实验五--微波电压驻波比与反射系数的测量
微波基本参数的测量—原理

微波基本参数的测量一、实验目的1、了解各种微波器件;2、了解微波工作状态及传输特性;3、了解微波传输线场型特性;4、熟悉驻波、衰减、波长(频率)和功率的测量;5、学会测量微波介质材料的介电常数和损耗角正切值。
二、实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
1、导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即: 0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm T E 波,又能传输mm T M 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
2、波导管:波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。
常见的波导管有矩形波导和圆波导,本实验用矩形波导。
矩形波导的宽边定为x 方向,内尺寸用a 表示。
窄边定为y 方向,内尺寸用b 表示。
10TE 波以圆频率ω自波导管开口沿着z 方向传播。
在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到:()sin()j t z o y x E je ωβωμππα-=-, ()sin()j t z o x xH j e ωβμαππα-=()cos()j t z z x H e ωβπα-=, x y z E E E ==,2gπβλ=其中,位相常数g λ=,波导波长cf λ=。
驻波比测量实验报告

驻波比测量实验报告驻波比测量实验报告引言:驻波比测量是电磁波传输中常用的一种测量方法,通过测量驻波比可以了解电磁波在传输线上的传输情况以及传输线上的阻抗匹配情况。
本实验旨在通过实际操作,掌握驻波比测量的原理和方法,并通过实验数据的分析,加深对驻波比的理解。
实验原理:驻波比是指电磁波在传输线上的反射波与正向波的振幅之比,用VSWR (Voltage Standing Wave Ratio)表示。
传输线上的驻波比与传输线的特性阻抗有关,当传输线的特性阻抗与负载阻抗不匹配时,会产生反射波,从而导致驻波比的增大。
实验器材:1. 驻波比测量仪2. 信号发生器3. 50欧姆传输线4. 负载电阻5. 连接线缆实验步骤:1. 将信号发生器与驻波比测量仪连接,并设置信号发生器的频率为所需测量频率。
2. 将驻波比测量仪与传输线连接,确保连接稳固。
3. 将负载电阻与传输线的末端相连。
4. 打开信号发生器和驻波比测量仪,调节信号发生器的输出功率,使其适合测量范围。
5. 通过驻波比测量仪的显示屏,记录下测量得到的驻波比数值。
6. 将负载电阻更换为其他数值的电阻,并重复步骤5,记录下不同负载电阻下的驻波比数值。
实验结果与分析:根据实验步骤得到的驻波比数据,我们可以进行进一步的分析和计算。
首先,我们可以观察不同负载电阻下的驻波比变化情况。
当负载电阻与传输线的特性阻抗相等时,驻波比最小,接近于1;当负载电阻与传输线的特性阻抗不匹配时,驻波比会增大。
通过这一现象,我们可以判断传输线与负载之间的阻抗匹配情况。
另外,我们还可以计算驻波比与反射系数之间的关系。
反射系数(Reflection Coefficient)是指电磁波在传输线上的反射波与正向波的振幅之比。
反射系数与驻波比之间的关系可以通过以下公式计算得到:反射系数 = (VSWR - 1) / (VSWR + 1)通过测量得到的驻波比数据,我们可以计算出相应的反射系数,并进一步分析传输线上的反射情况。
电压驻波比的测量

电压驻波比的测量实验目的通过对电压驻波比的测量实验,掌握驻波测量线的正确使用以及掌握大、中、小电压驻波系数的测量原理和方法。
二实验原理测量电压驻波比、阻抗、匹配情况等等,是微波测量的重要工作。
驻波测量线就是测量的基本仪器。
测量线由开槽波导,不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以探测微波传输系统中电磁场分布情况。
测量线波导是一段精密加工的开槽直波导,此槽位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小。
此外,槽端还有阶梯匹配段,两端法兰具有尺寸精确的定位和连接孔,而且保证开槽波导有很低的剩余驻波系数。
三厘米波导测量线的外形图见实验仪器介绍部分所示。
滑架是用来安装开槽波导和不调谐探头的。
把不调谐探头放入滑架的探头插孔中,拧紧锁紧螺钉,即可把不调谐探头紧固。
探针插入波导中的深度,用户可根据情况适当调整。
出厂时,探针插入波导的深度为1.5mm,约为波导窄边尺寸的15%。
电压驻波比的测量方法有未调制的频率法和调制的频率法种。
这里讲述调制的频率法,它的测量连接如图所示。
测量连接如图驻波测量是电磁波测量中最基本和重要内容之一,通过电磁波的测量可以测出阻抗、波长、相位等其它参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值1最先值之比,即S =maxE min⑴小驻波比(1.05<S<1.5)这时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高准 确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。
若驻波波腹点和节点处读数分别为Imax ,Imin 则电压驻波系数为E+E +・ …E ■I +I +・ •-1 S =max1 max~ maxn E =a . max max~ maxn E E +E +…E I +I +•-1 min1 min2 minn min1 min2 minn(2)中驻波比(1.5<S<5)此时,只须测一个驻波波腹和一个驻波波节,即直接读出Imax ,IminIS =max =a max —I minmin⑶大驻波比(S>5)当S>5时,如果直接测量大驻波的最大值,就会引入误差,驻波的最大值超出了指示器量程。
微波基本参数测量实验报告

微波基本参数测量实验报告摘要:微波系统中最基本的参数有频率,驻波比,功率等。
本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率,驻波比,功率进行测量。
关键词:频率驻波比功率实验仪器引言:微波是一种用途极为广泛,也是我们日常生活必不可少的技术。
微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西,则会反射微波。
微波能通常由直流电或50Hz交流电通过一特殊的器件来获得。
可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。
电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。
在电真空器件中能产生大功率微波能量的有磁控器、多腔速调器、微波三、四极管、行波器等。
在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管。
微波技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。
1.实验目的1.了解各种微波器件;2.了解微波工作状态机传输特性;3.熟悉驻波、衰减、波长(频率)和功率的测量;2实验原理1.1微波频率的测量频率是微波设备的重要参数,微波仪器通过测量其工作频率来检测其是否正常运行。
由于受到器件最高运行速度的限制(目前,高速计数器件PECL计数器的最高输入频率为2.2GHz),直接利用计数器测量频率,其测量范围有限。
不过在本实验中,我们将采用直接测量法。
使用外差式频率计或是数字频率计就能直接读出频率的数值。
实验5微波的传输特性和基本参数测量

实验五微波的传输特性和基本测量0 前言在微波测量技术中,微波测量的主要内容是频率、驻波比、功率等基本参数。
在微波工程设计中,多数情况下由于边界条件的复杂性,理论分析往往只能获得近似解,最终要通过微波测量来解决,因此,掌握微波测量技术对今后实际科研工作是非常有用的。
1 实验目的(1)初步了解微波测量系统,了解微波器件的使用和特性。
(2)了解微波测量技术,微波的传输特性。
(3)熟悉测量微波的基本参数:频率、驻波比。
(4)了解微波波导波长以及自由空间波长之间的关系。
2 原理2.1 频率的测定由于波长与频率满足关系λ=c/f,因此波长的测量和频率的测量是等效的。
在分米波和厘米波波段,频率的测量常采用谐振腔式波长计,而谐振腔波长计又可分两种:即是传输型谐振腔波长计和吸收型谐振腔波长计。
传输型谐振腔有两个耦合元件,一个将能量从微波系统输入谐振腔,另一个将能量从谐振腔输出到指示器。
当谐振腔调谐于待测频率时,能量传输最大,指示器的读数也最大。
吸收式波长计的谐振腔只有一个输入端与能量传输线路衔接,调谐是从能量传输线路接收端指示器读数的降低看出。
本实验所用的是吸收式波长计:如图(5—1)所示。
此波长计由传输波导与圆柱形谐振腔构成。
连接处利用长方形孔作磁耦合,螺旋测微计(读数结构)在旋转时与腔内活塞同步。
利用波长表可以测量微波信号源的频率。
当构成波长计的空腔与传输的电磁波失谐时,它既不吸收微波功率,也基本不影响电磁波的传输。
这种当谐振腔内活塞移动到一定位置,腔的体积正好使腔谐振于待测信号的频率,就有一部分电磁波耦合到腔内并损耗在腔壁上,从而使通过波导的信号减弱,即旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上是一跌落点,此时读出波长表测微头的读数,再从波长表频率对照表上查出对应的频率。
如图(5—2)为不同谐振腔波长计的谐振曲线。
图5—1 吸收式波长计图5—2 谐振腔波长计谐振曲线(a)为传输型谐振腔波长计谐振曲线 (b)为吸收型谐振腔波长计谐振曲线2.2 波导波长以及驻波比的测量:关于驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比。
电压驻波比的测量

电压驻波比的测量一实验目的通过对电压驻波比的测量实验,掌握驻波测量线的正确使用以及掌握大、中、小电压驻波系数的测量原理和方法。
二实验原理测量电压驻波比、阻抗、匹配情况等等,是微波测量的重要工作。
驻波测量线就是测量的基本仪器。
测量线由开槽波导,不调谐探头和滑架组成。
开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以探测微波传输系统中电磁场分布情况。
测量线波导是一段精密加工的开槽直波导,此槽位于波导宽边的正中央,平行于波导轴线,不切割高频电流,因此对波导内的电磁场分布影响很小。
此外,槽端还有阶梯匹配段,两端法兰具有尺寸精确的定位和连接孔,而且保证开槽波导有很低的剩余驻波系数。
三厘米波导测量线的外形图见实验仪器介绍部分所示。
滑架是用来安装开槽波导和不调谐探头的。
把不调谐探头放入滑架的探头插孔中,拧紧锁紧螺钉,即可把不调谐探头紧固。
探针插入波导中的深度,用户可根据情况适当调整。
出厂时,探针插入波导的深度为1.5mm,约为波导窄边尺寸的15%。
电压驻波比的测量方法有未调制的频率法和调制的频率法种。
这里讲述调制的频率法,它的测量连接如图所示。
测量连接如图驻波测量是电磁波测量中最基本和重要内容之一,通过电磁波的测量可以测出阻抗、波长、相位等其它参量。
在测量时,通常测量电压驻波系数,即波导中电场最大值1最先值之比, 即 m ax m inE S E =⑴ 小驻波比(1.05<S<1.5)这时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高准确度,可移动探针到几个波腹点和波节点记录数据,然后取平均值再进行计算。
若驻波波腹点和节点处读数分别为Imax ,Imin 则电压驻波系数为⑵ 中驻波比(1.5<S<5)此时,只须测一个驻波波腹和一个驻波波节,即直接读出Imax ,Imin⑶ 大驻波比(S>5)当S>5时,如果直接测量大驻波的最大值,就会引入误差,驻波的最大值超出了指示器量程。
完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
微波实验档 (5)

实验一测量线的调整与晶体检波器校准【一】实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。
【二】实验原理进行微波测量,首先必须正确连接与调整微波测量系统。
图1-1 示出了实验室常用的微波测试系统。
系统调整主要指信号源和测量线的调整,以及晶体检波器的校准。
信号源的调整包括振荡频率、功率电平及调制方式等。
本实验主要讨论微波测量线的调整和晶体检波器的校准。
1.测量线的调整测量线是微波系统的一种常用测量仪器,它在微波测量中用途很广,可测驻波、阻抗、相位、波长等。
测量线通常由一段开槽传输线、探头(耦合探针、探针的调谐腔体和输出指示)、传动装置三部分组成。
由于耦合探针伸入传输线而引入不均匀性,其作用相当于在线上并联一个导纳,从而影响系统的工作状态。
为了减少其影响,测试前必须仔细调整测量线。
实验中测量线的调整一般包括的探针深度调整和耦合输出匹配(即调谐探头)。
2.晶体检波器的校准曲线在微波测量系统中,送至指示器的微波能量通常是经过晶体二极管检波后的直流或低频电流,指示器的读数是检波电流的有效值。
在测量线中,晶体检波电流与高频电压之间关系是非线性的,因此要准确测出驻波(行波)系数必须知道晶体检波器的检波特性曲线。
晶体二极管的电流I与检波电压U的一般关系为I=CU n (2-1)式中,C 为常数,n为检波律,U为检波电压。
检波电压U与探针的耦合电场成正比。
晶体管的检波律n随检波电压U 改变。
在弱信号工作(检波电流不大于10 μA)情况下,近似为平方律检波,即n=2;在大信号范围,n近似等于1,即直线律。
测量晶体检波器校准曲线最简便的方法是将测量线输出端短路,此时测量线上载纯驻波,其相对电压按正弦律分布,即:式中,d为离波节点的距离,U max为波腹点电压,λg为传输线上波长。
因此,传输线上晶体检波电流的表达式为根据式(2-3)就可以用实验的方法得到图2-1 所示的晶体检波器的校准曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五--微波电压驻波比与反射系数的测量实验五微波电压驻波比与反射系数的测量、分析与计算一、实验目的(1)学会驻波比的测量、分析和计算;(2)通过驻波比及驻波波节点测量数据,学会分析和计算反射系数。
二、实验原理在任何的微波传输系统中,为了保证传输效率,减少传输损耗和避免大功率击穿,必须实现阻抗的匹配。
描述系统匹配程度的参数有电压驻波比和反射系数。
驻波比测量是微波测量中最基本和最重要的内容之一。
在传输线中若存在驻波,将使能量不能有效地传给负载,因而增加损耗。
在大功率情况下由于驻波存在可能发生击穿现象。
因此驻波测量是非常重要的内容。
在测量时,通常是测量电压驻波比,即波导中电场(电压) 最大值与最小值之比,即:测量驻波比的方法与仪器有多种。
驻波比的各种测量方法如表5-1 所示。
表5-1 驻波比的各种测量方法测量方法适用范围特点直接法中、小驻波比 (ρ<6)测量方法简便,测量误差除与信号源和测量线的系统有关外,主要决定于指示器的读数误差 等指示度法 大驻波比(ρ>6) 测量方法简单,ρ 值测量时需要确定晶体检波律。
测量误差决定于等指示度宽带 w 的读数误差,探针导纳对测量精度影响较小功率衰减法 任意驻波比(常用于测量大驻波比) 测量方法复杂,标准衰减器两端匹配良好(ρ<1.02)时可得到较高精度 移动终端法 小驻波比(ρ<1.1) 能分离两个混合在一起的小反射波,测量精度与直接法相同,由于已将两种反射分离开,所以准确度大大提高S 曲线法(即节点偏移法) 任意驻波比(常用于测量小驻波比) 测量方法复杂,测量准确度较高,但测量精度受到信号源的频率漂移影响较大本实验仅介绍直接法和等指示度法。
1. 直接法直接测量沿线驻波的最大点和最小点场强,由式(5-1)直接求出电压驻波比的方法称为直接法。
此方法适用于中小电压驻波比 (ρ<6) 的测量。
若驻波波腹点和波节点处电表指示读数分别为 I max 、I min ,对于小驻波比,晶体二极管为平方律(n =2)检波时,则上式驻波比为:min max min maxI I E ==E ρ (5-2)当电压驻波比在 1.05<ρ<1.5 时,驻波的最大值和最小值相差不大,且不尖锐,不易测量准。
为了提高测量准确度,可移动探针座到几个波腹点和波节点,实际测量多个数据,并记录数据,然后取平均值。
按下式计算驻波比 (n =2) : n n I I I I I I U Umin 2min 1min max 2max 1max min max.ΛΛ++++==ρ (5-3)若检波律 n≠2 时 ,则采用下式计算驻波比:⎥⎦⎤⎢⎣⎡+++==n n I I I I I I n U Umin max 2min 2max 1min 1max min max1Λρ (5-4)在选频放大器的指示刻度上,有两条驻波比的刻度线:其中一条的驻波比范围是 ≤4 ,另一条的驻波比范围是 ≤10 。
由此,利用选频放大器可以测量出驻波比≤10 的负载驻波比。
这两条驻波比刻度线都是按平方检波律标准标注的。
当驻波比超出第一条驻波刻度线所标的范围值时,可以试着将选频放大器的增益增大一档,然后读取第二条驻波刻度线上的数值,但换挡时会引入较大的测量误差。
一般选频放大器的分贝量程置于 50 dB (或 60dB) 档。
2. 等指示度法等指示度法适用于测量大、中电压驻波(ρ>6) 。
如果被测元器件驻波比较大,驻波波节点和波腹点电平相差悬殊,因而在测量最大点和最小点电平时,会使晶体检波二极管工作在不同的检波律,若仍按直接法测量大驻波比将引起较大误差,此时常采用等指示度法。
等指示度法是测量驻波图形波节点两侧附近的场分布规律,从而求得驻波比的方法,因此该方法能克服直接法测量的缺点。
已知传输线上沿线驻波分布的相对场强Eˊ= E/Emax 与终端反射系数的关系为:式中,z为离终端的距离,φL为终端反射系数ΓL 的幅角,β=2π/λg 为传输线的相移常数,λg 为波导波长。
根据式(4-2)的晶体检波特性,在等指示度点获得的电流指示值为:而在波节点(在波节点有cos(2πw/λg)z=cosnπ)获得的电流指示值为:式中的C为比例常数,n为检波律,w=2d 为两等指示度对应点之间的距离。
引入比值K则得:引入三角公式cos2θ=2cos θ-1 及关系式|Γ|=(ρ-1)/(ρ+1),经变换得:图5-1 示出了驻波节点附件的电场分布曲线和需要测量的有关量。
图5-1 波节点附近驻波分布曲线通常测量i 左或右=2i min 的两个等指示度点(即取K=2)所对应的探针位置间的距离w=|d2-d1|,当探针晶体为平方律(n=2)检波时,传输线中的驻波比为:该方法也可称为“二倍最小值法或三分贝法”。
当ρ>10 时,sin(πw /λg )很小,则上式可简化为可见,用等指示度法测量驻波比实际上是测量等指示宽度 w 和波导波长λg 。
等指示度法测量驻波比的精度主要取决于 w 测量精度,因此一般在测量线上要加装用百分表来测量 w 。
根据终端反射系数的模值|Γl | 与驻波比有如下关系: 11+-=Γρρl (5-13)和终端反射系数的相位φl 与节点位置 z min n 的以下关系:()414min g l g n z λφπλ++=2n(5-14)可以计算得到反射系数。
三、实验内容和步骤(根据待测负载情况选用直接法或等指示度法测量驻波比,如:待测负载为小驻波比(ρ<6)可用直接法;待测负载为大驻波比(ρ>6),则可用等指示度法。
)1. 等效参考面的选取与波导波长的测量(1)将测量线测试系统调至最佳工作状态;(2)终端接短路片,从负载端开始,旋转测量线上的探针座位置,使选频放大器指示最小,此时即为测量线等效短路面,记录此时的探针初始位置,记作dmin0 ,并记录数据;(3)采用同实验三的方法测出波导波长λg (或直接使用实验三的结果)。
相应测量数据记入表 5-1 。
2.直接法测量驻波比终端接上待测负载(可将调配器调至某一位置作为待测负载),探针从dmin0开始向信号源方向旋转,依次得到指示最大值和最小值三次,记录相应的读数,即得相应的Imin 和Imax,数据记入表 5-2 (注:指示表的刻度是电流,用微安μA 单位)。
再根据公式(5-3)或公式(5-4)计算驻波比。
3.等指示度法测量驻波比:终端接上待测负载(可将调配器调至某一位置作为待测负载),缓慢移动探针座,在驻波节点两旁找到指示表中读数为2i min 的两个指示度点(即图5-1 中所示K=2 的d1、d2 位置),应用测量线标尺刻度及指针式百分表读取该两个等指示度点所对应的探针位置刻度值d1 和d2,重复测量3 次(计算时取平均值),数据列表记录于表5-2。
根据公式(5-11)或公式(5-12)计算驻波比。
4.反射系数的测量与计算:终端接上待测负载,探针从d min0开始向信号源方向旋转,记录波节点的位置d min n,数据记入表5-3 。
按式(5-13)和式(5-14)计算反射系数。
四、实验结果及数据处理探针初始位置d min0 = 79.96mm表5-1 波导波长测试数据记录表位置读数(mm) 测量次数1d2d3d4d1mind2mind1 9111118.54 06.78 19.84 29.04 03.00 23.54 2 98.56 106.84 119.86 129.10 104.38 123.14 3 98.58 106.78 119.80 129.10 103.66 123.56 注:上表中1min d 和2min d 为实际测量值。
第1次测量:mm d d d mm d d d 44.124)(2166.102)(21432min 211min =+==+=mmd d g 56.4321min 2min =-=λ 第2次测量:mm d d d mm d d d 48.124)(217.102)(21432min 211min =+==+=mmd d g 56.4321min 2min =-=λ 第3次测量:mm d d d mm d d d 45.124)(2168.102)(21432min 211min =+==+=mm d d 54.4321min 2min =-=g λmm g 55.43=∴λ表 5-2 (a)驻波比测量数据记录表 (直接法) 指示表读数 I min I max(uA) 测量位置1 10 4102 5 400 353356632.75510355400410.min 2min 1min max 2max 1max minmax >=++++=++++==n n I I I I I I UU ΛΛρ因此,该处应选等指示度法测量驻波比。
表 5-2 (b)驻波比测量数据记录表 (等指示度法)位置读数 (mm) 测量次数1d2d1 97.78 99.92 2 97.70 100.123 97.46 100.04其中:K=2,n=2。
718.011111.6)(sin 1131.202.10071.9721221=+-=Γ=+==-===ρρλπωρωl gmm d d mmd mm d表 5-3计算反射系数测量数据记录表位置读数 (mm) 测量次数min d 1min d 2min d 3min d 1 76.66 98.70 119.92 146.742 76.38 98.54 123.98 146.643 77.16 98.86 122.96 146.0619.2032103210min 3min 2min 1min 0min 718.019.20416.2357.1905.1999.184)12(448.15628.12270.9873.76j j l l l l l l l l l l l g l g ne e n z d d d d l=Γ=Γ=+++=∴=⇒=⇒=⇒=⇒++=====φφφφφφφφφφλφπλΘ五、思考及体会:实验步骤 1 对后续测量有何意义? 实验步骤1是对等效参考面的选取及波导波长的测量,用实验三的方法测出波导波长,这样就等于是验证了参考波长,用测量出的参数与实验三对比,以防相差太大,造成误差,保证实验的准确性。
小结:通过本次实验,我学会了驻波比的测量分析和计算方法,并掌握了通过驻波比及驻波波节点测量数据分析和计算反射系数的方法。