实验六天线的方向性与驻波比测量

合集下载

天线驻波比测试方法

天线驻波比测试方法

天线xx测试方法SX-400驻波比功率计是日本第一电波工业株式会社的“钻石天线”系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天线馈线与电台不匹配引起的反射功率及驻波比,此外在单边带通信中本功率计还可作为峰值包络功率监视器。

本仪表作为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现场人员正确使用,现将使用方法和注意事项介绍如下。

1仪表表头、开关、端口功能仪表表头、开关、端口位置见图1①表头:用于指示发射功率、反射功率、驻波比及单边带应用时峰值包络功率的数值。

表头上共有5道刻度。

从上往下,第1、2道刻度为驻波比刻度值,第一道刻度右侧标有“H”,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“L”,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5W 档位。

②RANGE(量程开关选择功率测量量程,共三档,分别为200W、20W、5W。

③FUNCTION(测量功能选择开关置于“POWER”时,进行发射功率(FWD)、反射功率(REF)测量。

'置于“CAL”时,进行驻波比(SWR)测量前的校准。

置于“SWR”时,进行驻波比(SWR)测量④CAL(校准旋钮)进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“”处。

⑤POWER(功率测量选择开关置于“FWD”时,进行电台发射功率测量。

置于“REF”时,进行反射波功率测量。

置于“OFF”时,停止对电台各种功率的测量。

⑥AVG、PEPMONI(平均值或峰值包络功率测量选择开关)测发射功率、反射波功率、驻波比时,该开关应弹起,呈“■”状态,此时表头所指示的是功率的平均值(AVG)。

作为单边带峰值包络功率(PEPMONI)监视器时,该开关应按下,呈“━”状态。

天线驻波比测试方法

天线驻波比测试方法

天线驻波比测试方法SX-400驻波比功率计是日本第一电波工业株式会社的“ 钻石天线” 系列产品,它是一种无源驻波比功率计,将它连接在电台与天线之间,通过简单的操作可测量电台发射功率、天线馈线与电台不匹配引起的反射功率及驻波比,此外在单边带通信中本功率计还可作为峰值包络功率监视器。

本仪表作为电信、军队、铁路(无线检修所)等无线通信部门的常用仪表被广泛使用,由于使用说明书为日文,阅读不便,为便于现场人员正确使用,现将使用方法和注意事项介绍如下。

1 仪表表头、开关、端口功能仪表表头、开关、端口位置见图 1①表头:用于指示发射功率、反射功率、驻波比及单边带应用时峰值包络功率的数值。

表头上共有5道刻度。

从上往下,第 1、 2道刻度为驻波比刻度值,第一道刻度右侧标有“ H” ,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“ L” ,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第 3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5 W档位。

②RANGE(量程开关选择功率测量量程,共三档,分别为200W、 20W、 5W。

③FUNCTION(测量功能选择开关置于“ POWER” 时,进行发射功率(FWD)、反射功率(REF)测量。

'置于“ CAL” 时,进行驻波比(SWR)测量前的校准。

置于“ SWR” 时,进行驻波比(SWR)测量④CAL(校准旋钮)进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“ ” 处。

⑤POWER(功率测量选择开关置于“ FWD” 时,进行电台发射功率测量。

置于“ REF” 时,进行反射波功率测量。

置于“ OFF” 时,停止对电台各种功率的测量。

⑥AVG、PEP MONI(平均值或峰值包络功率测量选择开关) 测发射功率、反射波功率、驻波比时,该开关应弹起,呈“ ■” 状态,此时表头所指示的是功率的平均值(AVG)。

微波实验天线特性的测量实验报告

微波实验天线特性的测量实验报告

天线特性的测量实验报告一、实验目的1.了解天线的基本特性参数 2.测量天线的频率特性,方向图3.了解鞭状天线、八木天线、壁挂天线等的构造及特性 4.学会用频谱仪测量天线的方向图。

二、实验仪器1.鞭状天线、八木天线、壁挂天线。

(选购)2.微波信号源。

(选购或用锁相源、跟踪振荡器等代替) 3.频谱仪。

(标配) 4. 频谱分析仪 三、天线测量原理天线是向空间辐射电磁能量,实现无线传输的重要设备。

天线的种类很多,常见天线分为线天线和面天线两大类。

高频、超高频多用线电线,微波常用面天线。

每一类天线又有很多种,常见的线天线,有鞭状天线、八木天线、偶极子天线等。

常见的面天线有抛物面天线、喇叭口天线等。

天线的基本参数有天线方向图 ,主瓣波束宽度、旁瓣电平、带宽、前后向比、极化方向、天线增益、天线功率效率、反射系数、驻波比、输人阻抗等等。

本实验对天线的方向图进行测试。

天线向空间辐射电磁能量,在不同的方向辐射的电磁能量的大小是不相同的,将不同方向天线辐射的相对场强绘制成图形,称为天线方向图。

1 方向图函数和方向图天线的最基本特性是它的方向特性。

对发射天线来说,方向特性通常是表示在相同距离条件下天线的远区辐射场与它的空间方向之间的关系。

描述天线的方向特性,最常用的是方向图函数和方向图。

方向图函数是定量表示远区天线辐射能量在空间相对分布情况的一个参数,通常是指远区同一距离处天线辐射场强(或能流密度)的大小与方向坐标关系的函数。

若用图形把它描绘出来,便是天线方向图。

其中表示场强大小与方向关系的,称为场强振幅方向图,表示能流密度大小与方向关系的,称为功率方向图。

习惯上又把场强振幅方向图简称为场强方向图,或进一步简称为方向图。

把场强振幅方向图函数用),(θf 表示,或进一步简写成f (,)θϕ。

把最大值为1的方向图称为归一化方向图。

把归一化场强振幅方向图函数用F(,)θϕ表示,或进一步简写成F(,)θϕ。

方向图一般是三维立体图形。

驻波比测量实验报告

驻波比测量实验报告

驻波比测量实验报告驻波比测量实验报告引言:驻波比测量是电磁波传输中常用的一种测量方法,通过测量驻波比可以了解电磁波在传输线上的传输情况以及传输线上的阻抗匹配情况。

本实验旨在通过实际操作,掌握驻波比测量的原理和方法,并通过实验数据的分析,加深对驻波比的理解。

实验原理:驻波比是指电磁波在传输线上的反射波与正向波的振幅之比,用VSWR (Voltage Standing Wave Ratio)表示。

传输线上的驻波比与传输线的特性阻抗有关,当传输线的特性阻抗与负载阻抗不匹配时,会产生反射波,从而导致驻波比的增大。

实验器材:1. 驻波比测量仪2. 信号发生器3. 50欧姆传输线4. 负载电阻5. 连接线缆实验步骤:1. 将信号发生器与驻波比测量仪连接,并设置信号发生器的频率为所需测量频率。

2. 将驻波比测量仪与传输线连接,确保连接稳固。

3. 将负载电阻与传输线的末端相连。

4. 打开信号发生器和驻波比测量仪,调节信号发生器的输出功率,使其适合测量范围。

5. 通过驻波比测量仪的显示屏,记录下测量得到的驻波比数值。

6. 将负载电阻更换为其他数值的电阻,并重复步骤5,记录下不同负载电阻下的驻波比数值。

实验结果与分析:根据实验步骤得到的驻波比数据,我们可以进行进一步的分析和计算。

首先,我们可以观察不同负载电阻下的驻波比变化情况。

当负载电阻与传输线的特性阻抗相等时,驻波比最小,接近于1;当负载电阻与传输线的特性阻抗不匹配时,驻波比会增大。

通过这一现象,我们可以判断传输线与负载之间的阻抗匹配情况。

另外,我们还可以计算驻波比与反射系数之间的关系。

反射系数(Reflection Coefficient)是指电磁波在传输线上的反射波与正向波的振幅之比。

反射系数与驻波比之间的关系可以通过以下公式计算得到:反射系数 = (VSWR - 1) / (VSWR + 1)通过测量得到的驻波比数据,我们可以计算出相应的反射系数,并进一步分析传输线上的反射情况。

天线驻波比测试方法

天线驻波比测试方法

天线驻波比测试方法1 天线驻波比(VSWR)测试天线驻波比就是信号反射再次回到发射端时,改变发射端阻抗与传输线阻抗之比的概念。

它可以表示收发信号强度及品质,是评价良好RF连接质量的重要指标。

天线驻波比测试是检查天线及RF模块安装质量及性能的重要指标,也是衡量许多电子设备的效率水平的参考指标。

1.1 测量原理驻波比测试,Working Voltage Standing Wave Ratio(VSWR),也称为综合驻波值(S11),是接入了收发电路的天线实际所提供的反射信号强度比。

它由发射到天线,以及天线所发射回到原点的信号之间的比值确定,其方法是:信号从发射端通过一根传输线的负载端将信号输送到重力天线,信号再从重力天线发射回发射端,然后再次由发射端经同一根传输线发出。

1.2 测量方法测量天线驻波的方法有VNAs(Vector Network analysers),VSWR meters和return loss bridges。

1)VNAs:VNAs可以看成是一种多端口网络分析仪,它能以频率和阻抗为参数测量天线的参数,也能测量天线系统中发射信号和反射信号之间的差别。

2) VSWR meter:它可以同时测量发射、反射和总体驻波值。

它一般都是使用平衡和非平衡进行测量,测量结果一般以VSWR值来表示,1:1.5即为1.5:1,表示发射信号有1.5倍的反射,1:1.5显示结果为“1.5”,越接近1越接近理想状态。

3) Return loss bridge:它的原理与VSWR meter相同,但它的数字化显示方式为以dB为单位的反射率。

1.3 应用VSWRL测试在各类无线通信设备,包括射频模块和天线的安装与检测通常可以作为校准或查找正常状态的有效手段,常见的应用场景有无线电设备、无线网络等等。

2 结论由上文可知,VSWR测试是评价良好RF连接质量的重要指标,常用于检测天线及RF模块安装质量及性能,除此之外还可以用于校准或查找正常状态的有效手段。

天线检验作业指导书

天线检验作业指导书

天线检验作业指导书标题:天线检验作业指导书引言概述:天线是无线通信系统中的重要组成部分,其性能直接影响通信质量。

为了确保天线的正常工作,需要进行定期的检验和维护。

本文将介绍天线检验的作业指导书,帮助操作人员正确、高效地进行天线检验工作。

一、检查天线外观1.1 确保天线表面无明显损坏或腐蚀,如有损坏应及时更换。

1.2 检查天线连接部分是否松动,确保连接牢固。

1.3 检查天线支架是否稳固,确保天线安装牢固。

二、测量天线参数2.1 使用天线分析仪测量天线的驻波比,确保在正常范围内。

2.2 测量天线的增益和方向图,检查是否符合设计要求。

2.3 检查天线的极化特性,确保与系统匹配。

三、检查天线馈线3.1 检查馈线是否有损坏或老化现象,如有问题应及时更换。

3.2 检查馈线连接部分是否牢固,确保连接良好。

3.3 测量馈线的传输损耗,确保在可接受范围内。

四、调整天线方向4.1 使用仪器辅助调整天线的方向,确保最佳信号接收。

4.2 检查天线方向是否受到遮挡,及时调整避免影响通信质量。

4.3 定期检查天线方向,确保保持最佳通信状态。

五、记录检验结果5.1 将每次检验的具体参数和结果记录在作业指导书中,建立档案。

5.2 记录天线的使用寿命和维护情况,为后续维护提供参考。

5.3 定期对天线检验结果进行分析和总结,优化维护计划。

结论:通过以上步骤的指导,操作人员可以正确、全面地进行天线检验工作,确保天线的正常工作和通信质量。

天线检验作业指导书是保障通信系统稳定运行的重要工具,应定期更新和完善,以适应不同环境和需求。

驻波测量线的调整与电压驻波比测量

驻波测量线的调整与电压驻波比测量

实验一驻波测量线得调整一、实验目得1、熟悉测量线得使用及探针得调谐。

2、了解波到波导波长得测量方法。

二、实验原理1、微波测量系统得组成微波测量一般都必须在一个测试系统上进行。

测试系统包括微波信号源,若干波导元件与指示仪表三部分。

图1就是小功率微波测试系统组成得典型例子。

图1 小功率波导测试系统示意图进行微波测量,首先必须正确连接与调整微波测试系统。

信号源通常位于左侧,待测元件接在右侧,以便于操作。

连接系统平稳,各元件接头对准,晶体检波器输出引线应远离电源与输入线路,以免干扰。

如果连接不当,将会影响测量精度,产生误差。

微波信号源得工作状态有连续波、方波调制与锯齿波调制三种信号通过同轴—波导转换接头进入波导系统(以后测试图中都省略画出同轴—波导转换接头)。

隔离器起去耦作用,即防止反射波返回信号源影响其输出功率与频率得稳定。

可变衰减器用来控制进入测试系统得功率电平。

频率计用来测量信号源得频率。

驻波测量线用来测量波导中驻波得分布。

波导得输出功率就是通过检波器进行检波送往指示器。

若信号为连续波,指示器用光点检流计或直流微安表。

若信号输出就是调制波,检波得到得低频信号可通过高灵敏度得选频放大器或测量放大器进行放大,或由示波器数字电压表、功率计等来指示。

后一种测量方法得测量精度较高,姑经常采用调制波作被测信号,测试系统得组成应当根据波测对象作灵活变动。

系统调整主要指信号源与测量线得调整,以及晶体检波器得校准。

信号源得调整包括振谐频率、功率电平及调谐方式等。

本实验讨论驻波测量线得调整与晶体检波器得校准。

2、测量线得调整及波长测量(1)驻波测量线得调整驻波测量线就是微波系统得一个常用测量仪器,它在微波测量中用处很广,如测驻波、阻抗、相位、波长等。

测量线通常由一端开槽传输线,探头(耦合探针,探针得调谐腔体与输出指示)、传动装置三部分组成,由于耦合探针深入传输线而引起不均匀性,其作用相当于在线上并联一个导纳,从而影响系统得工作状态(详见第二部分二)。

天线驻波比的测量方法

天线驻波比的测量方法

天線駐波比的測量方法
在天線系統中,天
線與設備配接是
否良好我們常常
用一個稱為駐波
比的參數對其衡
量,當駐波比為1
的時,表示此天線
系統匹配良好沒有反射,如此數越大則意味著匹配狀況越差,系統中存在越大的反射波。

那末如何測量天線的駐波比呢?在這裏我向大家介紹一種較為簡易的辦法。

要測量駐波比需要一台掃頻儀,接法如圖2-1,先將饋線的終端(近天線系統一端)短路,此時由於掃頻儀輸出的信號在饋線的終端形成全反射,觀察其全反射波形如圖2-2曲線的最大幅度為a,然後將天線接入饋線的終端,此時掃頻儀上在工作頻率範圍內觀察到的最大幅度為b如圖2-3,先求出反射係數P=b/a,然後可用式S=1+P/1-P求出駐波比,式中的S表示駐波比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六天线的方向性与驻波比测量
一、实验目的
1.了解八木天线的阻抗特性,知道八木天线驻波比的测量方法。

2.加深对方向图的理解,了解方向图的测试方法。

3.了解两天线法测增益的原理,知道测试方法。

二、实验器材
1、PNA3621及其成套附件
2、偶极子天线两根
3、待测八木天线一个
4、短路器一只
5、半波振子和全波振子各一个。

三、实验步骤
1、仪器进行校准。

2、插损和增益测量。

3、接上待测八木天线,按【菜单】键将光标移到【驻波】处,再按【执行】键,用驻波测量,打出测试曲线。

4、设置参考方位,控制器置手动(MAN),接通电源;按控制器右转(或左)按
键,将天线转到底使其限位停下;左右微动使得转台停在指示灯亮的方位上,以这点为参考方位。

此点习惯上为-90°(或270°);将待测天线的-90°(或270°,即天线讯号的最小值处)方向,对准发射天线并固定之。

5、校最大值,控制器置手动(MAN),左右转动以便找到最大值。

找到最大值后,按下仪器执行键。

即完成了校最大值步骤,此时屏幕右下角显示测试频率值。

6、测试,按控制器右转(或左)键将天线转到底使其限位停下,然后再按一次仪器执行键,仪器进入测试状态,画面转为直角坐标;再按入控制器自动(AUTO)键使天线按270°→ 0°→90°→180°方向旋转;过270°后仪器即进入记录状态,这样记的目的是为了得到完整的主瓣与尾瓣。

四、实验记录
1、偶极子天线的插损及增益:
2、全波振子方向图:
3、半波振子方向图:
4、八木天线方向图:
5、八木天线驻波比图:
五、实验分析
对于天线增益:天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。

在本实验中,天线的插损为25.61dB,属于较好的结果范围内,实验相对较成功。

所谓方向图,是指在离天线一定距离处,辐射场的相对场强随方向变化的曲线图。

由方向图可以看出半波振子可以达到-60dB,而全波振子天线可以达到-76dB 左右。

半波振子天线的方向图是“8”字形,无副瓣,在一般性应用中,有一定优势。

且半波振子当长度超过半波长时,线上出现反相电流,使得天线的方向性下降,增益降低。

对于八木天线它的振子为全波振子。

相对于基本的半波对称振子天线,八木天线增益高、方向性强、抗干扰、作用距离远,并且构造简单、材料易得、价格低廉、挡风面小、轻巧牢固、架设方便。

因为八木天线有着很好的方向性,被广泛的用于微波通信、雷达、电视等无线电系统中。

配上仰角和方位旋转控制装置,可较为灵活的与各个方向上的电台联络。

可被用于无人机的地面遥控天线。

六、实验小结
通过本次实验我们学会了天线方向图的测试方法,加深了对天线方向图的理解与认识。

天线方向图是衡量天线性能的重要图形,可以从天线方向图中观察到天线的各项参数。

且天线方向图是用来表示天线的方向性的图,所谓的“天线方向性”,就是指在远区相同距离R的条件下,天线辐射场的相对值与空间方向的关系。

同时在实验中还了解到两天线法测增益的原理及其测试方法,实验中也对偶极子天线的插损与增益进行了测量,测试数据也相对较好。

此外,又对上节课遗留下的八木天线的驻波比进行了测试。

另外,在课后也查找了半波振子,
全波振子和八木天线的相关资料,进行了相关的对比,丰富了自己的知识库。

总之,此次实验收获到了许多东西。

相关文档
最新文档