﹣ax+x+a﹣1=alnx﹣ax+a(x>0),根据保a阶函数的概念,∴存在x0>0,使得H(x0+a)=H(x0)+H(a),即a[ln(x0+a)﹣(x0+a)+1]=a(lnx0﹣x0+1)+a(lna﹣a+1)=a(lnx0﹣x0+1+lna﹣a+1),∴ln(x0+a)﹣(x0+a)+1=lnx0﹣x0+1+lna﹣a+1,即ln(x0+a)=lnx0+lna+1,即,∴.∴,∵x0>0,∴a.∴实数a的取值范围是.【点评】:本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了数学转化与化归、分离参数等数学思想方法,着重考查恒成立问题的解法,难度较大.四、选做题:【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)已知BC为圆O的直径,点A为圆周上一点,AD⊥BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E.求证:(1)PA•PD=PE•PC;(2)AD=AE.【考点】:与圆有关的比例线段.【专题】:选作题;推理和证明.【分析】:(1)证明△APD∽△BPE,可得AP•PE=PD•PB,因为PA,PB分别为圆O的切线与割线,所以PA2=PB•PC,两式相除,即可证明PA•PD=PE•PC;(2)连接AC,DE,证明A,D,B,E四点共圆且AB为直径,即可得出AD=AE.【解析】:证明:(1)因为AD⊥BP,BE⊥AP,所以△APD∽△BPE,所以,所以AP•PE=PD•PB,因为PA,PB分别为圆O的切线与割线,所以PA2=PB•PC,所以=,所以PA•PD=PE•PC;(2)连接AC,DE,因为BC为圆O的直径,所以∠BAC=90°,所以AB⊥AC.因为=,所以AC∥DE,所以AB⊥DE,因为AD⊥BP,BE⊥AP,所以A,D,B,E四点共圆且AB为直径,因为AB⊥DE,所以AD=AE.【点评】:本题考查三角形相似的判定与性质,考查四点共圆,考查学生分析解决问题的能力,属于中档题.五、选做题:【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.已知曲线C的极坐标方程为:ρ2﹣2ρcosθ+4ρsinθ+1=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l经过点P(﹣1,1)且倾斜角为(Ⅰ)写出直线l的参数方程和曲线C的普通方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:(I)由直线l经过点P(﹣1,1)且倾斜角为,可得直线l的参数方程为,(t为参数);把dr 曲线C的极坐标方程即可得到普通方程.(II)把直线l的参数方程代入曲线C的普通方程可得:=0,利用|PA|•|PB|=|t1t2|即可得出.【解析】:解:(I)∵直线l经过点P(﹣1,1)且倾斜角为,∴直线l的参数方程为,(t为参数);曲线C的极坐标方程为:ρ2﹣2ρcosθ+4ρsinθ+1=0,化为x2+y2﹣2x+4y+1=0,即(x﹣1)2+(y+2)2=4.(II)把直线l的参数方程代入曲线C的普通方程可得:=0,∴t1t2=9.∴|PA|•|PB|=|t1t2|=9.【点评】:本题考查了直线的参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.六、选做题:【选修4-5:不等式选讲】(共1小题,满分0分)24.已知函数f(x)=|x﹣2|+|x+1|(Ⅰ)解关于x的不等式f(x)≥4﹣x;(Ⅱ)a,b∈{y|y=f(x)},试比较2(a+b)与ab+4的大小.【考点】:绝对值不等式的解法.【专题】:函数的性质及应用;不等式的解法及应用.【分析】:(Ⅰ)对x讨论,当x<﹣1时,当﹣1≤x≤2时,当x>2时,去掉绝对值,解不等式,即可得到解集;(Ⅱ)由于f(x)≥3,则a≥3,b≥3,作差比较,注意分解因式,即可得到结论.【解析】:解:(Ⅰ)当x<﹣1时,f(x)=1﹣2x,f(x)≥4﹣x即为1﹣2x≥4﹣x,解得x≤﹣3,即为x≤﹣3;当﹣1≤x≤2时,f(x)=3,f(x)≥4﹣x即为3≥4﹣x,解得x≥1,即为1≤x≤2;当x>2时,f(x)=2x﹣1,f(x)≥4﹣x即为2x﹣1≥4﹣x,解得x≥,即为x>2.综上可得,x≥1或x≤﹣3.则解集为(﹣∞,﹣3]∪[1,+∞);(Ⅱ)由于f(x)≥3,则a≥3,b≥3,2(a+b)﹣(ab+4)=2a﹣ab+2b﹣4=(a﹣2)(2﹣b),由于a≥3,b≥3,则a﹣2>0,2﹣b<0,即有(a﹣2)(2﹣b)<0,则2(a+b)<ab+4.【点评】:本题考查绝对值不等式的解法,主要考查分类讨论的思想方法和作差法比较两数的大小,属于中档题.。

河南省实验中学2015届高三上学期第一次月考数学试卷(理科)

河南省实验中学2015届高三上学期第一次月考数学试卷(理科)

河南省实验中学2015届高三上学期第一次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩∁R B=()A.(1,2]B.[2,4)C.(2,4)D.(1,4)2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|3.(5分)如图中阴影部分的面积是()A.B.C.D.4.(5分)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1D.45.(5分)下列各组函数中,表示同一函数的是()A.f(x)=x和g(x)=B.f(x)=|x|和g(x)=C.f(x)=x|x|和g(x)= D.f(x)=和g(x)=x+1,(x≠1)6.(5分)不等式成立的一个充分不必要条件是()A.﹣1<x<0或x>1 B.x<﹣1或0<x<1 C.x>﹣1 D.x>17.(5分)奇函数f(x)满足对任意x∈R都有f(4+x)+f(﹣x)=0,且f(1)=9则f+f+f的值为()A.6B.7C.8D.08.(5分)已知函数f(x)是定义在区间[﹣2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1﹣m)<f(m)成立,则实数m的取值范围是()A.B.[1,2]C.[0,)D.()9.(5分)已知函数是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<010.(5分)函数的图象大致是()A.B.C.D.11.(5分)若定义在R上的函数f(x)的导函数为f'(x),且满足f'(x)>f(x),则f与fe2的大小关系为()A.f<fe2B.f=fe2C.f>fe2D.不能确定12.(5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=的定义域为.14.(5分)对任意两个实数x1,x2,定义若f(x)=x2﹣2,g(x)=﹣x,则max(f(x),g(x))的最小值为.15.(5分)设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(2﹣x)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若关于x的方程f(x)﹣log a(x+2)=0(a>1)在区间(﹣2,6)内恰有三个不同实根,则实数a的取值范围是.16.(5分)定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,4]时,f(x)=x2﹣2x,则函数f(x)在[0,2013]上的零点个数是.三、解答题(本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.)17.(12分)已知集合,集合B={x|y=ln(4﹣3x﹣x2)},集合C={x|m+2<x<2m﹣3}.(Ⅰ)设全集U=R,求(∁U A)∩B;(Ⅱ)若C∩(∁R A)=∅,求实数m的取值范围.18.(12分)已知f(x)是定义在[﹣1,1]上的奇函数,且f (1)=1,若m,n∈[﹣1,1],m+n≠0时有>0.(1)判断f (x)在[﹣1,1]上的单调性,并证明你的结论;(2)解不等式:f(x+)<f();(3)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.19.(12分)对于函数f(x),若存在x0∈R,使方程f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).(1)当a=1,b=﹣2时,求函数f(x)的不动点;(2)当a=1,b=﹣2时,求f(x)在[t,t+1]上的最小值g(t).(3)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.20.(12分)已知函数f(x)=alnx﹣ax﹣3(a∈R).(1)若a=﹣1,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+](f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;(3)求证:×××…×<(n≥2,n∈N*).21.(12分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.【选修4-1几何证明选讲】22.(10分)已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:(1)∠BAC=∠CAG;(2)AC2=AE•AF.【选修4--4;坐标系与参数方程】23.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.【选修4--5;不等式选讲】24.已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.河南省实验中学2015届高三上学期第一次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩∁R B=()A.(1,2]B.[2,4)C.(2,4)D.(1,4)考点:交、并、补集的混合运算.专题:计算题.分析:求出集合A中其他不等式的解集,确定出A,求出B的补集,找出A与B补集的交集即可.解答:解:集合A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴∁R B=(2,+∞),则A∩∁R B=(2,4).故选C点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.3.(5分)如图中阴影部分的面积是()A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.4.(5分)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x﹣2x+a(a∈R),则f(﹣2)=()A.﹣1 B.﹣4 C.1D.4考点:函数的值.专题:函数的性质及应用.分析:根据奇函数的性质f(0)=0,求得a的值;再由f(﹣2)=﹣f(2)即可求得答案.解答:解:∵f(x)为定义在R上的奇函数,∴f(0)=0,解得a=﹣1.∴当x≥0时,f(x)=3x﹣2x﹣1.∴f(﹣2)=﹣f(2)=﹣(32﹣2×2﹣1)=﹣4.故选B.点评:本题考查了奇函数的性质,充分理解奇函数的定义及利用f(0)=0是解决此问题的关键.5.(5分)下列各组函数中,表示同一函数的是()A.f(x)=x和g(x)=B.f(x)=|x|和g(x)=C.f(x)=x|x|和g(x)= D.f(x)=和g(x)=x+1,(x≠1)考点:判断两个函数是否为同一函数.专题:计算题.分析:若两个函数是同一个函数,则函数的定义域以及函数的对以关系都得相同,所以只要逐一判断每个选项中定义域和对应关系是否都相同即可.解答:解;对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数.对于B选项,由于函数y==x,即两个函数的解析式不同,∴不是同一函数;对于C选项,f(x)的定义域为R,g(x)的定义域为{x|x≠0},∴不是同一函数对于D选项,f(x)的定义域与g(x)的定义域均为(﹣∞,﹣1)∪(1,+∞),且f(x)==x+1∴是同一函数故选D.点评:本题主要考查了函数三要素的判断,只有三要素都相同,两函数才为同一函数,属基础题.6.(5分)不等式成立的一个充分不必要条件是()A.﹣1<x<0或x>1 B.x<﹣1或0<x<1 C.x>﹣1 D.x>1考点:必要条件、充分条件与充要条件的判断.分析:由选项D:x>1 能推出x﹣>0,但由x﹣>0不能推出x>1,从而得出结论.解答:解:由x>1 能推出x﹣>0;但由x﹣>0不能推出x>1(如x=﹣时),故不等式成立的一个充分不必要条件是x>1,故选D.点评:本题主要考查充分条件、必要条件、充要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.7.(5分)奇函数f(x)满足对任意x∈R都有f(4+x)+f(﹣x)=0,且f(1)=9则f+f+f的值为()A.6B.7C.8D.0考点:函数的周期性;函数奇偶性的性质.专题:函数的性质及应用.分析:由f(4+x)+f(﹣x)=0,得f(4+x)=﹣f(﹣x)=f(x),得函数的周期,然后利用周期性分别进行求解即可.解答:解:因为f(x)为奇函数,所以由f(4+x)+f(﹣x)=0,得f(4+x)=﹣f(﹣x)=f(x),即函数的周期是4.所以f=f(503×4﹣1)=f(﹣1)=﹣f(1),f=f(503×4)=f(0),f=f(503×4+1)=f(1),所以f+f+f=﹣f(1)+f(0)+f(1)=f(0),因为f(x)为奇函数,所以f(0)=0,所以f+f+f=f(0)=0.故选D.点评:本题主要考查函数周期性的判断以及函数奇偶性的应用,利用条件求出函数的周期是解决本题的关键.8.(5分)已知函数f(x)是定义在区间[﹣2,2]上的偶函数,当x∈[0,2]时,f(x)是减函数,如果不等式f(1﹣m)<f(m)成立,则实数m的取值范围是()A.B.[1,2]C.[0,)D.()考点:奇偶性与单调性的综合.专题:计算题;综合题.分析:由题设条件知,偶函数f (x)在[0,2]上是减函数,在[﹣2,0]是增函数,由此可以得出函数在[﹣2,2]上具有这样的一个特征﹣﹣自变量的绝对值越小,其函数值就越小,由此抽象不等式f(1﹣m)<f(m)可以转化为,解此不等式组即为所求.解答:解:偶函数f (x)在[0,2]上是减函数,∴其在(﹣2,0)上是增函数,由此可以得出,自变量的绝对值越小,函数值越大∴不等式f(1﹣m)<f(m)可以变为解得m∈[﹣1,)故选A.点评:本题考查偶函数与单调性,二者结合研究出函图象的变化趋势,用此结论转化不等式,这是解本题的最合适的办法,中档题.9.(5分)已知函数是R上的增函数,则a的取值范围是()A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0考点:函数单调性的性质;二次函数的性质.专题:计算题.分析:由函数f(x)上R上的增函数可得函数,设g(x)=﹣x2﹣ax﹣5,h(x)=,则可知函数g(x)在x≤1时单调递增,函数h(x)在(1,+∞)单调递增,且g(1)≤h(1),从而可求解答:解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B点评:本题主要考查了二次函数的单调性的应用,反比例函数的单调性的应用,主要分段函数的单调性应用中,不要漏掉g(1)≤h(1)10.(5分)函数的图象大致是()A.B.C.D.考点:指数函数的图像变换.专题:函数的性质及应用.分析:分别根据函数的定义域,单调性,取值符号进行排除判断.解答:解:要使函数有意义,则3x﹣1≠0,解得x≠0,∴函数的定义域为{x|x≠0},排除A.当x<0时,y>0,排除B.当x→+∞时,y→0,排除D.故选C.点评:本题考查函数的图象的判断,注意函数的值域,函数的图形的变换趋势,考查分析问题解决问题的能力.11.(5分)若定义在R上的函数f(x)的导函数为f'(x),且满足f'(x)>f(x),则f与fe2的大小关系为()A.f<fe2B.f=fe2C.f>fe2D.不能确定考点:导数的运算.专题:导数的概念及应用.分析:构造函数F(x)=e﹣x f(x),求导,判断函数的单调性,得到2011与2009的函数值大小,从而得到所求.解答:解:令F(x)=e﹣x f(x),则F'(x)=e﹣x f'(x)﹣e﹣x f(x)>0,所以F(x)单调递增,于是F>F,即e﹣2011f>e﹣2009f,所以f>fe2.故选:C.点评:本题考查了导数的运算以及构造函数判断单调性,利用函数单调性判断函数值的大小.12.(5分)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;压轴题;导数的综合应用.分析:求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.解答:解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,不妨设x2>x1,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)函数f(x)=的定义域为(﹣3,0].考点:函数的定义域及其求法.专题:计算题.分析:直接由根式内部的代数式大于等于0,分母不等于0联立不等式组求解.解答:解:由,得,解得:﹣3<x≤0.∴函数f(x)=的定义域为:(﹣3,0].故答案为:(﹣3,0].点评:本题考查了函数的定义域及其求法,考查了指数不等式的解法,是基础题.14.(5分)对任意两个实数x1,x2,定义若f(x)=x2﹣2,g(x)=﹣x,则max(f(x),g(x))的最小值为﹣1.考点:函数的图象与图象变化.专题:新定义.分析:通过求解不等式x2﹣2≥﹣x,得出f(x)≥g(x)和f(x)<g(x)的x的取值范围,结合新定义得到分段函数max(f(x),g(x))的解析式,在平面直角坐标系中作出分段函数的图象,则分段函数的最小值可求.解答:解:因为对任意两个实数x1,x2,定义,又f(x)=x2﹣2,g(x)=﹣x,由x2﹣2≥﹣x,得x≤﹣2或x≥1,则当x2﹣2<﹣x时,得﹣2<x<1.所以y=max(f(x),g(x)),其图象如图,由图象可知函数max(f(x),g(x))的最小值为﹣1.故答案为﹣1.点评:本题考查了新定义,考查了函数的图象与图象的变化,考查了分段函数图象的画法,分段函数的值域要分段求,最后取并集,是基础题.15.(5分)设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(2﹣x)=f(x+2),且当x∈[﹣2,0]时,f(x)=()x﹣1,若关于x的方程f(x)﹣log a(x+2)=0(a>1)在区间(﹣2,6)内恰有三个不同实根,则实数a的取值范围是(,2].考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知中可以得到函数f(x)的图象关于直线x=2对称,结合函数是偶函数,及x∈[﹣2,0]时的解析式,可画出函数的图象,将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=log a x+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.解答:解:∵对于任意的x∈R,都有f(2﹣x)=f(x+2),∴函数f(x)的图象关于直线x=2对称又∵当x∈[﹣2,0]时,f(x)=()x﹣1,且函数f(x)是定义在R上的偶函数,若在区间(﹣2,6)内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=log a(x+2)在区间(﹣2,6)上有三个不同的交点,如下图所示:又f(﹣2)=f(2)=3,则有log a(2+2)<3,且log a(6+2)≥3,解得:<a≤2,故答案为(,2].点评:本题考查的知识点是根的存在性及根的个数判断,指数函数与对数函数的图象与性质,其中根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键,体现了转化和数形结合的数学思想,属于中档题.16.(5分)定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(﹣1,4]时,f(x)=x2﹣2x,则函数f(x)在[0,2013]上的零点个数是604.考点:根的存在性及根的个数判断;函数的零点.专题:函数的性质及应用.分析:根据y=x2与y=2x的函数曲线在区间(0,4]有两个交点,在区间(﹣1,0]区间有一个交点,f(x)=x2﹣2x=16无根,可得x∈(﹣1,4]时,f(x)=x2﹣2x有3个零点,且x∈(﹣6,﹣1]时,f(x)=x2﹣2x无零点,进而分析出函数的周期性,分段讨论后,综合讨论结果可得答案.解答:解:y=x2与y=2x的函数曲线在区间(0,4]有两个交点,在区间(﹣1,0]区间有一个交点,但当x∈(﹣1,4]时,f(x)=x2﹣2x=16无根即当x∈(﹣1,4]时,f(x)=x2﹣2x有3个零点由f(x)+f(x+5)=16,即当x∈(﹣6,﹣1]时,f(x)=x2﹣2x无零点又∵f(x+5)+f(x+10)=f(x)+f(x+5)=16,∴f(x+10)=f(x),即f(x)是周期为10的周期函数,在x∈[0,2013],分为三段x∈[0,4],x∈(4,2004],x∈在[0,2013]上的零点个数是604故答案为:604点评:本题考查的知识点是根的存在性及根的个数判断,函数的零点,其中熟练掌握对数函数和二次函数的图象和性质,分析出一个周期上函数的零点个数是解答的关键.三、解答题(本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.)17.(12分)已知集合,集合B={x|y=ln(4﹣3x﹣x2)},集合C={x|m+2<x<2m﹣3}.(Ⅰ)设全集U=R,求(∁U A)∩B;(Ⅱ)若C∩(∁R A)=∅,求实数m的取值范围.考点:交、并、补集的混合运算.专题:集合.分析:(I)求出函数和y=ln(4﹣3x﹣x2)的定义域A,B,集合交集,并集,补集的定义,可得答案.(Ⅱ)若C∩(∁R A)=∅,则C=∅或C与∁R A没有公共元素,即C⊆A,进而可得实数m的取值范围.解答:解:(Ⅰ)∵集合=(﹣∞,﹣2]∪[9,+∞),集合B={x|y=ln(4﹣3x﹣x2)}=(﹣4,1),∴∁U A=(﹣2,9),∴(∁U A)∩B=(﹣2,1).(Ⅱ)∵C∩(∁R A)=∅,∴C⊆A,当C=∅时,m+2≥2m﹣3,解得m≤5,当C≠∅时,则或,解得:m≥7,综上:实数m的取值范围是m≤5或m≥7.点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.18.(12分)已知f(x)是定义在[﹣1,1]上的奇函数,且f (1)=1,若m,n∈[﹣1,1],m+n≠0时有>0.(1)判断f (x)在[﹣1,1]上的单调性,并证明你的结论;(2)解不等式:f(x+)<f();(3)若f(x)≤t2﹣2at+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.考点:函数奇偶性的性质;函数单调性的判断与证明;函数单调性的性质;函数恒成立问题.分析:(1)由单调性定义判断和证明;(2)由f(x)是奇函数和(1)的结论知f(x)在上[﹣1,1]是增函数,再利用定义的逆用求解;(3)先由(1)求得f(x)的最大值,再转化为关于a的不等式恒成立问题求解.解答:解:(1)任取﹣1≤x1<x2≤1,则f(x1)﹣f(x2)=f(x1)+f(﹣x2)=∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,由已知>0,又x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x)在[﹣1,1]上为增函数;(2)∵f(x)在[﹣1,1]上为增函数,故有(3)由(1)可知:f(x)在[﹣1,1]上是增函数,且f(1)=1,故对x∈[﹣l,1],恒有f(x)≤1.所以要使f(x)≤t2﹣2at+1,对所有x∈[﹣1,1],a∈[﹣1,1]恒成立,即要t2﹣2at+1≥1成立,故t2﹣2at≥0成立.即g(a)=t2﹣2at对a∈[﹣1,1],g(a)≥0恒成立,只需g(a)在[﹣1,1]上的最小值大于等于零.故解得:t≤﹣2或t=0或t≥2.点评:本题主要考查单调性和奇偶性的综合应用及函数最值、恒成立问题的转化化归思想.19.(12分)对于函数f(x),若存在x0∈R,使方程f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).(1)当a=1,b=﹣2时,求函数f(x)的不动点;(2)当a=1,b=﹣2时,求f(x)在[t,t+1]上的最小值g(t).(3)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)首先利用信息要求解出结果.(2)二次函数的轴固定区间不固定的讨论.(3)恒成立问题的应用.解答:解:(1)由题意得:f(x)=x2﹣x﹣3 由于x0是不动点因此得:即:解得:x0=﹣1或3即3和﹣1是f(x)的不动点.(2)①当t≤时,g(t)=t2+t﹣3②当﹣<t<时,g(t)=﹣③当t≥时,g(t)=t2﹣t﹣3(3)因为f(x)恒有两个不动点f(x)=ax2+(b+1)x+b﹣1=x即:ax2+bx+b﹣1=0恒有两个不等实根即对于任意的实数都有△=b2﹣4a(b﹣1)>0恒成立进一步得:对任意的实数b,b2﹣4ab+4a>0恒成立.得到:a2﹣a<00<a<1故答案为:(1)3和﹣1是f(x)的不动点(2))①当t≤时,g(t)=t2+t﹣3②当﹣<t<时,g(t)=﹣③当t≥时,g(t)=t2﹣t﹣3(3)0<a<1点评:本题考查的知识点:信息抽象函数的应用,二次函数的轴固定区间不固定的讨论,恒成立问题的应用及一元二次不等式和一元二次方程的解法.20.(12分)已知函数f(x)=alnx﹣ax﹣3(a∈R).(1)若a=﹣1,求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+](f′(x)是f(x)的导数)在区间(t,3)上总不是单调函数,求m的取值范围;(3)求证:×××…×<(n≥2,n∈N*).考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)a=﹣1时,,由此能求出f(x)的单调增区间和单调减区间.(2)由,(2,f(2))点切线倾斜角为45°,求出f'(x)=﹣+2,由此能求出m的取值范(3)构造函数f(x)=x﹣ln(x+1),x>1,由导数性质求出当n≥2,n>ln(n+1),由此能证明×××…×<(n≥2,n∈N*).解答:(1)解:a=﹣1时,f(x)=﹣lnx+x﹣3,∴x>0,,由,得x=1.x>1时,f′(x)>0;0<x<1时,f′(x)<0.∴f(x)的单调增区间为(1,+∞),单调减区间为(0,1).(2)解:∵f(x)=alnx﹣ax﹣3,∴,∵(2,f(2))点切线倾斜角为45°,∴f'(2)=1,即﹣2=1,则a=﹣2,f'(x)=﹣+2,则g(x)=x3+x2(﹣+2+)=x3+(2+)x2﹣2x,g'(x)=3x2+(4+m)x﹣2,∵函数不单调,也就是说在(t,3)范围内,g'(x)=0有解,∵g'(0)=﹣2<0,∴当且仅当g'(t)<0且g'(3)>0时方程有解,∴3t2+(4+m)t﹣2<0且3×32﹣3(4+m)﹣2>0,解得﹣<m<﹣3t﹣4,又∵t∈[1,2],∴﹣<m<﹣9,∴m的取值范围(﹣,﹣9).(3)证明:先证明当n≥2,n∈Z时,n>lnn构造函数f(x)=x﹣ln(x+1),x>1则f′(x)=1﹣=,∵x>1,∴f′(x)>0,∴f(x)>f(1)=1﹣ln(1+1)>0∴当n≥2,n∈N*时,n>ln(n+1),∴,,…,,,∴<=.点评:本题考查函数的单调区间的求法,考查实数的取值范围的求法,考查不等式的证明,解题时要认真审题,注意导数性质和构造法的合理运用.21.(12分)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.考点:利用导数研究函数的极值;函数恒成立问题;函数的零点.专题:导数的综合应用.分析:(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).点评:本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题,是难题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.【选修4-1几何证明选讲】22.(10分)已知:直线AB过圆心O,交⊙O于AB,直线AF交⊙O于F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.求证:(1)∠BAC=∠CAG;(2)AC2=AE•AF.考点:圆周角定理;相似三角形的判定;相似三角形的性质.专题:证明题.分析:(1)连接BC,根据AB为⊙O的直径得到∠ECB与∠ACG互余,根据弦切角得到∠ECB=∠BAC,得到∠BAC与∠ACG互余,再根据∠CAG与∠ACG互余,得到∠BAC=∠CAG;(2)连接CF,利用弦切角结合(1)的结论,可得∠GCF=∠ECB,再用外角进行等量代换,得到∠AFC=∠ACE,结合∠FAC=∠CAE得到△FAC∽△CAE,从而得到AC是AE、AF的比例中项,从而得到AC2=AE•AF.解答:证明:(1)连接BC,∵AB为⊙O的直径…(2分)∴∠ACB=90°⇒∠ECB+∠ACG=90°…(1分)∵GC与⊙O相切于C,∴∠ECB=∠BAC∴∠BAC+∠ACG=90°…(4分)又∵AG⊥CG⇒∠CAG+∠ACG=90°∴∠BAC=∠CAG…(6分)(2)由(1)可知∠EAC=∠CAF,连接CF∵GE与⊙O相切于C,∴∠GCF=∠CAF=∠BAC=∠ECB∵∠AFC=∠GCF+90°,∠ACE=∠ECB+90°∴∠AFC=∠ACE…(8分)∵∠FAC=∠CAE∴△FAC∽△CAE…(10分)∴∴AC2=AE•AF…(12分)点评:本题综合考查了弦切角、三角形的外角定理和相似三角形的性质等知识点,属于中档题.解题时要注意充分利用互余的角和弦切角进行等量代换,方可得到相似三角形.【选修4--4;坐标系与参数方程】23.在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:压轴题;直线与圆.分析:(I)先将圆C1,直线C2化成直角坐标方程,再联立方程组解出它们交点的直角坐标,最后化成极坐标即可;(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),从而直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,从而构造关于a,b的方程组,解得a,b的值.解答:解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.点评:本题主要考查把极坐标方程化为直角坐标方程、把参数方程化为普通方程的方法,方程思想的应用,属于基础题.【选修4--5;不等式选讲】24.已知函数f(x)=|x﹣a|,其中a>1(1)当a=2时,求不等式f(x)≥4﹣|x﹣4|的解集;(2)已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.考点:带绝对值的函数;绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:(1)当a=2时,f(x)≥4﹣|x﹣4|可化为|x﹣2|+|x﹣4|≥4,直接求出不等式|x﹣2|+|x ﹣4|≥4的解集即可.(2)设h(x)=f(2x+a)﹣2f(x),则h(x)=.由|h(x)|≤2解得,它与1≤x≤2等价,然后求出a的值.解答:解:(1)当a=2时,f(x)≥4﹣|x﹣4|可化为|x﹣2|+|x﹣4|≥4,当x≤2时,得﹣2x+6≥4,解得x≤1;当2<x<4时,得2≥4,无解;当x≥4时,得2x﹣6≥4,解得x≥5;故不等式的解集为{x|x≥5或x≤1}.(2)设h(x)=f(2x+a)﹣2f(x),则h(x)=由|h(x)|≤2得,又已知关于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},所以,故a=3.点评:本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

河南高中2015届高三数学试卷押密卷

河南高中2015届高三数学试卷押密卷

漯河高中2015届高三数学(理)周测试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,分别答在答题卡上(I 卷)和答题卷(II 卷)上,答在试卷上的答案无效。

第Ⅰ卷(选择题 共60分)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的。

1.设复数z 1=1-i ,z 2i ,其中i 为虚数单位,则12z z 的虚部为 ABCD2.记数列{n a }的前n 项和为n S ,且n S =2(n a -1),则a 2等于 A .2 B .4 C .6 D .8 3.“m >0”是“函数f (x )=m +2log x (x ≥1)不存在零点”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件4.已知点P (x ,y )的坐标满足条件,1,350,x x x y ⎧⎪⎨⎪⎩≥1y ≥-+-≤那么点P 到直线3x -4y -13=0的距离的最小值为 A .115 B .2 C .95D .1 5.已知双曲线221x y k -=(k >0)的一条渐近线与直线x -2y -3=0平行,则双曲线的离心率是 ABC .D6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为ABC. D7.已知函数f (x )=sin (x +6π),其中x ∈[-3π,a],若f (x )的值域是[-12,1],则实数a 的取值范围是 A .(0,3π] B .[3π,2π] C .[2π,23π] D .[3π,π]8.抛物线2y =2px (p >0)的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足∠AFB =120°.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则AB MN的最小值为A B C .1 D 9.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=2x ,当x >0时,f (x +1)=f (x )+f (1),若直线y =kx 与函数y =f (x )的图象恰有7个不同的公共点,则实数k 的取值范围为A .(2,-4)B .2)C .(2,4)D .(4,8)10.设函数f (x )=xe +2x -4,g (x )=lnx +22x -5,若实数a ,b 分别是f (x ),g (x )的零点,则A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<011.在Rt △ABC 中,CA =CB =3,M ,N 是斜边AB 上的两个动点,且MN 则CM uuu r ·CN uuu r的取值范围为A .[2,52] B .[2,4] C .[3,6] D .[4,6] 12.设函数f 1(x )=x ,f 2(x )=2015log x ,i a =2015i(i =1,2,…,2015),记k I =|2()k f a -1()k f a |+|3()k f a -2()k f a |+…+|2015()k f a -2014()k f a |, k =1,2,则A .1I <2IB .1I =2IC .1I >2ID .无法确定第Ⅱ卷二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上. 13.已知等比数列{n a },前n 项和为n S ,a 1+a 2=34,a 4+a 5=6,则S 6=_________. 14.设函数y =f (x )的定义域为D ,若对于任意x 1、x 2∈D ,当x 1+x 2=2a 时,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图像的对称中心.研究函数f (x )=3x +sin πx +2的某一个对称中心,并利用对称中心的上述定义,可得到f (-1)+f (-1920)+…+f (1920)+f (1)=__________. 15.给定方程:1()2x+sinx -1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数解;④若x 0是该方程的实数解,则x 0>-1.正确命题是_______________.16.有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a (m ,k =1,2,3,…,n ,n ≥3),公差为m d ,并且1n a ,2n a ,3n a ,…,nn a 成等差数列.若m d =11p d +22p d (3≤m ≤n ,1p ,2p 是m 的多项式),则1p +2p =_____________. 三.解答题:本大题共6小题,共70分. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a b c +=cos()cos A C+C . (1)求角C 的大小.(2)若c =2,求使△ABC 面积最大时,a ,b 的值.18.(本小题满分12分)已知四棱锥P -ABCD 中,底面ABCD 为菱形,且PD ⊥底面ABCD ,∠DAB =60°,E 为AB 的中点. (1)证明:DC ⊥平面PDE ;(2)若PD ,求平面DEP 与平面BCP 所成二面角的余弦值.19.(本小题满分12分)已知数列{}n a 满足111,||,.n n n a a a p n N *+=-=∈(1)若{}n a 是递增数列,且123,2,3a a a 成等差数列,求p 的值; (2)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式. 20.(本小题满分12分)已知动点P 到定点F (1,0)和到直线l :x =2P 的轨迹为 曲线E ,过点F 作垂直于x 轴的直线与曲线E 相交于A 、B 两点,直线l :y =mx +n 与 曲线E 交于C 、D 两点,与线段AB 相交于一点(与A 、B 不重合). (Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆221x y +=相切时,四边形ABCD 的面积是否有最大值,若有,求出 其最大值及对应的直线l 的方程;若没有,请说明理由. 21.(本小题满分12分) 已知函数f (x )=(2x -2x )·lnx +a 2x +2.(Ⅰ)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(Ⅱ)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.请考生在第(22)、(23)二题中任选一题做答。

2015年河南省中原名校联盟高考数学模拟试卷(理科)

2015年河南省中原名校联盟高考数学模拟试卷(理科)

2015年河南省中原名校联盟高考数学模拟试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•河南模拟)设集合M={x|y=},N={x|x2<4},则(∁R M)∩N等于2.(5分)(2015•河南模拟)已知i是虚数单位,是z=1+i的共轭复数,则在复平面内3.(5分)(2015•河南模拟)若向量,满足||=1,||=2,<,>=,则|﹣|的值225.(5分)(2015•河南模拟)设x,y满足约束条件,则z=x﹣2y的最小值是6.(5分)(2015•河南模拟)一个几何体的三视图如图所示,其中俯视图为正方形及其一条对角线,则该几何体的体积为()7.(5分)(2015•河南模拟)下列三个数:a=ln﹣,b=lnπ﹣π,c=ln3﹣3,大小顺序正确8.(5分)(2015•河南模拟)已知f(x)=sin(ωx﹣)(ω>0)的最小正周期为π,把f (x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移个单位得到g (x)的图象,若tanα=2,则g(2α+)的大小为()﹣9.(5分)(2015•河南模拟)执行如图所示的程序框图,则输出z的值为()10.(5分)(2015•河南模拟)大学生小赵计划利用假期进行一次短期打工体验,已知小赵,如表所示:=11.4x+5.9,若小赵在假期内打5天工,工作时间(单位:小时)分别为8,8,9,9,12,11.(5分)(2015•河南模拟)已知函数f(x)=与函数g(x)=a(x+1)在(﹣1,1]上有2个交点,若方程x﹣=5a的解为正整数,则满足条件的实数a有()12.(5分)(2015•河南模拟)已知点P(,﹣1)在抛物线E:x2=2py(p>0)的准线上,过点P作抛物线的切线,若切点A在第一象限,F是抛物线E的焦点,点M在直线AF上,22B﹣二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.(5分)(2015•河南模拟)已知二项式展开式中二项式系数最大的是第4项,则展开式中的常数项为(用数字作答).14.(5分)(2015•河南模拟)设n=dx,则=.15.(5分)(2015•河南模拟)如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为.16.(5分)(2015•河南模拟)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知a+2b=4,asinA+4bsinB=6asinBsinC,则△ABC的面积最小值时有c2=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2015•河南模拟)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(1)求{a n}的通项公式;(2)设b n=,试求{b n}的前n项和T n.18.(12分)(2015•河南模拟)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AD⊥BD,且BC∥平面PAD.(1)求证:PB⊥BC;(2)若tan∠BDC=,CD=5,PD=3,AD=6,求直线PA与平面PCD所成角的正弦值.19.(12分)(2015•河南模拟)在2014年教师节来临之际,某学校计划为教师颁发一定的奖励,该学校计划采用说课评价与讲课评价相结合的方式来决定教师获得奖励的等级.已知说课评价和讲课评价的成绩都分为1分,2分,3分,4分,5分,共5个等级.所有教师说课评价与讲课评价成绩的频率分布情况如图所示(参加评价的每个教师两种评价都参加了),其中讲课评价成绩为5分的有12人.(1)求该学校参加评价活动的教师总人数;(2)若在说课评价为2分的教师中,讲课评价也为2分的有4人,其余讲课评价均为3分.若从说课评价为2分的教师中选取2人进行座谈,求这2人说课评价与讲课评价总分的分布列及数学期望.20.(12分)(2015•河南模拟)已知椭圆C:(a>b>0)的离心率为,直线y=b与椭圆C相交于M、N两点,O为坐标原点,且△MON的面积为.(1)求椭圆C的方程;(2)若直线l (斜率存在且不为零)与y轴交于点P(0,m),与椭圆C交于相异两点A、B,=且+=4,求实数m的取值范围.21.(12分)(2015•河南模拟)已知函数f(x)=(a∈R).(1)求函数f(x)的单调区间与极值;(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有两个公共点,求实数a的取值范围;(3)当﹣2<a<﹣1时,若函数f(x)在区间(m,e2)(其中m>0)上恒有一个零点,求实数m的最大值.二.请考生在22、23、24三题中任选一题作答.如果多选,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2015•河南模拟)如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.(1)若∠ACB=70°,求∠BAP的度数;(2)若=,求的值.[选修4-4:坐标系与参数方程]23.(2015•河南模拟)在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(Ⅰ)求圆C的标准方程和直线l的普通方程;(Ⅱ)若直线l与圆C恒有公共点,求实数a的取值范围.[选修4-5:不等式选讲]24.(2015•河南模拟)已知函数f(x)=|x﹣1|+|x+3|,x∈R(1)解不等式f(x)≤5;(2)若不等式m2﹣3m<f(x),对∀x∈R都成立,求实数m的取值范围.2015年河南省中原名校联盟高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•河南模拟)设集合M={x|y=},N={x|x2<4},则(∁R M)∩N等于2.(5分)(2015•河南模拟)已知i是虚数单位,是z=1+i的共轭复数,则在复平面内,=在复平面内对应的点在第三象3.(5分)(2015•河南模拟)若向量,满足||=1,||=2,<,>=,则|﹣|的值|﹣|cos+4=3|﹣|=22为双曲线,即:=1=4.5.(5分)(2015•河南模拟)设x,y满足约束条件,则z=x﹣2y的最小值是作出可行域如图,,解得:由图可知,当直线6.(5分)(2015•河南模拟)一个几何体的三视图如图所示,其中俯视图为正方形及其一条对角线,则该几何体的体积为()××7.(5分)(2015•河南模拟)下列三个数:a=ln﹣,b=lnπ﹣π,c=ln3﹣3,大小顺序正确﹣;<ln﹣8.(5分)(2015•河南模拟)已知f(x)=sin(ωx﹣)(ω>0)的最小正周期为π,把f (x)图象的横坐标都伸长为原来的2倍(纵坐标不变),再沿x轴向右平移个单位得到g (x)的图象,若tanα=2,则g(2α+)的大小为()﹣+)=)﹣轴向右平移﹣﹣﹣))==9.(5分)(2015•河南模拟)执行如图所示的程序框图,则输出z的值为()S=S=S=S=2)10.(5分)(2015•河南模拟)大学生小赵计划利用假期进行一次短期打工体验,已知小赵,如表所示:根据计算,小赵得知这段时间每天打工工资与每天工作时间满足的线性回归方程为=11.4x+5.9,若小赵在假期内打5天工,工作时间(单位:小时)分别为8,8,9,9,12,由题意,=,代入,可得==6.5,代入,可得=80=80=112[11.(5分)(2015•河南模拟)已知函数f(x)=与函数g(x)=a(x+1)在(﹣1,1]上有2个交点,若方程x﹣=5a的解为正整数,则满足条件的实数a有(),﹣,=5a≤>,不满足题意;在(12.(5分)(2015•河南模拟)已知点P(,﹣1)在抛物线E:x2=2py(p>0)的准线上,过点P作抛物线的切线,若切点A在第一象限,F是抛物线E的焦点,点M在直线AF上,22B﹣,﹣)=二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.(5分)(2015•河南模拟)已知二项式展开式中二项式系数最大的是第4项,则展开式中的常数项为﹣160(用数字作答).∴二项式14.(5分)(2015•河南模拟)设n=dx,则=.n=dx=)(|﹣,故答案为:.15.(5分)(2015•河南模拟)如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为+.,个小直角三角形的高为,+故答案为:+16.(5分)(2015•河南模拟)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知a+2b=4,asinA+4bsinB=6asinBsinC,则△ABC的面积最小值时有c2=5﹣.得最小值S=(≥取得最小值,cosC=×三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)(2015•河南模拟)已知数列{a n}的前n项和为S n,且S n=2a n﹣2(n∈N*).(1)求{a n}的通项公式;(2)设b n=,试求{b n}的前n项和T n.,整理后利用错位相减法求=则+3=.∴18.(12分)(2015•河南模拟)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AD⊥BD,且BC∥平面PAD.(1)求证:PB⊥BC;(2)若tan∠BDC=,CD=5,PD=3,AD=6,求直线PA与平面PCD所成角的正弦值.BDC==,,的一个法向量为,可得===所成角的正弦值为19.(12分)(2015•河南模拟)在2014年教师节来临之际,某学校计划为教师颁发一定的奖励,该学校计划采用说课评价与讲课评价相结合的方式来决定教师获得奖励的等级.已知说课评价和讲课评价的成绩都分为1分,2分,3分,4分,5分,共5个等级.所有教师说课评价与讲课评价成绩的频率分布情况如图所示(参加评价的每个教师两种评价都参加了),其中讲课评价成绩为5分的有12人.(1)求该学校参加评价活动的教师总人数;(2)若在说课评价为2分的教师中,讲课评价也为2分的有4人,其余讲课评价均为3分.若从说课评价为2分的教师中选取2人进行座谈,求这2人说课评价与讲课评价总分的分布列及数学期望.故该学校参加评价活动的教师总数为=P20.(12分)(2015•河南模拟)已知椭圆C:(a>b>0)的离心率为,直线y=b与椭圆C相交于M、N两点,O为坐标原点,且△MON的面积为.(1)求椭圆C的方程;(2)若直线l (斜率存在且不为零)与y轴交于点P(0,m),与椭圆C交于相异两点A、B,=且+=4,求实数m的取值范围.e=,∴,既有,∴椭圆方程为,代入椭圆方程得,求得椭圆方程;既有,∴椭圆方程为代入椭圆方程得,|MN|=得方程为.)由=,∴消去则,∴,整理得,整理得(时,上式成立,∴式可得⇔,或得取值范围是()21.(12分)(2015•河南模拟)已知函数f(x)=(a∈R).(1)求函数f(x)的单调区间与极值;(2)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有两个公共点,求实数a的取值范围;(3)当﹣2<a<﹣1时,若函数f(x)在区间(m,e2)(其中m>0)上恒有一个零点,求实数m的最大值.的定义域,再求导;从而由导><==0;≤><二.请考生在22、23、24三题中任选一题作答.如果多选,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2015•河南模拟)如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.(1)若∠ACB=70°,求∠BAP的度数;(2)若=,求的值.=,求的值.,,PC=,=.[选修4-4:坐标系与参数方程]23.(2015•河南模拟)在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(Ⅰ)求圆C的标准方程和直线l的普通方程;(Ⅱ)若直线l与圆C恒有公共点,求实数a的取值范围.得,,则恒有公共点,∴的取值范围是[选修4-5:不等式选讲]24.(2015•河南模拟)已知函数f(x)=|x﹣1|+|x+3|,x∈R(1)解不等式f(x)≤5;(2)若不等式m2﹣3m<f(x),对∀x∈R都成立,求实数m的取值范围.)原不等式等价为或或≤,,参与本试卷答题和审题的老师有:qiss;孙佑中;changq;刘长柏;sxs123;lgh;caoqz;w3239003;lincy;whgcn;双曲线;雪狼王;gongjy(排名不分先后)菁优网2015年9月30日。

河南师范大学附属中学高中数学(普通班)同步练习:四种命题

河南师范大学附属中学高中数学(普通班)同步练习:四种命题

1.1.2四种命题一、选择题1.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数为( )A.1个B.2个C.3个D.4个2.命题“若x2<1,则-1〈x<1”的逆否命题是( )A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2〈1C.若x>1或x<-1,则x2>1D.若x≥1或x≤1,则x2≥13.命题“若ab=0,则a=0或b=0”的否命题是( )A.若ab≠0,则a≠0或b≠0B.若a≠0或b≠0,则ab≠0C.若ab≠0,则a≠0且b≠0D.若a≠0且b≠0,则ab≠04.给出以下4个命题:①若ab≤0,则a≤0或b≤0;②若a>b,则am2>bm2;③在△ABC中,若sin A=sin B,则A=B;④在一元二次方程ax2+bx+c=0中,若b2-4ac<0,则方程有实数根.其中原命题、逆命题、否命题、逆否命题全都是真命题的是()A.①B.②C.③D.④5.有下列四个命题:(1)“若x+y=0,则x、y互为相反数”的逆命题;(2)“若a>b,则a2〉b2"的逆否命题;(3)“若x≤-3,则x2+x-6>0”的否命题;(4)“若a b是无理数,则a、b是无理数”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.36.若命题p的否命题为r,命题r的逆命题为s,p的逆命题为t,则s是t的( )A.逆否命题B.逆命题C.否命题D.原命题二、填空题7.已知下列四个命题:①a是正数;②b是负数;③a+b是负数;④ab是非正数.选择其中两个作为条件,一个作为结论,写出一个逆否命题是真命题的命题是____________________________.8.命题“若x=3,y=5,则x+y=8"的逆命题是____________________;否命题是__________________,逆否命题是____________________.三、解答题9.写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1)如果两圆外切,那么两圆心距等于两圆半径之和;(2)奇数不能被2整除.10.判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x +a2+2≤0的解集非空,则a≥1”的逆否命题的真假.1。

河南15年高考数学试卷 (理科) 高清word 文字版

河南15年高考数学试卷 (理科)  高清word 文字版

2015年普通高等学校招生全国统一试卷理科数学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名,准考证号填写在本试卷相应的位置。

3.全部答案在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题,本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

(1)设复数z 满足i zz =-+11,则=z ( )(A )1 (B )2 (C )3 (D )2 (2)=-000010sin 160cos 10cos 20sin ( ) (A )23-(B ) 23(C )21- (D )21(3)设命题P :,2,2n n N n >∈∃则P -为 ( ) (A )n n N n 2,2>∈∀ (B ) n n N n 2,2≤∈∃ (C )n n N n 2,2≤∈∀ (D )n n N n 2,2=∈∃(4)投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率 ( )(A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知()00,y x M 是双曲线12:22=-y x C 上的一点,21,F F 是C 上的两个焦点,若021<∙→→MF MF ,则0y 的取值范围是 ( )(A )⎪⎪⎭⎫ ⎝⎛-33,33 (B ) ⎪⎪⎭⎫ ⎝⎛-63,63 (C )⎪⎪⎭⎫ ⎝⎛-322,322 (D )⎪⎪⎭⎫⎝⎛-332,332 (6)《九章算术》是我国古代内人极为丰富的数学名著。

书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为“在屋内墙角处堆放米(,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺米堆的高度为5尺,问米堆的体积和米各是多少?已知1斛米的体积为1.62立方米 ( )(A )14斛 (B ) 22斛 (C )36斛 (D )66斛 (7)设D 为ABC ∆所在平面内的一点,→→=CD BC 3;则 ( )(A )→+→-=→AC AB AD 3431 (B ) →-→=→AC AB AD 3431(C )→+→=→AC AB AD 3134 (D )→-→=→AC AB AD 3134(8)函数())cos(ϕ+=wx x f 的部分图像如图所示,则()x f 的单调递减区间为 ( )(A )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41ππ (B ) z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412ππ(C )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41 (D )z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412(9)执行右面的程序框图,如果输入的t=0.01,则输出的n= ( ) (A )5 (B ) 6 (C )7 (D )8(10)()52y x x ++的展开式,25y x 的系数为 ( ) (A )10 (B ) 20 (C )30 (D )60(11)圆柱被一个平面截取一部分后与半球(半径为r )组成的几何体,该几何体的正视图和俯视图如图所示,若该几何体的表面积为π2016+,则r= ( )(A )1 (B ) 2 (C )4 (D )8(12)设函数(),)12(a ax x e x f x +--=其中1<a ,若存在唯一的整数0x ,使得,则a 的取值范围是 ( )(A )⎪⎭⎫⎢⎣⎡-1,23e (B )⎪⎭⎫⎢⎣⎡-43,23e (C )⎪⎭⎫⎢⎣⎡43,23e (D )⎪⎭⎫⎢⎣⎡1,23e第II 卷本卷分为必做题和选做题两部分,第(13)题-第(21)题为必做题,每个考生都必须作答,第(22)题-第(24)为选做题,考生按要求作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档