实验二 驻波比的测量
实验二-驻波管法吸声材料垂直入射吸声系数的测量

实验二 驻波管法吸声材料垂直入射吸声系数的测量一、实验目的加深对垂直入射吸声系数的理解,了解人耳听觉的频率范围,获得对一些频率纯音的感性认识。
二、实验原理在驻波管中传播平面波的频率范围内,声波入射到管中,再从试件表面反射回来,入射波和反射波叠加后在管中形成驻波。
由此形成沿驻波管长度方向声压极大值与极小值的交替分布。
用试件的反射系数r 来表示声压极大值与极小值,可写成:max(1)r p p =+min(1)r pp =-根据吸声系数的定义,吸声系数与反射系数的关系可写成:21rα=-定义驻波比S 为:minmaxp p s =吸声系数可用驻波比表示为:()241ss α+=因此,只要确定声压极大和极小的比值,即可计算出吸声系数。
如果实际测得的是声压级的极大值和极小值,计两者之差为Lp ,则根据第二章中介绍的声压和声压级之间的关系,可由下式计算吸声系数:()()()200220410110Lp Lpα⨯+=三、实验仪器AWA6122型智能电声测试仪,AWA6122A驻波管测试软件,待测吸声材料。
四、实验步骤利用驻波管测试材料垂直入射吸声系数的步骤如下:a将固定驻波管的滑块移到最远处。
b移动仪器屏幕上的光标,到所要测量的频率第一个峰值处,缓慢移动固定驻波管的滑块,同时读取光标位置显示的声压级,将滑块停在声压级为一个极大值的位置。
此位置即为峰值位置,输入此时滑块所在位置的刻度。
c移动仪器屏幕上的光标,到所要测量的频率第一个谷值处,缓慢移动固定驻波管的滑块,同时读取光标位置显示的声压级,将滑块停在声压级为一个极小值的位置。
此位置即为谷值位置,输入此时滑块所在位置的刻度。
d移动仪器屏幕上的光标,到所要测量的频率第二个峰值位置、第二个谷值位置,或到所要测量的第三个峰值位置、第三个谷值位置、重复b,c条操作。
可以测量到第二个峰谷值和第三个峰谷值。
e重复a—d操作,可以测量到各个频率点的声压级峰谷值。
f注意事项:测过数据后,光标不要返回,驻波管的瞬时数据会覆盖原有记录数据;由于扬声器密封性能不是特别好,故标尺首尾数据不要记录,避免因漏声造成的测量误差。
驻波比实验总结

驻波比实验总结驻波比实验总结1本次电磁场与微波实验时长八周,一共19个小实验。
其中因为时间的原因我们组没有做布拉格衍射实验。
在电磁场与电磁波实验中,我们主要进行了定律的验证和现象观察,包括电磁波的折射、反射、衍射、干涉和极化等现象。
由于电磁场与电磁波课程是在大二下开设的,所以在实验开始我们发现有很多知识点存在遗忘现象,但还好电磁场实验同我们的感性认识更为接近,所涉及知识大多跟普通物理实验相关,在现象和定律方面我们记得还算牢靠,所以实际进行起来也还算顺手。
但是电磁场实验由于实验室空间和环境的限制导致了其测量误差较大,像极化实验我们就不得以测了很多次最终取了多次实验的平均值才勉强得出与定律相符合的实验结果,但是总体而言,基本上都验证了实验的相关定律。
电磁场的前两次实验,主要是验证反射与折射定律,测量单缝衍射与双缝干涉,由于在高中便已经学过了这些知识,故而上手十分容易,不过是将待测量转变为电信号进行验证求解。
第三次的实验涉及到迈克尔逊干涉仪、平面波的极化,这些知识都是在大学物理和电磁场与电磁波课程中的重点知识,尽管有些知识点记得不是很清楚,但是我们都对照实验指导书进行了仔细的预习工作,所以实验也还算顺利的完成了。
最后一次实验是用专门的仪器对学校周边的场强进行测量,需要我们进行户外采集数据,一方面考验了我们对实验仪器的使用,另一方面对于整个学校的场强变化也有了一定了解,在这次实验中我们组还遇到了一些问题,一开始我们听从老师的推荐选择了的频段,但测量结束后回来分析数据发现结果并不理想,场强的分布在校园的每个角落都十分均匀,在查资料和询问老师后才发现的发射台在全北京都是少数,所以在北邮校园内测量起来场强分布并不会有很大的差别,因此我们又选择了150MHz进行了测量,得到了较为理想的结果。
接下来的几周我们进行了微波测量实验,实验中主要运用了实验仪器测量了一些上个学期微波课程中的基本变量,例如波导波长、驻波比和介电常数等。
实验二 驻波比的测量

实验四 驻波比的测量【实验目的】掌握测量驻波比的原理和常用方法。
【实验内容】在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。
【实验框图与仪器】网络分析仪被测件信号源被测件频谱仪b. c.图1 驻波比测量系统图 【实验原理】测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及其位置,从而得到驻波比(或反射系数)和波导波长。
由于驻波比(或反射系数)能表征电磁场的分布规律,所以它们时微波设备和元器件的一项重要指标,因此驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其它参量。
产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。
在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比:minmax E E =ρ (1-14)其中,max E 和min E 分别是微波传输系统电场的最大值和最小值。
一固定长度的探针感应的电动势正比于场强,因此对平方律检波,有式中,m ax I 和m in I 分别是电场为最大和最小时指示器的读数。
对于直线律检波有m inm axI I =ρ (1-16) 如果不知道检波律,必须用晶体检波特性曲线求出场强和指示器读数的关系再求得)151(minmax min max-==I I E E ρminmax min maxI I E E ==ρ (1-2)一般都是在小信号状态下进行测量,为此检波晶体二极管都是工作在平方律检波区域(检波电流I ∝E 2),故应有:minmaxI I =ρ当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。
节点偏移法测量驻波比的测试系统如图5示。
测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中121-=λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。
驻波比测量实验报告

驻波比测量实验报告驻波比测量实验报告引言:驻波比测量是电磁波传输中常用的一种测量方法,通过测量驻波比可以了解电磁波在传输线上的传输情况以及传输线上的阻抗匹配情况。
本实验旨在通过实际操作,掌握驻波比测量的原理和方法,并通过实验数据的分析,加深对驻波比的理解。
实验原理:驻波比是指电磁波在传输线上的反射波与正向波的振幅之比,用VSWR (Voltage Standing Wave Ratio)表示。
传输线上的驻波比与传输线的特性阻抗有关,当传输线的特性阻抗与负载阻抗不匹配时,会产生反射波,从而导致驻波比的增大。
实验器材:1. 驻波比测量仪2. 信号发生器3. 50欧姆传输线4. 负载电阻5. 连接线缆实验步骤:1. 将信号发生器与驻波比测量仪连接,并设置信号发生器的频率为所需测量频率。
2. 将驻波比测量仪与传输线连接,确保连接稳固。
3. 将负载电阻与传输线的末端相连。
4. 打开信号发生器和驻波比测量仪,调节信号发生器的输出功率,使其适合测量范围。
5. 通过驻波比测量仪的显示屏,记录下测量得到的驻波比数值。
6. 将负载电阻更换为其他数值的电阻,并重复步骤5,记录下不同负载电阻下的驻波比数值。
实验结果与分析:根据实验步骤得到的驻波比数据,我们可以进行进一步的分析和计算。
首先,我们可以观察不同负载电阻下的驻波比变化情况。
当负载电阻与传输线的特性阻抗相等时,驻波比最小,接近于1;当负载电阻与传输线的特性阻抗不匹配时,驻波比会增大。
通过这一现象,我们可以判断传输线与负载之间的阻抗匹配情况。
另外,我们还可以计算驻波比与反射系数之间的关系。
反射系数(Reflection Coefficient)是指电磁波在传输线上的反射波与正向波的振幅之比。
反射系数与驻波比之间的关系可以通过以下公式计算得到:反射系数 = (VSWR - 1) / (VSWR + 1)通过测量得到的驻波比数据,我们可以计算出相应的反射系数,并进一步分析传输线上的反射情况。
电压驻波比的测量

电压驻波比的测量一实验目的通过对电压驻波比的测量实验,掌握驻波测量线的正确使用以及掌握大、中、小电压驻波系数的测量原理和方法。
二实验原理测量电压驻波比、阻抗、匹配情况等等,是微波测量的重要工作。
驻波测量线就是测量的基本仪器。
测量线由开槽波导,不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以探测微波传输系统中电磁场分布情况。
测量线波导是一段精密加工的开槽直波导,此槽位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小。
此外,槽端还有阶梯匹配段,两端法兰具有尺寸精确的定位和连接孔,而且保证开槽波导有很低的剩余驻波系数。
三厘米波导测量线的外形图见实验仪器介绍部分所示。
滑架是用来安装开槽波导和不调谐探头的。
把不调谐探头放入滑架的探头插孔中,拧紧锁紧螺钉,即可把不调谐探头紧固。
探针插入波导中的深度,用户可根据情况适当调整。
出厂时,探针插入波导的深度为1.5mm,约为波导窄边尺寸的15%。
电压驻波比的测量方法有未调制的频率法和调制的频率法种。
这里讲述调制的频率法,它的测量连接如图所示。
YS1123信号源YS3892选频放大器隔离器可变短路器TC26A测量线可变衰减器定向耦合器同轴/波导转换器E、H阻抗调配器测量连接如图驻波测量是电磁波测量中最基本和重要内容之一,通过电磁波的测量可以测出阻抗、波长、相位等其它参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值1最先值之比,即⑴ 小驻波比(1.05<S<1.5)这时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。
若驻波波腹点和节点处读数分别为Imax,Imin则电压驻波系数为⑵ 中驻波比(1.5<S<5)此时,只须测一个驻波波腹和一个驻波波节,即直接读出Imax,Imin⑶ 大驻波比(S>5)当S>5时,如果直接测量大驻波的最大值,就会引入误差,驻波的最大值超出了指示器量程。
反射系数(电压驻波比)的测量

实验二 反射系数(电压驻波比)的测量驻波系数测量是微波测量中最基本的测量,通过驻波测量,不仅可以了解传输线上的场分布,而且可以测量阻抗、波长、相位移、衰减、Q 值等其它参量,传输线上存在驻波时,能量不能有效地传到负载,这就增加了损耗;大功率传输时,由于驻波的存在,驻波电场的最大点处可能产生击穿打火,因而驻波的测量以及调配是十分重要的。
根据驻波系数定义,可知ρ的取值范围为1≤ρ<∞,通常按ρ的大小可分三类:ρ<3为小驻波比;3≤ρ≤10为中驻波比;ρ>10为大驻波比。
驻波系数的测量方法很多,用测量线进行测量的主要方法及应用条件如下:表Ⅰ 用测量线测驻波系数的方法及应用条件(1)直接法:测试方框如图1。
将测量线探头沿线移动,测出相应各点的驻波场强分布,找到驻波电场的最大点与最小点,直接代入公式就可以得到驻波比,如测量线上的晶体检波律为n ,则:naa 1min max⎪⎪⎭⎫ ⎝⎛=ρ a 为输出电表指示。
通常实验室条件下检波功率电平较小,可认为基本特性为平方律,即n =2。
为提高测量精度,必须尽量使电表指针偏在满刻度12以上。
当驻波系数在1.05<ρ<1.5时,由于驻波场的最大与最小值相差不大,且变化不尖锐,不易测准。
为提高测量准确度,可移动探针到几个波腹与波节点,记录数据,然后取其平均值。
直接法的测试范围受限于晶体的噪声电平及平方律检波范围。
(2)等指示度法(二倍最小法):当被测器件的驻波系数大于10时,由于驻波最大与最小处的电压相差很大,若在驻波最小点处使晶体输出的指示电表上得到明显的偏转,那么在驻波最大点时由于电压较大,往往使晶体的检波特性偏离平方律,这样用直接法测量就会引入较大的误差。
等指示度法是通过测量驻波图形在最小点附近场强的分布规律,从而计算出驻波系数,如图三所示。
若最小点处的电表指示为min a ,在最小电两边取等指示点1a ,两等指示度点之间的距离为W ,有min 1Ka a =,设晶体检波律为n ,由驻波场的分布公式可以推出:gW gW Knλπλπρsincos2/2-= (1)通常取2K =(二倍最小法),且设2n =:⎪⎪⎭⎫⎝⎛+gWλπρ2sin 11= (2)当ρ>10时,上式可简化为 Wg πλρ≈只要测出波导波长及相应于两倍最小点读数的两点D 1、D 2之间的距离W ,代入(2)式,即可求出驻波比ρ。
半波振子的输入阻抗与驻波比的测试实验原理

半波振子的输入阻抗与驻波比的测试实验原理
半波振子是一种常用的天线结构,其输入阻抗和驻波比的测试是判断天线性能的重要手段。
下面是它们的实验原理:
1. 输入阻抗测试原理
输入阻抗是指天线口的阻抗值,通常用复数形式表示。
在实际使用中,为了优化天线系统的匹配,需要对其进行输入阻抗测试。
输入阻抗测试通常通过一些特定的测量方法实现,如:
(1) 端口阻抗测量:可通过阻抗分析器测量天线端口的阻抗。
(2) 反射系数测量:可以通过向天线端口输入信号,通过反射系数计算得到输入阻抗值。
(3) 同轴适配器法:用同轴适配器将天线端口与测试设备相连,实现输入阻抗测试。
2. 驻波比测试原理
驻波比是指在传输线中反射波和正向波形成的电压幅值比值。
驻波比越小,表示
反射波越少,线路匹配性能越好,天线性能也越好。
一般认为驻波比小于2就能基本保证线路匹配性能。
驻波比的测试方法主要有:
(1) 反射法:用反射系数测量仪测量传输线中反射波和正向波的幅值,从而计算得到驻波比。
(2) 平衡法:用平衡器测量信号的正向和反向功率,从而计算得到驻波比。
(3) 调制法:将一正弦波与测试信号混合,将其通过传输线,然后侧于线路接口处测量反射波信号的幅值,从而计算得到驻波比。
需要注意的是,由于半波振子的结构比较复杂,其输入阻抗和驻波比的测试需要根据具体测试方法进行合理选取。
驻波比测试说明噪声系数测试说明

测试说明
噪声系数测试说明:1,测试0。
01W小型机噪声及增益低于80dB的直放站,
噪声仪器的输入端接(20dB~30 dB固定衰减器)。
噪声源
这端直接接设备。
先将噪声源头和输出馈线接至被测设
备两端,再将被测设备上电,(如果被测设备上有手动衰
减的拨盘装置,则可测试上行时把下行的增益衰至最小
值,测试下行时把上行的增益衰至最小值)如果没有上
述情况刚按以上方法测试。
2,测试大功率且设备增益大于80dB的直放站,噪声仪器
的输入端接(30dB~50 dB固定衰减器)。
噪声源这端直接
接设备。
测试前先将被测设备进行设置,有监控的设备
情况下,测试上行时把下行的功放使能开关关闭,测试
下行时把上行的使能开关关闭,然后关闭设备电源,将
噪声源头和输出馈线接至被测设备两端,再将被测设备
上电进行测试。
如果没有监控的情况,则测试上行时把
下行链路的功放或低噪放的供电断掉,测试下行时把上
行的功放或低噪放的供电断掉,再将噪声源头和输出馈
线接至被测设备两端,上电进行测试
驻波比测试说明:1,测试设备增益低于60dB时,可直接进行端口驻波测试
2,测试设备增益大于60dB时,需先将被测设备的增益设至
最小值包括上行和下行链路,再进行驻波测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 驻波比的测量
【实验目的】
掌握测量驻波比的原理和常用方法。
【实验内容】
在测量线系统中,选用合适的方法测量给定器件的电压驻波系数。
【实验框图与仪器】
网络分析仪
被测件信号源
被测件
频谱仪
b. c.
图1 驻波比测量系统图 【实验原理】
测试微波传输系统内电磁场的驻波分布情况,包括场强的最大点、最小点的幅度及
其位置,从而得到驻波比(或反射系数)和波导波长。
由于驻波比(或反射系数)能表
征电磁场的分布规律,所以它们时微波设备和元器件的一项重要指标,因此驻波测量是微波测量中最基本和最重要的内容之一,通过驻波测量可以测出阻抗、波长、相位和Q 值等其它参量。
产生驻波的原因是由于负载阻抗与波导特性阻抗不匹配。
因此,通过对驻波比的测量,就能检查系统的匹配情况,进而明确负载的性质。
在测量时,通常测量电压驻波系数,即波导中电场最大值与最小值之比:
min
max E E =
ρ (1-14)
其中,max E 和min E 分别是微波传输系统电场的最大值和最小值。
一固定长度的探针感应的电动势正比于场强,因此对平方律检波,有
式中,m ax I 和m in I 分别是电场为最大和最小时指示器的读数。
对于直线律检波有
m in
m ax
I I =
ρ (1-16) 如果不知道检波律,必须用晶体检波特性曲线求出场强和指示器读数的关系再求得
)
151(min
max min max
-==
I I E E ρ
min
max min max
I I E E ==
ρ (1-2)
一般都是在小信号状态下进行测量,为此检波晶体二极管都是工作在平方律检波区域(检波电流I ∝E 2),故应有:
min
max
I I =
ρ
当电压驻波系数在1.05<ρ<1.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可采用节点偏移法。
节点偏移法测量驻波比的测试系统如图5示。
测量方法:逐点改变短路活塞的位置(读数S ),在测量线上用交叉读数法跟踪测得某一波节点的位置(读数为D ),作出S 和(D+S )+KS 的关系曲线,其中12
1
-=
λλK ,1λ是取下待测元件,固定短路活塞位置,移动测量线探针测得的测量线中的波长;2λ是固定测量探针,移动短路活塞,用交叉读数法在短路活塞上测得的波长。
由所得实验曲线求得最大偏移量∆,按下式求出驻波比
)
sin(1)sin(
11
1
λπλπρ∆-∆+= (1-18)
当∆很小时,可近似为
1
21λπρ∆
+
≈ (1-19)
当测量线标尺从左到右读数时,应以(D-S )-KS 为纵坐标,以S 为横坐标曲线,驻波比仍用式(1-18)或(1-19)计算。
注:节点偏移法是测量驻波比的重要方法,它适合于测量任意大小的驻波比。
中等驻波比测量(6≤ρ),可采用直接测量沿线驻波最大点和最小点场强的直接法来测量。
为了提高精确度,可以测量多个最大点和最小点,然后按下式求得驻波比
n
n
I I I I I I min 2min 1min max 2max 1max ......++++++=ρ
(1-20)
或
或
其中m ax I 和m in I 为指示器上对应的最大值和最小值(直线律检波)或其方根值(平方律检波)。
k 22k
图4沿线驻波场分布图
图6 波节点附近场的分布
2、 等指示度法(大驻波比 5>ρ)
当被测器件的驻波系数大于5时,驻波腹点和节点的电平相差很大,如果在最小点检波晶体的输出能使仪表有足够的指示读数,则在最大点上检波晶体的特性从平方律转向直线律,因而无法在同一情况下测得最大点和最小点,按直接法求取大驻波系数会带来较大的误差,因此采用等指示度法,也就是通过测量驻波图形中波节点附近场的分布规律的间接方法,求出驻波系数,如图6。
图5 节点偏移法测量驻波比的测试系统
⎪⎪⎭
⎫
⎝⎛⎪⎪⎭⎫
⎝⎛-=
g g
n
W W
k λπλπρsin cos
2/2
(1.2.4)
式中
min min I kI k 最小点读数测量点读数=
n 为晶体检波律,一般n=2
'
h h l l W -==2d
g λ为测量线上的波长即波导波长
当k=2时,称为“二倍最小值”法,此时的驻波系数为:
⎪⎪⎭
⎫ ⎝⎛+
=g W λπρ2sin
1
1 (1.2.5)
当ρ较大时(ρ≥10),由于W 很小,g W
λπsin 较小,g
g W W λπλπ≅sin ,故公式进一步简
化为
W
g
πλρ≈
(1-27) 由此可见,只需测定波导波长g λ和二倍于最小点场强平方的等指示点之间的距离W ,即可求出驻波比。
必须指出:W 与g λ的测量精度对测量结果影响很大,因此必须用高精度的探针位置测量装置(如千分测微计)进行读数。
3、 功率衰减法
当ρ>50时,用直接法和等指示度法测量驻波系数的误差都很大,且受检波二极管性能的影响,因而采用一种比较简便而准确的测量驻波系数的方法——功率衰减法。
它应用可变衰减器测量驻波腹点和节点两个位置上的电平差,使得测量精度主要决定于衰减
器精度和系统的匹配情况,而与晶体检波律无关。
方法是:改变测量电路中可变衰减器的衰减量,使探针位于驻波腹点和节点时指示电
表的读数相同,则驻波系数:
20
min
max 10
A A -=ρ (1.2.6)
式中max A 和min A 分别是探针位于驻波腹点和节点时可变衰减器的衰减量,单位为dB 。
4、 用网络分析仪测量电压驻波系数(略)。
总之,当驻波系数1.5<ρ<5时直接读出m ax I ,m in I 即可。
当被测器件的驻波比较大时,直接法测量误差较大,可采用其它方法测量,如等指示度法、功率衰减法等。
如果被测器件的驻波比比较大
,驻波腹点和节点电平相差悬殊,则在测量最大点和最小点
电平时,使晶体二极管工作在不同的检波律,用直接法测量误差较大。
此时可用二倍最小值法。
【实验步骤】
1、 按图1连接好测量系统。
2、 开启电源,预热仪器,并按操作规程调整信号频率、功率及调制频率。
3、 调整测量线,调谐测量线探针电路,使测量放大器指示最大。
(1)测量线的探针沿纵向移动由测量放大器读出对应 的检波电流
和对应的 。
因为 所以 。
( n 由对晶体检波器校准得到)在检波功率电平很小条件下n=2, (2)测出测量线中驻波场的分布 在整段测量线范围内,使用选频放大器作出驻波分布曲线,并绘制成图。
为保证驻波曲线精度,请自行选择“步长”。
同时还应注意测量线的空程。
(3) 驻波比的测量 按下微波源“方波”按钮。
(a )在系统终端分别接短路板和匹配负载,观察驻波场。
(b)在终端分别接失配负载A 和B ,选择合适的方法测出ρ。
max E m ax I min E m in I n kE I =n I I ⎪
⎪⎭
⎫ ⎝⎛=min max
ρmin
max I I =
ρ
(4)接上被测件,采用直接法测量驻波波腹点和波节点处的选频放大器读数m ax I 和
② 将测量线终端换接调配器+晶体检波器,并将探针置于驻波节点位置,提高测试系统灵敏度,读驻波最小点值min I ;
③ 移动探针到驻波节点两边,直到指示器读数为min 2I ,读两个等指示度的探针位置
(用千分测微计读)2l 和'2
l 。
'
22l l W -=,算出驻波系数。
【实验前准备】
1、 认真阅读和驻波系数相关的内容。
2、 考虑好实验步骤及记录格式。
【实验报告内容】
1、 整理实验数据,计算出实验内容中要求的被测件的电压驻波系数。
2、 简单讨论大、中、小电压驻波系数测量方法的特点。
3、 实验现象及存在问题的讨论。
【思考问题】
1、开口波导的ρ≠∞,为什么?
2、用功率衰减法测大驻波比时,可否用低频衰减器代替微波衰减器(如能否用测量
放大器输入衰减器代替微波衰减器)?为什么?。