浙江2019年职高数学单考单招模拟4
2019—2019浙江数学高职单考单招考试题分章练习

2019—2019浙江数学高职单考单招考试题分章练习第一章 集合与不等式试卷年份试卷结构 高职考知识分布2002年 题量:选择 , 填空 ,解答占分: 分2003年 题量:选择 , 填空 ,解答占分: 分2004年 题量:选择 , 填空 ,解答占分: 分2005年 题量:选择 , 填空 ,解答占分: 分2006年 题量:选择 , 填空 ,解答占分: 分2017年 题量:选择 , 填空 ,解答占分: 分2017年 题量:选择 , 填空 ,解答占分: 分〔02浙江高职考〕1、以下四个关系中,正确的选项是〔 〕A 、{}a ∈φB 、{}a a ⊆C 、{}{}b a a ,∈D 、{}b a a ,∈ 〔02浙江高职考〕3、假设01>-x ,那么〔 〕A 、1±≥xB 、1>xC 、11<<-xD 、11>-<x x 或 〔02浙江高职考〕4、b a ,是空间的两条直线,那么的相交是","""b a b a ⊥〔 〕A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分又非必要条件〔02浙江高职考〕20、32,0++>x x x 则的最小值是 。
假设集合{}3,2,1=P 、{}6,4,2=S ,那么以下命题不正确的选项是〔 〕 A 、P ∈2 B 、{}6,4,3,2,1=S P C 、{}2=S P D 、P ⊆Φ 〔03浙江高职考〕2、“022=+y x ”是“0=xy ”的〔 〕A 、充要条件B 、充分但不必要条件C 、必要但不充分条件D 、既不充分又不必要条件〔03浙江高职考〕24、〔8分〕假设。
ab ab ,b a ,Rb a 的取值范围求且=++∈+3,〔03浙江高职考〕8、某股票第一天上涨10%,第二天又下降10%,那么两天后的股价与原来股价的关系是〔 〕 A 、相等 B 、上涨1% C 、下降% D 、是原股价的90% 〔04浙江高职考〕9、“x = y ”是“sin x = sin y ”的〔 〕 A 、充分但非必要条件 B 、必要但非充分条件 C 、充分且必要条件 D 、既不充分也不必要条件 〔04浙江高职考〕11、假如+∈Rb a 、,且a + b = 1,那么ab 有〔 〕A 、最小值41 B 、最大值41 C 、最小值21 D 、C 、最大值21 〔04浙江高职考〕13、以下关于不等式的命题为真命题的是〔 〕A 、b a b a >⇒>22B 、ba b a 11>⇒>C 、111>⇒<a aD 、c b c a b a +<+⇒<〔04浙江高职考〕22、〔此题总分值6分〕假设集合A = { a,b,c },试写出集合A 的所有子集。
2019年浙江省单独考试招生文化考试仿真模拟数学试题卷

2019年浙江省单独考试招生文化考试仿真模拟数学试题卷姓名:___________准考证号:___________本试题卷共3大题,共4页。
满分150分,考试时间120分钟考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
一、单项选择题(本大题共20小题,1-10小题每小题2分,13-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)1.若全集R U =,5}-3|{<<x N x A ∈=,0}1|{<-∈=x Z x B ,则 A B C U =()A.{2,3,4}B.{1,2,3,4}C.{1,2,4}D.{0,1,2,3,4}2.函数)2lg(1--=x x y 的定义域是()A.(2,∞+)B.[1,2)∪(2,∞+)C.[1,∞+)D.[1,2)3.下列函数在其定义域内恒为减函数的是()A.x xy +=1 B.xy 21log = C.xy 3= D.64-2++=x x y 4.数列}{a n ,对任意*∈N x ,均满足点),(n S n M 在二次函数2x y =的图像上,则()A.该数列公比为2B.32=SC.该数列中所有奇数项呈公差为4的等差数列D.221+=+n a n 5.在平面直角坐标系中,点(2,3)关于直线032=-+y x 的对称点是()A.(-2,-3)B.(-1,0)C.(1,2)D.(0,-1)6.一椭圆以双曲线122=-y x 的顶点为焦点,焦点为顶点,则下列关于该椭圆的说法错误的是()A.短轴长为2B.离心率为22 C.焦距为2 D.长轴长为短轴长的2倍7.若232cos 232sin =-αα,则αtan ()A.62 B.2196C.23 D.228.已知直线l :0232=-+y x 的倾斜角α,直线l 与x 轴交点为A ,将其绕点A 逆时针旋转α度后得到直线1l ,则1l 的斜率为()A.512- B.34-C.32- D.09.抛物线2x y =图像上任意一点到其焦点的最短距离为()A.21 B.1C.41 D.3110.若方程04)2(222=-++-+m y x m y x 表示一个圆,则m 的取值范围是()A.]4-4[, B.)4-4(, C.),(),(∞+∞44-- D.),,(∞+∞4[]4-- 11.下列不等式中,解集为)[3,1)-(+∞∞ ,的是()A.0)3)(1(≥--x x B.{01-x 03<≥-x C.013≥--x x D.0342>+-x x 12.在一个角为60°的△ABC 中,∠A 、∠B 、∠C 所对的边分别为c b a 、、,则“c b a ,,三边成等差”是“△ABC 为等边三角形”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件13.如图所示,在正方形ABCD 中,两条对角线交点为O ,则下列结论中错误的是()A.AC AB AD =-B.CBCA CD =+C.=+ D.=+第13题图14.6人平均分成3组,且甲、乙必须同组,则不同的分组方案有_________种.()A.48 B.6 C.36 D.315.给出以下四个命题,其中真命题的个数是()①如果两条相交直线均与第三条直线垂直,则这三条直线构成了三个平面②若直线⊥A 平面α,直线B 垂直A ,则α∥B ③若已知平面α,且αα⊆⊆B A ,,则B A ,两条直线共面,反之,则异面④若平面外的一条斜线l 与平面相交,且直线1l 与l 在平面内的的射影垂直,则l l ⊥1A.0个 B.1个 C.2个D.3个16.下列各式不正确的是()A.)cos()cos(ααπ-=+B.)2cos()3sin(απαπ+=+C .απαtan )tan(=- D.)sin()sin(βαβα--=+-AB C CD17.函数)6sin(2)(πω+=x x f 的一个单调区间为]3,32[ππ-,则ω的值为()A.1B.±1C.-1D.±218.点Q 的坐标为)0,30(sin !︒则点Q 所在的位置是()A.第一象限B.第二象限C.第三象限D.坐标轴上19.某年寒假时间为25天,其中雨雪天为15天,则晴天占寒假总天数的概率为()A.53 B.52 C.83 D.8520.在△ABC 中,2sin =Aa,B ∠:C ∠3:2=,则B ∠的度数为()A.30°B.45°C.60°D.75°二.填空题(本大题共7小题,每小题4分,共28分)21.若直线01=--ay x 和02)2(=++-y a ax 互相垂直,则a =__________.22.已知)0(lg )0(42{)1(>x x x x x f ≤+=+,则=-)]3([f f ___________.23.在一等比数列}{n a 中,01>a ,42=a ,则31a a +的取值范围是_____________.24.已知23-sin =α,]23,[ππα∈,则=α2tan _____________.25.某设备购买时价值为100万元,第一年报废了其中的一半,以后每年报废剩余价值的一半,价值低于5万元后视同报废,则__________年后该设备视同报废.26.已知海绵宝宝在盛有足量水的容器中会逐渐长大,受到外界碰撞或容器壁挤压则会破裂,一海绵宝宝呈球形,现有一圆柱形玻璃杯(不计玻璃厚度),底面直径与高相等,侧面积为π92cm ,为使海绵宝宝能“顺利成长”,则应控制其体积不超过______________.27.直线)}{(2常数∈+=b b x y 与双曲线4422=-y x 的图像有_________个交点.三.解答题(本大题8小题,共72分)解答应写出文字说明及演算步骤28.(本题满分7分)求值:πcos 32(2lg 3125lg 2213++++-C P .29.(本题满分8分)已知椭圆短轴上的一个顶点A 与两个焦点1F 、2F 构成一个等腰直角三角形,焦点在x 轴上,原点到直线1AF 的距离为1,直线01=+-y x 与椭圆相交于E 、F 两点,求OEF S ∆.30.(本题满分9分)已知函数x x x f 2cos )1(tan )(+=.(1)求函数的最大值和周期;(2)讨论函数在定义域),(π0上的单调性.31.(本题满分9分)二项式nt x )(+(其中t 为常数)展开后只有第5项的二项式系数最大,且各项系数之和256.(1)求t 的值;(2)求展开后所有偶数项的系数之和.32.(本题满分9分)在如图所示的直三棱柱111C B A ABC -中,62,42211====AC BC AB BB ,求:(1)点1A 到平面11C AB 的距离;(2)平面ABC 与平面11C AB 所成角的正切值.第32题图33.(本题满分10分)已知圆9)2(22=+-y x 与直线02=++-A y Ax (A 为常数)相切.(1)求A 的值;(2)若P 为圆上一动点,求当点P 到直线的距离最大时点P 的坐标.34.(本题满分10分)某地为迎接改革开放40周年,进行绿化建设,打算开发一块长8米、宽6米的矩形空地,为了美化,欲在如图所示的这块空地中挖一块圆形土地,记圆形土地面积为1S ,剩余部分面积为2S .若21S S <,则在圆内种草皮,剩余地块种郁金香;若12S S >,则反之.已知每平方米的草皮价格为320元,郁金香价格为318元.并且,当圆形土地半径为1米时,管理成本为3000元,半径每扩大1米,管理成本增加30元.求:(π取3)(1)所需总费用C 与圆形土地半径r 的函数关系式;(2)请问应如何设计种植,才能使总费用最低?第34题图35.(本题满分10分)在如图所示的坐标轴中,点P 、Q 均从原点出发向右移动,点P 移动的路径为(0,1,3,7,15,31…),点Q 移动的路径为(0,1,3,6,10,15,21…),括号内的数字为每经过1秒所到达的点的位置,在坐标轴中每相邻两点间的距离为一个单位长度.(1)观察这些点的特点,分别写出点P 和点Q 经过t 秒后所到达的点表示的数字;(2)若点Q 经过t 秒后所在的点表示数字为a ,求数列⎭⎫⎩⎨⎧t a 前n 项和.x第35题图1S 2S。
2019年浙江省单独考试招生文化考试数学试卷

数学试题卷
姓名:准考证号:
本试题卷共三大题,共4页。满分150分,考试时间120分钟。
一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均不得分)
1.已知集合 , ,则 ( )
A. B. C. D.
2.不等式 的解集为( )
A. B. C. D.
3.函数 的定义域为( )
A. B. C. D.
4.已知平行四边形 ,则向量 ( )
A. B. C. D.
5.下列函数以 为周期的是( )
A. B. C. D.
6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同的选法的总数是()
A.平行B.相交C.异面D.以上情况都有可能
11.圆的一般方程为 ,则其圆心和半径分别为( )
A. B. C. D.
12.已知100张奖券共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是( )
A. B. C. D.
13. 、 、 为实数,则下列各选项中正确的是( )
A. B.
C. D.
14. 的值为( )
A. B. C. D.
15.双曲线 的实轴长为10,焦距为26,则双曲线的渐近线方程为( )
A. B. C. D.
16.方程 所对应曲线的图形是( )
A.B.
C. D.
17.若角 的终边经过点 ,则 的值为( )
A. B. C. D.
18.动点 在 轴上,当它与两定点 、 在同一条直线上时,点 的坐标是( )
A. B.
2019年浙江省高职考单招单考数学试卷(附答案)

2019年浙江省高职考单招单考数学试卷(附答案)2019浙江省高职单独考试数学试卷一、单项选择题(本大题共20小题,1―10小题每小题2分,11―20每小题3分,共50分.)1.已知集合A={-1,1},集合B={-3,-1,1,3},则A∩B=()A。
{-1,1}B。
{-1}C。
{1}D。
∅2.不等式x2-4x≤的解集为()A。
[0,4]B。
(0,4)C。
[-4,0)∪(0,4]D。
(-∞,0]∪[4,+∞)3.函数f(f)=ln(f−2)+1/(f−3)的定义域为()A。
(2,+∞)B。
[2,+∞)C。
(-∞,2]∪[3,+∞)D。
(2,3)∪(3,+∞)4.已知平行四边形ABCD,则向量AB→+BC→=()A。
DC→B。
BD→C。
AC→D。
CA→5.下列函数以π为周期的是()A。
y=sin(x−π/8)B。
y=2cos(x)C。
y=sin(x)D。
y=sin(2x)6.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A。
400B。
380C。
190D。
3807.已知直线的倾斜角为60°,则此直线的斜率为()A.−√3/3B.−√3C.√3D.√3/38.若sinα>0且tanα<0,则角α终边所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.椭圆标准方程为x^2/2t+ y^2/4-t=1,一个焦点为(-3,0),则t的值为()A。
-1B。
0C。
1D。
210.已知两直线l1、l2分别平行于平面β,则两直线l1、l2的位置关系为()A.平行B.相交C.异面D.以上情况都有可能11.圆的一般方程为x^2+y^2-8x+2y+13=0,则其圆心和半径分别为()A。
(4,-1),4B。
(4,-1),2C。
(-4,1),4D。
(-4,1),212.已知100张奖券中共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率为()A。
1/17B。
浙江职高数学单考单招模拟

浙江省高等职业技术教育招生考试模拟试卷三数学试题卷说明:本试题卷共三大题,共4页,满分120分,考试时间120分钟。
一、选择题(每小题2分,共36分)1、已知集合A={2,3,4},B={x|x-5≤0},则A∩B=( )A .{x|x<5} B. {2,3,4} C. {x|2<x<5} D.{2,3,4,5}2.、若10,0<<<<c b a ,则下列恒成立的是( )A.bc ac >B.cb c a > C.b c a c ->- D.c b c a +>+ 3、已知函数()2log 22+=-x x f ,则()=0f ( )A.3B.2C. 1D. 04、已知P :b kx y +=是增函数,q :0>k,则p 是q 的( )条件. A .充分不必要B .必要不充分C .充要D .既不充分又不必要 5、下列各角中与 300-终边相同的角是( )A. 30B. 400C. 50-D. 9206.、在下列函数中,定义域不是{x|x>-1}的是( ) A. 1+=x x y B. 1+=x y C. 1)2(log 22+++=x x x y D.)1(log 2x y += 7、已知向量)4,1(=AB ,)3,2(-=AC ,则向量=BC ( )A. (-3,-1)B. (3,-1)C. (3,1)D.(-3,1)8、抛物线42y x =的焦点坐标是( ) A.(0,1) B.(1,0) C.(161,0) D.(0,161) 9、若三角形的两内角βα,满足0cos sin <⋅βα,则此三角形的形状为 ( )A.锐角三角形B.钝角三角形C.直角三角形D.不确定10、在数列{}n a 中,133,211=-=+n n a a a ,则=100a ( )A.34B.35C.36D.3711.已知指数函数()10≠>=a a a y x 且如图所示,则下列正确的是( ) xyA. 与x 轴将会有交点B. ()10=fC. ()()()120f f f <<D. 是减函数12、NBA 球星麦迪将在中国4个不同的城市出席篮球活动,则不同的出席有( )种A.4B.16C.24D.25613、若直线0132:1=+-y x l 与直线053:2=++ay x l 垂直,则a 的值为( )A. 1B. 1-C.2D. 2-14、 三角形ABC 中,下列式子成立的是( )A .)sin(sin CB A += B .0)sin(>++C B AC .)cos(cos B A C +=D .C C A tan )tan(=+15、下列命题正确的是 ( )(1)若直线a ⊂平面β,直线b ⊥直线a ,则一定有b β⊥(2)直线a ⊥平面β,直线b //直线a ,则一定有b β⊥(3)a 、b 是两条异面直线,过a 有且只有一个平面和b 平行(4)直线a 和平面内两条直线垂直,则a 一定垂直于这个平面A.(1)、(2)B.(1)、(3)C.(3)、(4)D.(2)、(3)16、要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位D. 向右平移π6 个单位17、若直线m x y +-=2经过第二、三、四象限,则方程1322=+my x 表示的曲线是( )A .直线B .圆C .椭圆D .双曲线18、设F 1,F 2是椭圆252x +92y =1的两焦点,B 是椭圆上任意一点,则∆ F 1BF 2面积最大值为() A.12 B.24 C.25 D.40二、填空题(每小题3分,共24分)19. 计算:()=-+⎪⎭⎫ ⎝⎛-+---02121212121log x P _______________;20. 已知42y x =-,则42x y +有 值,是_______________;21.若椭圆上一点到两焦点)0,2(1-F ,)0,2(2F 的距离之和为8,则椭圆的短轴长为_______________;22已知() 270,180--∈α,且终边在直线x y 2-=上,则α的余弦值为_______________;23.已知等比数列{n a }中,4151432=⋅⋅⋅a a a a 则=⋅98a a _______________;24.如果球的表面积为264cm π,则球的体积为________3cm ;25. 若53sin =α,且α为锐角,则=--)24(sin 212απ___________;26.已知点)6,(a M 在抛物线x y 42=上,则点M 到抛物线准线的距离d = .三、 解答题(共8小题,共60分)27.(6分)倾斜角为4π的直线l 与抛物线y 2=2px 有公共点(1,2),(1)求直线l 的方程;(2)求抛物线的方程;(3)求抛物线的焦点到直线l 的距离.28.(6分)已知ABC ∆中,2:1:=∠∠B A ,3:1:=b a ,4=c ,(1) 求ABC ∆的三个内角;(2)求ABC ∆的面积S.29.(7分)已知正四棱锥P-ABCD ,AB=PA=4,求: (1)PA 与底面ABCD 所成角的大小;(2)正四棱锥P-ABCD的体积。
2019年浙江省单独考试招生文化考试数学(含答案)

=-2.
29.(8分)
解:(1)由已知得∠A=120°,
由正弦定理得 = ,即 ,
C=2.
(2)由已知得S△ABN= S△ABC,
S△ABC= acsin30°=1×2 ×2× = ,
S△ABN= .
30.(9分)
解:(1)由已知得圆C的标准方程为(x+1)2+(y-1)2=2
11.圆的一般方程为 ,则其圆心和半径分别为
A. B.
C. D.
12.已知100张奖券共有2张一等奖、5张二等奖、10张三等奖,现从中任取一张,中奖概率是
A. B.
C. D.
13. 、 、 为实数,则下列各选项中正确的是
A. B.
C. D.
14. 的值为
A. B.
C. D.
15.双曲线 的实轴长为10,焦距为26,则双曲线的渐近线方程为
(1)求正三棱锥 的全面积;(4分)
(2)线段 、 、 的中点分别为 、 、 ,求二面角 的余弦值.(6分)
34.(本题满分10分)体育场北区观众席共有10500个座位.观众席座位编排方式如图所示,由内而外依次记为第1排、第2排、…….从第2排起,每一排比它前一排多10个座位,且最后一排有600个座位.
31.(本题满分9分)已知 、 为第二象限角,且满足 , 求:
(1) ;(5分)
(2)函数 的最大值.(4分)
32.(本题满分9分)已知抛物线的顶点在原点,焦点坐标为 .
(1)求抛物线的标准方程;(3分)
(2)若抛物线上点 到焦点的距离为4,求点 的坐标.(6分)
33.(本题满分10分)如图,正三棱锥 的侧棱长为 ,底面边长为 .
2019年浙江省高职单招单考温州市第一次模拟考试《数学》试卷

2019年浙江省高职单招单考温州市第一次模拟考试《数学》试题卷本试卷共三大题.全卷共 4 页.满分150 分,考试时间120 分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分 1 分,在试题卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题(本大题共20 小题,1-10 小题每题 2 分,11-20 小题每题 3 分,共50 分)1.平面直角坐标系中,x轴上的点构成的集合是(▲)A.{( x, y) | y 0} B.{( x, y) | x = 0} C.{( x, y) | xy 0} D.{ y | y 0}2.下列结论正确的是(▲)A.若a b ,则a2 > b2 B.若ac2 bc2 ,则a bC.若a b ,则1a1bD.若a b,c d ,则acbd3.“x 3”是“| x |< 2 ”的(▲)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数y log2 x x 1 的定义域为(▲)A.{ x | x 1}B.{ x | x 1}C.{ x | x 1}D.{ x | x 1} 5.如果函数 f (x) 在R 上单调递减,且f (2a 4) f (4 2a) ,则a的取值范围是(▲)A.,0 B.2, C.0, D.,2 6.数列{a n} 中,a1 2 ,a n 1 2a n 1(n∈N*) ,则该数列的第六项是(▲)A.33 B.64 C.65 D.1297.sin 2的值一定是(▲)A.正数B.负数C. 1 D.08.角的终边在函数y 2x(x 0) 图象上,则cos 的值是(▲)A.33B.33C.55D.559.直线3x 3y 1 0的倾斜角大小为(▲)A.30 B.60 C.120 D.150《数学》试题卷第1 页共4 页***。
中职春考单招数学模拟测试卷

综合模拟测试卷(四)本试题卷包括选择题.填空题和解答题三部分, 共6页, 时量120分钟, 满分120分.一、选择题(本大题共10小题, 每小题4分, 共40分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设集合A= , 则A 的真子集有( )个A.15B.16C.31D.322.设 、 是两个命题, 则“ 为真”是“ 为假”的( )条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要3.下列函数是对数函数的是( )A.x y 2=B.x y 2=C.2x y =D.x y 2log =4.设点A (2, 3), B (3, 4), 向量 , 则下列命题不正确的是( )A.向量AB 是单位向量B.a AB //C.a AB 与的夹角是πD.||5||AB a =5.若 , 则 ( )A.-B.C.-D. .6.设直线 , , 则下列说法正确的是( )A.21l l 与相交B.21//l lC.1l 的倾斜角为6πD.21l l 与之间的距离为27.动点P 到 . 的距离之和为8, 则P 的轨迹方程是( ) A.1162522=+y x B.171622=+y x C.171622=-y x D.116722=+y x8.下列命题中正确的一个是( )A.平行于同一平面的两直线平行B.平行于同一直线的两平面平行C.垂直于同一直线的两平面平行D.垂直于同一平面的两平面平行.9.将 个大学毕业生全部分配给 所学校, 不限制去每所学校的大学生人数, 则不同的分配方案有() A.35P B.35C C.35 D.5310.抛掷两枚骰子, 出现的点数和为 的概率为( )A. B. C. D.二、填空题(本大题共5小题, 每小题4分, 共20分)11.不等式2|1|≥-x 的解集用区间表示是 .12.一组数据8.12. .11.9的平均数是10, 则其方差是 .13.双曲线1422=-y x 的渐近线方程是 .14.若 的展开式中所有项的系数和为64, 则展开式中 的幂指数相同的项的系数是 .(结果用数字表示)15.函数)10lg(2)(lg )(2x x x f -=的值域为__________.三、解答题(本大题共7小题, 其中第21, 22小题为选做题, 共60分, 每小题10分.解答应写出文字说明或演算步骤)16.下图是某城市通过抽样得到的居民某年的月均用水量(单位: 吨)的频率分布直方图.1)求直方图中x 的值;(2分)2)若将频率视为概率, 从这个城市随机抽取3位居民(看作有放回的抽样), 求这三人中, 月均用水量在3至4吨的居民数X 的分布列、数学期望和方差.(8分)17.数列{ }满足 , 且 .数列{ }的前 项和记作 .1)求{ }的通项 及 ;(5分) 2)若 , 求数列{ }的前6项之和 .(5分)18.设函数 是定义在R 上的奇函数, 且 =30.1)求 的值;(3分) 2)说明 的单调性(简要说明理由及结论, 不需要证明);(3分)3)解不等式30)2(02<+<x x f .(4分)19.向量, , .(为坐标原点).1)求, , ;(4分)2)将四边形OABC绕着OC旋转一周, 求所得几何体的表面积与体积.(精确到0.01)(6分)20.抛物线的顶点在原点, 对称轴是X轴, 圆的圆心是抛物线的焦点F, 抛物线与圆的一个交点是A(4, 4). 1)求抛物线及圆的标准方程;(4分)2)设直线AF交抛物线于另一点B,交圆于另一点C,求BC的长度.(6分)注意: 第21题, 22题为选做题, 请考生选择其中一题作答.21.已知复数 的模为4, 幅角主值是 ,(1)求复数z ;(4分) (2)求复数1z .(6分) 22.(本题满分10分)某工厂用两种不同原料均可生产同一产品, 若采用甲种原料, 每吨成本1000元, 运费500元, 可得产品90千克;若采用乙种原料, 每吨成本为1500元, 运费400元, 可得产品100千克, 如果每月原料的总成本不超过6500元, 运费不超过2200元, 那么此工厂每月最多可生产多少千克产品?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省高等职业技术教育招生考试模拟试卷三
数学试题卷
说明:本试题卷共三大题,共4页,满分120分,考试时间120分钟。
一、选择题(每小题2分,共36分)
1、已知集合A={2,3,4},B={x|x-5≤0},则A∩B=( )
A .{x|x<5} B. {2,3,4} C. {x|2<x<5} D.{2,3,4,5} 2.、若10,0<<<<c b a ,则下列恒成立的是( ) A.bc ac > B.
c
b
c a > C.b c a c ->- D.c b c a +>+ 3、已知函数()2log 22+=-x
x f ,则()=0f ( )
A.3
B.2
C. 1
D. 0
4、已知P :b kx y +=是增函数,q :0>k ,则p 是q 的( )条件. A .充分不必要 B .必要不充分 C .充要
D .既不充分又不必要
5、下列各角中与ο
300-终边相同的角是( )
A.ο
30 B.ο
400 C.ο
50- D.ο
920 6.、在下列函数中,定义域不是{x|x>-1}的是( ) A. 1
+=
x x
y B. 1+=x y C. 1)2(log 22+++=
x x x y D.)1(log 2x y += 7、已知向量)4,1(=,)3,2(-=,则向量=( ) A. (-3,-1) B. (3,-1) C. (3,1) D.(-3,1)
8、抛物线4
2
y x =的焦点坐标是( )
A.(0,1)
B.(1,0)
C.(
161,0) D.(0,16
1) 9、若三角形的两内角βα,满足0cos sin <⋅βα,则此三角形的形状为 ( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.不确定 10、在数列{}n a 中,133,211=-=+n n a a a ,则=100a ( ) A.34 B.35 C.36 D.37
11.已知指数函数()10≠>=a a a y x
且如图所示,则下列正确的是(
A. 与x 轴将会有交点
B. ()10=f
C. ()()()120f f f <<
D. 是减函数
12、NBA 球星麦迪将在中国4个不同的城市出席篮球活动,则不同的出席有( )种 A.4 B.16 C.24 D.256
13、若直线0132:1=+-y x l 与直线053:2=++ay x l 垂直,则a 的值为( ) A. 1 B. 1- C.2 D. 2- 14、 三角形ABC 中,下列式子成立的是( ) A .)sin(sin C B A += B .0)sin(>++C B A C .)cos(cos B A C += D .C C A tan )tan(=+ 15、下列命题正确的是 ( )
(1)若直线a ⊂平面β,直线b ⊥直线a ,则一定有b β⊥ (2)直线a ⊥平面β,直线b //直线a ,则一定有b β⊥ (3)a 、b 是两条异面直线,过a 有且只有一个平面和b 平行 (4)直线a 和平面内两条直线垂直,则a 一定垂直于这个平面 A.(1)、(2) B.(1)、(3) C.(3)、(4) D.(2)、(3)
16、要得到函数y =sin(2x -π3
)的图象,只要把函数y =sin2x 的图象( ).
A.向左平移π3 个单位
B. 向右平移π
3 个单位
C.向左平移π6 个单位
D. 向右平移π
6 个单位
17、若直线m x y +-=2经过第二、三、四象限,则方程132
2
=+my x 表示的曲线是( ) A .直线 B .圆 C .椭圆 D .双曲线
18、设F 1,F 2是椭圆252x +
9
2y =1的两焦点,B 是椭圆上任意一点,则∆ F 1BF 2面积最大
值为( )
A.12
B.24
C.25
D.40
二、填空题(每小题3分,共24分) 19. 计算:()=-+⎪⎭
⎫ ⎝⎛-+---0
2
12
121
2121log
x P _______________;
20. 已知42y x =-,则42x
y
+有 值,是_______________;
21.若椭圆上一点到两焦点)0,2(1-F ,)0,2(2F 的距离之和为8,则椭圆的短轴长为_______________; 22已知(
)ο
ο270
,180--∈α,且终边在直线x y 2-=上,则α的余弦值为_______________;
23.已知等比数列{n a }中,4151432=⋅⋅⋅a a a a 则=⋅98a a _______________; 24.如果球的表面积为2
64cm π,则球的体积为________3
cm ; 25. 若53sin =
α,且α为锐角,则=--)2
4(sin 212απ___________; 26.已知点)6,(a M 在抛物线x y 42
=上,则点M 到抛物线准线的距离d = . 三、解答题(共8小题,共60分) 27.(6分)倾斜角为
4
π
的直线l 与抛物线y 2=2px 有公共点(1,2), (1)求直线l 的方程;
(2)求抛物线的方程; (3)求抛物线的焦点到直线l 的距离.
28.(6分)已知ABC ∆中,2:1:=∠∠B A ,3:1:=b a ,4=c ,
(1) 求ABC ∆的三个内角;(2)求ABC ∆的面积S.
29.(7分)已知正四棱锥P-ABCD ,AB=PA=4,求: (1)PA 与底面ABCD 所成角的大小;(2)正四棱锥P-ABCD 的体积。
30.(7分)已知}{n a 是各项为正数的等比数列,若1328a a a =⋅ (1)求4a ;
(2)设n n a b 2log =,①求证:}{n b 是等差数列;② 设91=b ,求数列}b {
n 的前n 项和n S .
P
A
B
C
D
31.(8分)某商品进价为30元/件,此商品的销售单价x (元)与一周销售量y (件)存在一次函数关系,当单价为40元时,每天能销售30件,单价为45元时,能销售15件,求: (1)y 与x 的函数关系;(2)确定当销售单价为多少时,才能使每天获得的利润最大。
32.(8分)求二项式 n
x
x x )(41+ 展开式中,第3项的二项式系数比第2项的二项式系数大44,求展开式的常数项。
33、(8分)已知函数x x x f ϖϖ2
cos 322sin )(+-=(其中0>ϖ)的最小值周期 3
2π=
T ,试求:(1)ϖ的值(2)满足方程0)(=x f ,且在区间]2,0[π范围内的自变量x 。
34、(10分)如图所示,过点M (-1,0)的直线1l 与抛物线2
4y x =交于12,P P 两点,记12P
P 的中点为000(,)P x y ,过P 0和抛物焦点F 的直线2l ,直线1l 的
斜率为k ,求:
(1) k 的取值范围;
(2) 直线2l 的斜率(用k 表示) (3) 记1l 与2l 的斜率之比为)(k f ,讨论)(k f 的单调性。