高三数学课件:不等式的综合问题1

合集下载

不等式的性质基本不等式课件高三数学一轮复习

不等式的性质基本不等式课件高三数学一轮复习
常用变形 ab≤(a+4b)2≤a2+2 b2
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.

高三数学高考第一轮复习课件:不等式

高三数学高考第一轮复习课件:不等式
4.构造函数,进而通过导数来证明不等式或解决不等 式恒成立的问题是高考热点问题.
第六单元 │ 使用建议
使用建议
1.本单元内容理论性强,知识覆盖面广,因此教学中 应注意:
(1)复习不等式的性质时,要克服“想当然”和“显 然成立”的思维定式,一定使要用注建议意不等式成立的条件,强化 或者弱化了条件都有可能得出错误的结论.
第34讲 │ 编读互动 编读互动
第34讲 │ 知识要点 知识要点
第34讲 │ 知识要点
第34讲 │ 知识要点
第34讲 │ 双基固化 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
(1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式|a|-|b|≤|a+b|≤|a|+| b|.
第六单元 │ 复习策略
复习策略
不等式
目录
第34讲 不等式的概念与性质 第35讲 均值不等式 第36讲 不等式的解法 第37讲 不等式的证明 第38讲 含绝对值的不等式
第六单元 不等式
第六单元 │ 知识框架 知识框架
第六单元 │ 考点解读 考点解读
不等式、不等式的基本性质、不等式的证明、不等式的 解法、含绝对值的不等式.
第六单元 │ 考点解读
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化

第五讲一元二次方程及不等式课件-2025届高三数学一轮复习

第五讲一元二次方程及不等式课件-2025届高三数学一轮复习

、2 − 16 ≥ 0
、2 − 16 < 0
、2 − 16 ≤ 0
)。

一元二次函数 = 2 2 + + 2的二次项系数2 > 0,开口向上;
若不等式2 2 + + 2 < 0的解集为∅,则一元二次函数 = 2 2 +
+ 2的图像全部在轴上或轴上方;
结合开口向上,此时,函数图像与轴有一个交点或没有交点;
c(a > 0)的根
∆> 0
∆= 0
∆< 0
有两个不相等的实 有两个相等的实数 无实数
数根x1 , x2 (x1 < x2 ) 根x1 = x2 = − b

2a

ax 2 + bx + c >
{| ≠ − }
< , 或 > } ______________

0(a > 0)的解集 {|
1
1
显然,函数 = + 在 ∈ (0, ]上单调递减;

2
1
1
1
故函数 = − − = −( + )在 ∈ (0, ]上单调递增;


2
1
1
1
5
1
可得:(− − ) = − − 1 = − ( ∈ (0, ]);

2
2
2
2
综上, ≥ (− −
1
)
=

5
− 。
2
反馈检测
2
1
2
+ ) ≤ − × 2 = 0。
反馈检测
1
2

DL教育 最新高考 高中数学课件(可改)课件:模块复习课 第一课 不等式和绝对值不等式

DL教育 最新高考 高中数学课件(可改)课件:模块复习课 第一课 不等式和绝对值不等式

_________(当且仅当a1=a2=…=an时a,1等 a号2 成立 a)n. n
n a1a2 an
3.绝对值三角不等式
(1)|a|的几何意义表示数轴上的点到原点的_____, 距离
|a-b|的几何意义表示数轴上两点间的_____. 距离
(2)|a+b|≤________(a,b∈R,ab≥0时等号成立). (3)______≤||aa|-+b||b+||b-c|(a,b,c∈R,(a-b)(b-c)≥0
(2)因为a,b,c∈R+且a+b+c=1, 所以2=(a+b)+(b+c)+(c+a)
所以[(a+b)+(b+c)+(c+a)]·( 1 1 1 )
ab bc ca
所 3以3 a bb cc a 33
1 ab
1 bc
1 ca
9.
1 1 1 9. ab bc ca 2
【方法技巧】利用基本不等式求最值问题的类型 (1)和为定值时,积有最大值. (2)积为定值时,和有最小值. 在具体应用基本不等式解题时,一定要注意适用的范围 和条件:“一正、二定、三相等”.
时,等号成立).
a b ab 2
(3)引理:如果a,b,c∈R+,那么a3+b3+c3≥_3_a_b_c_(当且 仅当a=b=c时,等号成立).
(4)定理3:如果a,b,c∈R+,那么
abc
≥____(当且 3 abc
仅当a=b=c时,等号成立).
3
(5)推论:如果a1,a2…an∈R+,那么

• 6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称 为这个二元一次不等式(组)的一个解。所有整数解对应的点称为整点(也

基本不等式课件-2025届高三数学一轮复习

基本不等式课件-2025届高三数学一轮复习
2

b

+ b ≥2
2


+ b 的最小值为2
2
2.
2 2
2 ,当且仅当
.
1



2

��
2
=,

即a
(3)[2024上海市松江二中高三上学期阶段测]设正实数 x , y , z 满足4 x 2-3 xy + y 2-
z =0,则

的最大值为

1 .

[解析] 因为4 x 2-3 xy + y 2- z =0,所以 z =4 x 2-3 xy + y 2,所以
FO ⊥ AB ,连接 DA , DO , DB , FC ,作 CE ⊥ DO ,垂足为 E . 由图可知,☉ O 的
半径等于





.
2
2
2
(1)因为 DC 是Rt△ ADB 斜边上的高,所以由射影定理得 DC 2 = AC ·CB = ab
⇒ DC = .由 DO ≥ DC 得
+2≥2
−1
−1
−1
1
当 x -1=
,即 x =2时,等号成立.故选C.
−1
2
>0,则 x -1>0,所以 x
−1
( − 1) ·
1
+2=4,当且仅
−1
(2)[江苏高考]已知5 x 2 y 2+ y 4=1( x , y ∈R),则 x 2+ y 2的最小值是
[解析] 解法一
2
1
5 2
−2
−2
=6,当且仅当
4
·
−2
( − 2) +2
4
4

高三专题复习不等式恒成立问题

高三专题复习不等式恒成立问题

高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。

此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。

二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。

例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。

例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范 B C D 四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。

高三数学基本不等式

高三数学基本不等式
求证:a 2 b2 c2 ab bc ca .
讲授ห้องสมุดไป่ตู้课
例1. 已知 a, b, c为两两不相等的实数,
求证:a 2 b2 c2 ab bc ca .
练习. 已知 a 0, b 0, c 0,
求证:bc ac ab a b c. abc
提问4:你能给出它的证明吗?
讲授新课
注意:
a 2 b2 2ab
(1) 当 且仅 当a b, a 2 b2 2ab ;
(2) 特别地,如果 a 0, b 0,用 a和 b代替 a、b, 可得a b 2 ab,也可写成 ab a b
2 (a 0, b 0).
讲授新课
提问5:观察右图,你能得到不等式
ab a b (a 0, b 0)
2
D
的几何解释吗?
A
C
E
讲授新课
ab a b 2
我们常把a b 叫做正数a, b的算术平 2
均数,把 ab 做正数a, b的几何平均数.
讲授新课
例1. 已知 a, b, c为两两不相等的实数,
提问2:那4个直角三角形的面积和是多
少呢?
D
GF C
A HE
B
引入新课 提问3:根据观察4个直角三角形的面积
和正方形的面积,我们可得容易得到一个 不等式 a 2 b2 2ab ,什么时候这两部 分面积相等呢?
D GF C A HE
B
讲授新课
一般地,对于任意实数a、b,我们有 a 2 b2 2ab ,当且仅当a=b时,等号 成立.
讲授新课
例2.
讲授新课
例3.

高考数学复习考点知识讲解课件3 不等式性质 一元二次函数 方程和不等式

高考数学复习考点知识讲解课件3 不等式性质 一元二次函数 方程和不等式

+c(a>0)的
图象
ax2+bx+c =0(a>0)的

有两个不相 等的实数根 x1,x2(x1<x2)
有两个相等 的实数根 x1 =x2=-2ba
没有实数根
— 返回 —
— 6—
(新教材) 高三总复习•数学
判别式 ax2+bx+ c>0(a>0)的
解集 ax2+bx+ c<0(a>0)的
解集
Δ>0 {x_|x_<_x_1_或__x_>_x_2}
— 2—
— 返回 —
基础知识夯实
01
(新教材) 高三总复习•数学
知识梳理 1.两个实数比较大小的方法
(1)作差法:aa--bb>=00⇔⇔aa_____>=_____bb,, a-b<0⇔a___<__b.
aba>∈1Ra∈,Rb>,0b,>0⇔a___>___b (2)作商法ab=1⇔a__=____ba,b≠0,
— 返回 —
— 8—
(新教材) 高三总复习•数学
— 返回 —
诊断自测 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若ab>1,则 a>b.( × ) (2)若 ab>0,则 a>b⇔1a<1b.( √ ) (3)若不等式 ax2+bx+c>0 的解集是(-∞,x1)∪(x2,+∞),则方程 ax2+bx+c=0 的 两个根是 x1 和 x2.( √ ) (4) 一 元 二 次 不 等 式 ax2 + bx + c≤0 在 R 上 恒 成 立 的 条 件 是 a<0 且 Δ = b2 - 4ac≤0.( √ )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)判断F(X)在(1。+∞ )上的单 调性。并加以证明 (2)当 x ∈ (r , a − 2) 时F(X)的值域为 ∞ (1。+ ),求a与r的值。 (3)若 f ( x) ≥ log a 2 x 求X的取值范围
例2、P98 已知抛物线 y=ax
2
−1
上存在关于直线x+y=0成轴对称的 两点,试求实数a的取值范围
l
y = ax 2 + 8 x + 3(a > 0) 例3、设函数
对于给定的负数a,有一个最大的正 l( 数 l (a),使得在整个区间[0, a) ]上, f (x) 不等式| |≤5都成立。问 为何值 l l (a) 时 最大?求出这个最大的 , l (a) 证明你的结论。
问题
高三备课组
一知识梳理 1.方程与不等式、函数与不等式、 解析几何与不等式的综合问题 2.解决上述问题的关键是找出综合 题的各部分知识点和解法,充分 利用数学思想和数学方法求解
二、例题剖析; 例题剖析; 例1. P97 1+ x 已知 y = log a (a > 0, a ≠ 1) x −1
相关文档
最新文档