自然界中的疏水现象
超疏水现象及应用

利用化学气相沉积法在石英基底上制备了各种图案结构的阵列碳纳米管膜, 结 果表明 , 水在这些膜表面的接触角都大于 160° , 滚动角都小于 5° , 纳米结构 与微米结构在表面的阶层排列被认为是产生这种高接触角、低滚动角的原因。
利用 CVD法得到的阵列碳纳米管膜的 SEM照片: ( a,b).蜂房结构 (不同放大倍数 ) ,
结构。
模板法
复制模塑技术制备仿生超疏水表面 的操作示意图
2.等离子体法
• 等离子体:是由部分电子被剥夺后的原子及原子被电离后 产生的正负电子组成的离子化气体状物质,它广泛存在于 宇宙中,常被视为是除去固、液、气外,物质存在的第四 态。
• 等离子体法原理:利用等离子体对表面进行处理,获得粗 糙结构 ,从而得到超疏水性的材料表面。
荷叶表面双微观结构模型
• 通过实验测试,水滴在荷叶表面的接触角和滚动角分别为 161.0°±2.7º和2º。这使得荷叶具有了很好的自清洁能力。
• 从上面模型可看出:由于荷叶双微观结构的存在,大量空气储存在 这些微小的凹凸之间,使得水珠只与荷叶表面乳突上面的蜡质晶体 毛茸相接触,显著减小了水珠与固体表面的接触面积,扩大了水珠 与空气的界面,因此液滴不会自动扩展,而保持其球体状,这就是 荷叶表面具有超疏水性的原因所在。
的黏附及由此带来的对针尖的污染; – 防水和防污处理; – ………
沙漠集水 器
轮船船底涂料
轮船底部的低表面能防污涂料
海洋生物会在 船底板生长, 增加船底粗糙 度。
超疏水性自清洁涂料 防冰雪涂料
超疏水材料的应用
• 新型超疏水材料的应用将十分广泛:
– 沙漠集水; – 远洋轮船船底涂料,可以达到防污、防腐的效果; – 室外天线上,建筑玻璃,汽车、飞机挡风玻璃上,可以防
荷叶疏水原理的应用实例

荷叶疏水原理的应用实例1. 荷叶疏水原理的介绍荷叶疏水原理是指荷叶表面的微观结构和化学成分使其具有疏水性,水滴在荷叶表面上呈现出珠状滚动的特性。
这一原理被广泛应用于多个领域,包括涂料、纺织品、建筑材料等。
2. 涂料领域中的应用在涂料领域中,荷叶疏水原理被应用于开发超疏水涂料。
这种涂料能够在表面形成一层微米级的荷叶结构,使得水滴无法附着在表面上,从而实现自清洁效果。
超疏水涂料广泛应用于室内外墙面、玻璃窗等,使得这些表面具有良好的抗污染能力,降低了清洁维护的成本。
•超疏水涂料的特点:–自清洁效果,水滴可以快速滚落,带走附着的污物;–耐候性强,长时间使用不易受到气候等因素的影响;–耐腐蚀性好,能够防止化学物质对涂层的侵蚀;–可自愈合,表面受损后可以在一定条件下自行修复。
3. 纺织品领域中的应用在纺织品领域中,荷叶疏水原理被应用于开发防水透气面料。
传统的防水材料往往无法同时实现防水和透气的效果,使得穿着者很容易出现不适感。
而采用荷叶疏水原理的防水透气面料则能够有效解决这一问题。
•防水透气面料的特点:–具有优异的防水性能,可以有效阻挡外部水分的渗透;–同时具备良好的透气性能,可以排除体内的湿气;–柔软舒适,不影响穿着者的活动;–耐久性好,经过多次清洗或长时间使用后仍能保持原有的性能。
4. 建筑材料领域中的应用在建筑材料领域中,荷叶疏水原理被应用于开发自洁型建筑材料。
这些材料在表面形成一层具有荷叶结构的纳米涂层,能够有效防止尘土、污染物等附着在表面上,从而保持建筑物外观的清洁。
•自洁型建筑材料的特点:–高效的自洁性能,附着在表面的尘土、污染物能够被清洗或雨水冲刷掉;–长效性好,一次处理能够保持较长时间的自洁效果;–高耐候性,能够经受多种环境条件下的考验;–能够减少清洁维护成本,节约人力物力。
5. 其他领域中的应用除了上述领域,荷叶疏水原理还被应用于汽车涂层、电子设备防水等方面。
很多厂商通过模仿荷叶表面的微观结构和化学成分,来研发具有疏水性能的产品,以提高产品的使用体验。
疏水的名词解释

疏水的名词解释疏水是一个常见的词汇,广泛应用于日常生活和科学领域,并具有多种含义和解释。
本文旨在对疏水进行深入探讨,并给出多个层面的解释。
I. 自然界中的疏水现象疏水最初是从观察自然界中的现象而来。
在自然界中,我们可以看到许多物体在接触水时产生疏水效应。
这种效应使得水不能均匀地附着于物体表面,而是形成了水珠。
这是因为物体表面上存在着疏水性质的分子,使水形成在物体表面上的水膜,而非扩散开来。
这种现象常常出现在植物叶片表面上,起到保护和排水的作用。
II. 物理和化学的角度解释疏水现象从物理和化学的角度来看,疏水性质是由于物体表面上存在着疏水分子。
这些分子通常具有非极性或低极性,与水分子之间缺乏相互吸引力。
因此,当水分子接触到疏水分子时,会将其排斥,形成水珠。
III. 表面张力与疏水性的关系疏水现象与水的表面张力密切相关。
表面张力是指液体分子在液体表面附近的相互作用力,使得液体表面呈现出一种似弹膜的性质。
对于疏水性物体来说,表面张力使得水分子在物体表面形成水珠,并减少了液体与物体表面的接触面积,从而降低了表面能。
IV. 疏水与自清洁表面的开发在科学和工程领域,人们不断探索疏水性质与可应用性之间的联系。
研究人员发现,通过合成疏水纳米颗粒并涂覆在材料表面上,可以制造出自清洁表面。
这种表面可以使液体在表面上快速滑落,带走尘埃和污垢,大大减少了清洁的需求。
V. 疏水在生物界的应用生物领域对疏水性质的运用也非常广泛。
许多微生物和昆虫在演化过程中发展出了疏水性表面,可以有效地避免水生物附着和污染。
这种防水特性对于水生生物和水下设备的保护具有重要意义。
VI. 疏水与抗菌技术的结合疏水技术也被应用于抗菌领域。
研究人员开发出具有疏水性质的材料,可以阻止细菌和病原体的附着和生长。
这项技术对于医疗器械、食品包装和公共场所的卫生管理具有重大意义。
VII. 疏水对水污染治理的贡献疏水技术在水污染治理方面也发挥着积极作用。
通过利用疏水材料的性质,可以有效地去除水中的有机物、重金属和油脂污染物。
图解:纳米超疏水自清洁表面的应用

图解:纳米超疏水自清洁表面的应用自然界的超疏水现象“荷叶表面具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的“荷叶自洁效应”「见下图1」。
▲图1自然界的荷叶疏水表面现象科学家发现,荷叶表面具有微米级的乳突,乳突上乳突上有纳米级的蜡晶物质,这种微-纳米级的粗糙结构可以大幅度提高水滴在其上的接触角,导致水滴极易滚落「见下图2」。
▲图2荷叶表面微观结构水滴在超疏水表面上的运动是一个复杂的物理现象,在自清洁过程中起到了一个至关重要的作用:水滴在表面滚动时会带走表面的污染物或灰尘,从而达到自清洁的效果「见下图3」。
▲图3超疏水表面自清洁原理示意图当然这些现在也存在于很多其他生物身上「见下图4」;科学家们研究这些生物及模仿这些生物现象,制备出了许多超疏水产品并得到了许多的应用(详见后文介绍)。
▲图4自然界中具有超疏水性的动植物及其扫描电子显微镜(SEM)图(a,b)荷叶;(c,d)水稻叶;(e,f)水黾腿[3];(g,h)孔雀羽毛[5,6];(i,j)壁虎脚掌[7];(k,l)蝉翼[9];(m,n)蝴蝶翅膀[10];(o,p)蚊子复眼[13]下文将为大家简单介绍超疏水自清洁的原理及一些超疏水表面的应用例子。
1、超疏水表面自清洁原理自清洁表面指表面的污染物或灰尘能在重力或雨水、风力等外力作用下自动脱落或被降解的一种表面,基于超疏水原理的自清洁表面主要是指接触角CA150°、滚动角SA<10°的类荷叶表面「见下图5(d)」。
▲图5不同表面水滴接触界面状态2、常见超疏水表面制备现状人工制备超疏水表面虽然时间不长,但发展特别迅速,有效的制备方法也越来越多,主要有模板法、静电纺丝法、相分离与自组装法、溶胶-凝胶法、刻蚀法、水热法、化学沉积与电沉积法、纳米二氧化硅法、腐蚀法等。
目前人工超疏水表面主要包括超疏水薄膜表面、超疏水涂层表面、超疏水金属表面及超疏水织物等方面。
神奇的超疏水材料,灵感来自荷叶

神奇的超疏水材料,灵感来自荷叶1. 引言1.1 背景介绍荷叶作为自然界中具有明显超疏水性能的植物,一直以来都吸引着科研人员的兴趣。
荷叶表面的微观结构使得水珠在其表面上快速滚动,同时将灰尘和污垢带走,从而保持表面清洁。
受到荷叶的启发,科研人员开始研究制备具有类似超疏水性能的材料,并尝试将其应用于各个领域。
超疏水材料的研究不仅有助于提高材料的耐久性和清洁性,还可以推动各行业的技术创新和进步。
深入研究超疏水材料的结构设计、制备方法和应用前景具有重要意义,对环境保护和产业发展都具有积极的推动作用。
2. 正文2.1 荷叶的超疏水表面结构荷叶的超疏水表面结构主要是由微观的微结构和纳米级的纳米结构组成。
在荷叶表面,存在着许多微小的凸起和微沟,这些微观结构使得水滴无法完全接触到表面,从而形成了超疏水效应。
而在更微观的层面上,荷叶表面还具有一层纳米级的蜡质物质,这种物质可以形成一种类似于蜡的保护层,使得水滴在滚动过程中不易附着在表面上。
荷叶表面还具有一种类似于莲花的特殊结构,这种结构可以使得水滴在滚动时不断与表面接触,从而清洗表面上的杂质和尘土,保持表面的清洁。
荷叶的超疏水表面结构是一种通过微观和纳米级结构相结合的设计,使得水在与表面接触时能够迅速滚动离开,同时保持表面清洁的独特结构。
这种结构不仅可以在自然界中见到,也可以通过模仿荷叶表面结构,制备出具有超疏水性能的材料,为生活和工业领域带来了许多便利和应用前景。
2.2 神奇的超疏水材料的制备方法神奇的超疏水材料的制备方法可以通过以下几种途径实现。
一种常见的方法是利用化学合成的方式,在材料表面引入微纳结构。
这种方法包括溶液法、气相沉积法和模板法等。
在溶液法中,可以通过溶胶-凝胶法或溶剂热法来实现超疏水表面的制备。
气相沉积法通常包括化学气相沉积和物理气相沉积两种方式,通过控制沉积条件和进行后处理来制备具有超疏水性能的材料表面。
模板法则是利用模板在材料表面上形成孔洞结构,从而实现超疏水表面的制备。
疏水物质和疏水作用力

疏水物质和疏水作用力
疏水物质是指不与水亲和的物质,它们通常是非极性或弱极性分子,如脂肪酸、油脂、蜡等。
而疏水作用力是指分子间由于疏水相互作用而产生的力,它是疏水物质在水中聚集的原因。
疏水作用力的本质是由于疏水物质的非极性或弱极性分子在水中难以形成氢键,因此它们更倾向于与自己相互聚集,而不是与水分子相互作用。
这种聚集形成了疏水聚集体。
疏水作用力在生物化学中起着重要的作用,例如在蛋白质折叠和细胞膜结构中。
此外,它还被广泛应用于材料科学、化学工程和环境科学等领域。
总之,疏水物质和疏水作用力是自然界中重要的现象,对于我们理解许多生命现象和开发新材料具有重要意义。
- 1 -。
神奇的超疏水材料,灵感来自荷叶

神奇的超疏水材料,灵感来自荷叶全文共四篇示例,供读者参考第一篇示例:神奇的超疏水材料,灵感来自荷叶荷叶是一种非常神奇的植物,不仅因为它的美丽和清新的香气,更因为它在水中的独特性能。
荷叶表面的特殊结构使得水珠能够在上面滚动,不容易粘附在叶片上,这种特性使得荷叶成为了许多工程和科学研究的灵感源泉。
最近,科学家们通过对荷叶表面结构的深入研究,成功制作出了神奇的超疏水材料,这种材料具有荷叶一样的超强防水特性,可以广泛应用于各行各业。
经过长期的研究,科学家们终于发现了荷叶表面的秘密。
他们发现,荷叶表面不仅有微观的凹凸结构,而且这种结构上还有覆盖着超疏水的纳米颗粒,这些颗粒使得荷叶表面具有了超强的防水特性。
有了这一发现,科学家们开始努力寻找方法来制造出具有类似结构的超疏水材料。
通过采用纳米技术和微观制造技术,他们最终成功地制作出了一种新型的超疏水材料,这种材料不仅具有与荷叶表面相似的微观结构,而且还具有比荷叶更加优越的防水效果。
这种新型的超疏水材料,不仅可以在防水衣物、防水设备等方面得到应用,还可以在其他许多领域发挥作用。
在医疗器械和医用耗材的生产中,超疏水材料可以用于制作无菌包装,从而有效地防止细菌的侵入。
在建筑材料方面,超疏水材料可以用于制作防水涂料,从而提高建筑物的防水性能。
在生物科学和环境科学领域,超疏水材料可以用于制作油水分离器,从而帮助清除环境中的油污。
这种新型的超疏水材料将会在各个领域发挥着重要的作用,为人们的生活和工作带来全新的便利和惊喜。
尽管超疏水材料具有很多优点,但是目前这种材料还存在一些问题。
目前制造超疏水材料的成本还比较高,而且材料的稳定性和耐用性也还有待提高。
目前市面上的超疏水材料种类繁多,品质良莠不齐,因此消费者在选择超疏水材料时需要格外小心。
科学家们需要继续努力,不断改进超疏水材料的制备工艺和技术,以期能够生产出更加稳定、耐用的超疏水材料,从而满足人们对于防水材料日益增长的需求。
疏水相互作用的机理

疏水相互作用的机理
疏水相互作用是指由于物质中的亲水基团和疏水基团之间的相
互作用而产生的一种现象。
这种相互作用是由于水分子在疏水基团表面上的排斥作用而产生的。
疏水基团越大,相互作用越强,因为它们会使水分子更加排斥,这意味着越难以将水分子带入疏水基团中。
疏水相互作用在自然界中起着重要的作用,例如在蛋白质折叠和酶的催化过程中。
此外,疏水相互作用也在化学合成中得以应用,例如在有机合成中,可以使用疏水相互作用来促进分子的聚合和分离。
疏水相互作用的机理是基于疏水基团周围的水分子的排斥作用。
当疏水基团聚集在一起时,它们会使水分子更加排斥,从而形成一个疏水区域。
这种疏水区域会促进疏水基团之间的相互作用,从而形成疏水聚集体。
在疏水相互作用中,分子的疏水性质是决定性的。
疏水基团越大,分子的疏水性质越强,因此疏水相互作用也越强。
此外,温度、pH
值和离子强度等因素也会影响疏水相互作用的强度。
总之,疏水相互作用是一种重要的现象,它在自然界和化学合成中都起着重要的作用。
研究疏水相互作用的机理可以为我们更好地理解这一现象提供帮助。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)式中fs为复合接触面中突起固体面积与总接触面积之比(fs<1),由此式可知,对 于原本疏水的表面(θe>90°),fs越小则θ※越大。即提高空气垫部分所占的比例, 将会增强固体表面的超疏水性能。
根据Wenzel方程和Cassie方程得出的结论
谢谢观赏
浮水原理
空气被有效地吸附在这 些取向的微米刚毛和螺 旋状纳米沟槽的缝隙内。 在其表面形成一层稳定 的气膜,阻碍了水滴的 浸润,宏观上表现出家 黾腿的超疏水特性。
水黾足部电镜图
水滴的表面张力有多大呢?可以这样说,比水滴小的虫子, 是不能冲破表面张力而钻入水滴中去的。但是,如果往水里 加一点中性洗涤剂,就会削弱水的表面张力,这时,走在水 面的水黾足上的毛被沾湿,足冲破了表面张力而穿入水中, 水黾就会沉入水中,当水黾沉下去后,由于表面张力的作用, 水黾就再也浮不上来了。
自然界中的疏水现象
——水黾
轻化172 李泽琨
水黾
水黾是一种在湖水、池塘、水 田和湿地中常见的小型水生昆 虫。水黾科昆虫成虫长8至 20mm,黑褐色,头部为三角 形,稍长。体型小至大型,长 形或椭圆形。 口吻稍长,分 为3节,第2节最长;触角丝状, 4节,突出于头的前方。前胸 延长,背面多为暗色而无光泽, 无鲜明的花斑,前翅革质,无 膜质部。身体腹面覆有一层极 为细密的银白色短毛,外观呈 银白色丝绒状,具有拒水作 用。 其躯干与宽黾蝽科类似。 它们的躯干非常瘦长,躯干上 被极细的毛,这些毛厌水。
理论支持
Wenzel方程认为粗糙表面的固—液界面的真实接触面积大于表观接触面积,且液 体始终能填满粗糙表面上的凹槽,所以粗糙表面的表观接触角θ※与平坦表面的本 征接触角(杨氏接触角) θe有如下关系:
(1)式中r为粗糙因子(等于固—液界面实际接触面积与假想接触面积之比,r≥1), 由此式可知,对于原本亲水的表面(θe<90°),r值越大则θ※越小;原本疏水的表面 (θe>90°),r值越大则θ※越大。即表面粗糙化能使亲水的表面更亲水,疏水的表面 更疏水。