VAR与脉冲响应函数
var模型脉冲响应原理

var模型脉冲响应原理
Var模型脉冲响应原理是指,在电路中加入一个电容和一个可变电阻,通过改变电阻值来调节电路的频率响应。
这种方法在滤波器、振荡器
等电路中得到广泛应用。
Var模型脉冲响应原理的基本思想是:当输入信号为一个脉冲时,输
出信号为单位响应函数。
单位响应函数是指当输入信号为单位脉冲时,输出信号的时间序列。
在Var模型中,输入信号经过一个可变电阻和一个电容后,输出信号
的幅度和相位都与输入信号有关。
因此,在改变可变电阻的值时,可
以改变输出信号的频率响应特性。
具体来说,当输入信号为一个脉冲时,根据线性系统理论,在时域上
可以表示为一个单位脉冲函数。
在频域上,则可以表示为复数形式的
频率谱。
通过傅里叶变换可以将时域和频域之间进行转换。
Var模型中的可变电阻实际上是由一对反向并联的二极管组成。
当二
极管处于正向偏置状态时,其内部阻值较小;而当二极管处于反向偏
置状态时,则会出现高内部阻值。
通过改变二极管的正向偏置电压,
可以改变其内部阻值,从而实现对电路频率响应的调节。
在Var模型中,电容的作用是对输入信号进行滤波,去除高频噪声和干扰信号。
同时,电容也可以影响输出信号的相位特性。
总之,Var模型脉冲响应原理是一种基于可变电阻和电容的滤波器设计方法。
通过改变可变电阻的值,可以实现对电路频率响应特性的调节。
这种方法具有简单、灵活、高效等优点,在实际应用中得到了广泛的运用。
Eviews中VAR模型的操作、脉冲响应分析和方差分解的实现

数据准备
在Eviews中导入需要分析的时间 序列数据,并进行必要的预处理 ,如缺失值处理、平稳性检验等 。
模型设定
根据研究目的和数据特征,选择 合适的VAR模型阶数(滞后阶数 ),并设定模型的约束条件(如 外生变量、季节性等)。
参数估计
运用最小二乘法(OLS)或极大 似然法(ML)等估计方法对VAR 模型进行参数估计,得到模型的 系数矩阵和截距项。
3. 在弹出的对话框中,设置 冲击的滞后期数(即观察冲 击影响的期数),并选择要 分析的变量。
4. 点击“OK”按钮, Eviews将生成脉冲响应结果 。
脉冲响应结果的解读
脉冲响应图
通常以图形形式展示脉冲响应结果,横轴表示滞后期数,纵轴表示内生变量对冲击的响应程度。通过脉冲响应图可以 直观地观察变量之间的动态影响关系。
Eviews中VAR模型的实现步骤
模型诊断
对估计得到的VAR模型进行诊断检验,包括残差自相关检验、异方差性检验等,以确保模 型的合理性。
脉冲响应分析
在Eviews中利用脉冲响应函数(Impulse Response Function,IRF)分析VAR模型中各 变量对冲击的反应程度和持续时间。通过设置冲击大小和滞后期数,可以得到不同变量之 间的动态影响关系图。
在Eviews中选择 "Quick"->"Estimate Equation",在弹出的 对话框中选择VAR模型 ,并设定滞后阶数。
变量选择
根据研究目的选择合适 的变量,并将其添加到 模型中。
模型估计
点击"OK"按钮,Eviews 将自动进行VAR模型的 估计,并显示估计结果 。
脉冲响应分析与方差分解
脉冲响应函数

脉冲响应函数
脉冲响应函数是指一种数学函数,可以用来描述系统如何响应一个脉冲输入,以及该输入如何影响系统的输出。
当任意一个脉冲输入被应用到一个系统时,脉冲响应函数可以用来表示该系统的输出。
脉冲响应函数有多种形式,其中最常见的形式是双曲正弦(hyperbolic sine)函数。
此外,还有一些其他的脉冲响应函数,包括幂函数、双指数函数和正弦函数。
脉冲响应函数在工程领域中有着广泛的应用,其中最常见的应用是滤波,即使用脉冲响应函数来消除信号中的噪声或者干扰。
与滤波相关的另一个应用是控制,即使用脉冲响应函数来控制信号的频率或者其他参数。
脉冲响应函数也可以用于信号检测,即使用脉冲响应函数来计算信号的频率、相位或者其他参数。
此外,脉冲响应函数还被广泛应用于信号处理,包括消除信号中的噪声和干扰,以及改变信号的频率或其他参数。
总之,脉冲响应函数是一种数学函数,可以用来描述系统如何响应一个脉冲输入,以及该输入如何影响系统的输出。
脉冲响应函数在工程领域中有着广泛的应用,包括滤波、控制、信号检测和信号处理等。
脉冲响应函数

脉冲响应函数
脉冲响应函数是一种动态控制系统的重要工具,它对动态控制系统的响应性能有重要影响。
下面就脉冲响应函数进行详细介绍:
一、什么是脉冲响应函数
脉冲响应函数又称冲动响应函数,是指控制系统中给定脉冲输入后,控制系统的输出变化情况,以此来反映控制系统的动态性能。
二、脉冲响应函数对控制系统的重要影响
脉冲响应函数可以准确地反映控制系统的动态特性,可以清楚地表示出系统的调节能力、阻尼情况以及振荡频率等,反映了控制系统是否满足要求。
三、研究脉冲响应函数的方法
(1)模拟方法:模拟技术是研究脉冲响应函数最常用的方法,可以在发生器上给定某一脉冲信号,然后可以测量控制系统的输出信号在时间上的变化,从而形成脉冲响应函数。
(2)数学模型方法:建立控制系统模型,然后用数学方法研究脉冲传
播率,推导出脉冲响应函数。
(3)曲线拟合方法:此方法是以正弦或者多项式拟合的形式表示脉冲响应函数,通过曲线拟合可以得到脉冲响应函数的表示式。
四、研究中的关键要点
(1)建立正确的模型。
(2)优化脉冲响应函数特性。
(3)正确掌握脉冲响应函数在控制系统中的影响。
(4)选择合理的收敛算法来进行脉冲响应函数的计算。
五、总结
脉冲响应函数是控制系统中一种重要的性能指标,能够有助于我们了解一个控制系统的动态行为特点,为控制系统的改进及调试提供有用的参考。
研究脉冲响应函数的主要方法有模拟方法、数学模型方法和曲线拟合方法。
此外,研究脉冲响应函数时,还需要重点关注正确建立模型、优化脉冲响应函数特性、正确掌握脉冲响应函数在控制系统中的影响以及使用合理的收敛算法。
脉冲响应函数

脉冲响应函数注意VAR模型过程中的格兰杰检验与变量间的格兰杰检验不是一回事啊!变量间的格兰杰因果是前提是同阶单整Var模型后的格兰杰前提是非同阶单整后差分平稳做VAR模型是非结构化的,且模型形式已被确定为线性形式,需要确定哪些变量间有相互作用及反应变量彼此之间相互影响的最大可能滞后阶数。
因为经济问题中长出现伪回归问题,即经济意义表明几乎没有联系的序列可能出项较大的相关系数。
因此格兰杰检验是做VAR模型必须的。
var的前提是系统稳定(并不一定是各个变量都是稳定的)例如对于3变量的var若有2个水平不平稳有1个水平平稳但是他们3个都是一阶平稳则需要做协整判断用水平的还是用一阶差分的变量进行var若水平的存在协整关系且做单位圆检验系统稳定则可以直接用水平变量做var但是若不存在协整或则系统不稳定则就得用一阶差分变量来做若3个变量都是水平的则直接var就好了用s-plus进行多元VAR-GARCH估计时,是用的MGARCH命令,比如var.bekk=mgarch(It.St.getreturns[,c("interestrate","stockindex")]~ar( 2),~bekk(1,1),armaType="full")。
这时var.bekk的类型是mgarch,即class(var.bekk)="mgarch"。
能不能将模型估计的var部分提取出来,形成一个var对象?这样就可以进行脉冲响应分析了。
请高人指点啊。
建议看一下Nakatani,T.and T.Terasvirta(2009)."Testing for volatilityinteractions in the Constant Conditional Correlation GARCH model."Econometrics Journal 12(1):147-163.Impulse Response Function for Conditional Volatility in GARCH Models Wen-Ling Lin Journal of Business&Economic Statistics,Vol.15,No.1(Jan.,1997),pp.15-25 VAR模型中方程的特征根的倒数要在单位圆内,否则VAR模型不稳定,不能做脉冲响应脉冲响应分析很多时候是根据既定的条件进行的,比如经济意义。
脉冲响应函数分析请高手解答

对两个时间序列A和B进行脉冲响应函数分析,在内生变量框里输入的次序不同(一次是A B,另一次是B A),通过eviews5.0得出的脉冲响应图的结果怎么会完全不一样?输入A B 时得出的是A对B的一次冲击有很大响应,B对A的一次冲击没有什么响应;输入B A 时得出的是A对B的一次冲击没什么响应,B对A的一次冲击有很大响应。
哪位高手能解释一下这是什么原因?乔分解将所有影响的公共因素强加到你的VAR模型中的第一个变量中去,也就是说结果与你VAR模型中指定的变量秩序有关,你改变了秩序很正常的解决办法:定义脉冲时在IMPUSE DEFINITION项目中分解方法选择广义脉冲结果就不会因为模型中变量指定秩序改变而改变了,也就是说结果与变量秩序无关。
高人,能否详细解释一下geralized Impulses和Cholesky-d.f. adjusted这两种脉冲响应的应用有什么不同?在哪种情况下应该使用geralized Impulses,在哪种情况下又应该使用Cholesky-d.f. adjusted?不胜感激。
Cholesky-d.f. adjusted实际上是运用乔分解时,当是小样本时,在估计残差的协方差估计时进行了修正(高第2版P310)也就是说它实际上是修正过的乔分解(主要征对小样本进行修正),它进行脉冲时同样存在乔分解的问题:脉冲与秩序有关而广义脉冲分解法其结果与秩序无关,它是为了避免乔分解结果与秩序有关而采用的另外一种分解方法,对样本无什么要求,只要你建立的VAR/SVAR模型稳定即可!请问只有对平稳序列才能建立VAR模型吗?看了一些教材,好像说法不一。
如果有序列LnY和LnX,它们是非平稳序列,但是一阶差分后平稳,此时能否对原序列进行VAR分析以及脉冲响应和方差分解分析?如果只有平稳序列才能进行VAR预测的话,对于取了差分之后的序列,应该如何解释经济含义呢?如GDP/、能源消费量等。
1、只有平稳才能建VAR模型,但有特例,就是涉及到一些变量是如增长率,由于种种原因,如数据太少,或其他原因,ADF检验没通过,但也可以算作平稳,视情况而定。
《金融计量学基础》课件及阅读材料 第十章:VAR模型与脉冲响应函数(王超)

VAR模型:
VAR系统平稳性检验: Stata命令如下:
. varstable,graph
第六节 案例分析
图:残差项正态分布检验结果
VAR模型:
VAR模型残差项 正态分布检验:
Stata命令如下:
. varnorm
第六节 案例分析
VAR模型:
VAR模型的预测: Stata命令如下: . fcast compute f_,step(30) 图:对未来30日的指数预测值 . fcast graph f_SH f_SZ,observed lpattern('--')
第二节 向量自回归模型基本概念
❖
第二节 向量自回归模型基本概念
❖
第二节 向量自回归模型基本概念
❖VAR模型的平稳性条件
✓ 对于VAR模型,我们使用同AR(p)过程类似的特征方程 判定平稳性。
(1)以p=1的VAR模型为例说明:
化简有:
平稳性条件:
的根都在单位圆内。
第二节 向量自回归模型基本概念
第一节 引言
❖背景介绍
缺陷
I. 滞后期越长、变量越多,需要估计的参数就越多,对样本长 度需求就越大;
II. 作为常参数模型,在经济系统发生比较大的结构性变化的时 候,VAR的参数并不稳定;
III. 该模型并不严格遵循经济理论,未考虑结构性约束和变量之 间的同期相关性,处理经济变量的个数也相对有限,会影响 模型的估计效果,很难全面反映经济体的真实情况。
Stata命令如下: . summarize e,detail . ssc install jb6 . jb6 e
3.452
1R模型滞后阶数选择结果
VAR模型:
滞后阶数选择: Stata命令如下: . varsoc SH SZ,maxlag(10)
eviews脉冲响应函数的解释

Eviews脉冲响应函数的解释脉冲响应函数是指系统在受到一个单位冲击时,对于单位冲击作出的反应。
在经济学中,脉冲响应函数被用来研究某个变量对经济系统中其他变量的影响程度和时效性。
Eviews作为一种广泛使用的统计分析软件,可以帮助经济学家和研究者对经济系统中的各种变量进行分析和建模,脉冲响应函数便是其中的重要工具之一。
在Eviews中,脉冲响应函数通常用来研究特定变量对其他变量的冲击效应。
通过脉冲响应函数的计算和绘制,我们可以了解到一个变量受到冲击后,系统内其他变量的反应情况,进而帮助我们理解经济系统内部的相互作用和影响关系。
让我们看一下脉冲响应函数的计算过程。
在Eviews中,我们需要先建立一个VAR模型(向量自回归模型),然后通过设定冲击方程的方式来进行脉冲响应函数的计算。
脉冲响应函数的计算结果会以图形的方式呈现,一般来说,我们可以得到脉冲响应函数的几个关键信息,包括冲击的大小、影响的持续时间以及对其他变量的传导效应等。
接下来是关键的一步,我们需要解释脉冲响应函数的结果。
通过观察和分析脉冲响应函数的图形,我们可以得出一些结论,比如冲击对其他变量的影响是正向还是负向,影响的持续时间有多长,以及冲击对整个系统的稳定性和平衡性是否产生了影响等。
对于经济学研究来说,脉冲响应函数的解释对于理解经济系统内部的复杂关联和作用至关重要。
在实际应用中,我们可以通过对脉冲响应函数的分析,来预测和评估特定政策或经济变量对系统的影响,进而指导实际政策的制定和调整。
总结来说,Eviews脉冲响应函数是一种强大的工具,可以帮助我们揭示经济系统内部变量之间的影响关系和动态变化,对于经济学研究和政策制定具有重要的意义。
我的个人观点是,脉冲响应函数的解释需要结合具体的经济背景和研究目的来进行,同时也需要对Eviews软件的操作和计算能力有一定的了解和熟练掌握,才能更好地发挥其分析和解释的作用。
希望这篇文章可以帮助你更好地理解Eviews脉冲响应函数的概念和作用,同时也能对你在经济学研究中的实际应用有所启发和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VAR与脉冲响应函数
建立VAR本质是一个多元方程,因此需要变量序列都为同阶单整,且如果非平稳的话就需要存在协整关系,否则会出现伪回归现象。
脉冲响应函数(IRF)中变量序列顺序的变化会产生不同的脉冲图像。
关于这个顺序的选择依据,目前还没见到相关说明。
不过在实践中见到《经济研究》上一篇关于农村农民收入与金融发展关系的论文中,作者在IRF中为了避免不同的变量顺序产生不同的结果,每个VAR 只选取两个变量。
此时两个变量的VAR不论顺便如何变化,IRF的结果也就唯一。
个人认为这个方法非常好。
如果VAR有两个以上变量,则可以根据要求建立起多个双变量的VAR和IRF,这样问题迎刃而解。
脉冲相应函数是用于衡量随机扰动项的一个标准差冲击对内生变量当前和未来取值的影响.比如在eviews中有gnp和m2+cd的数列,在命令窗口输入series by=log(gnp)-log(gnp(-1)) 可以得到名义gnp成长率dy,同样类似的命令可以得到名义货币需求成长率dm.然后对名义数据的成长率进行var分
析.menu->quick->estimate VAR .内生变数里输入dy dm就可以了.在eviews
里进行var推定之后,view->impulse response里选择table,就可以知道第一期dm的noise在第二期也同样带来影响.用命令来输入的话,就是
var1.impluse(20,T) dy dm.括号内是期数.
在workfile窗口下点住x不放,拖到y上。
也就是同时选中x和y序列,鼠标右键,在弹出的选单中选择open as group。
之后弹出窗口,点选窗口中的view,有graph和multipe graph两个选单,下面还有子目录,根据你的需要选择图表就行了,图表出现后可以进行复制粘贴。
点击 Edit——copy即可或者通过print转成PDF格式然后在复制粘贴。