数据挖掘课后习题资料

合集下载

数据挖掘第三版第二章课后习题答案

数据挖掘第三版第二章课后习题答案

1.1什么是数据挖掘?(a)它是一种广告宣传吗?(d)它是一种从数据库、统计学、机器学和模式识别发展而来的技术的简单转换或应用吗?(c)我们提出一种观点,说数据挖掘是数据库进化的结果,你认为数据挖掘也是机器学习研究进化的结果吗?你能结合该学科的发展历史提出这一观点吗?针对统计学和模式知识领域做相同的事(d)当把数据挖掘看做知识点发现过程时,描述数据挖掘所涉及的步骤答:数据挖掘比较简单的定义是:数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们所不知道的、但又是潜在有用信息和知识的过程。

数据挖掘不是一种广告宣传,而是由于大量数据的可用性以及把这些数据变为有用的信息的迫切需要,使得数据挖掘变得更加有必要。

因此,数据挖掘可以被看作是信息技术的自然演变的结果。

数据挖掘不是一种从数据库、统计学和机器学习发展的技术的简单转换,而是来自多学科,例如数据库技术、统计学,机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成。

数据库技术开始于数据收集和数据库创建机制的发展,导致了用于数据管理的有效机制,包括数据存储和检索,查询和事务处理的发展。

提供查询和事务处理的大量的数据库系统最终自然地导致了对数据分析和理解的需要。

因此,出于这种必要性,数据挖掘开始了其发展。

当把数据挖掘看作知识发现过程时,涉及步骤如下:数据清理,一个删除或消除噪声和不一致的数据的过程;数据集成,多种数据源可以组合在一起;数据选择,从数据库中提取与分析任务相关的数据;数据变换,数据变换或同意成适合挖掘的形式,如通过汇总或聚集操作;数据挖掘,基本步骤,使用智能方法提取数据模式;模式评估,根据某种兴趣度度量,识别表示知识的真正有趣的模式;知识表示,使用可视化和知识表示技术,向用户提供挖掘的知识1.3定义下列数据挖掘功能:特征化、区分、关联和相关性分析、分类、回归、聚类、离群点分析。

(完整版)数据挖掘概念课后习题答案

(完整版)数据挖掘概念课后习题答案
(a)为该数据仓库画出雪花形模式图。
(b)(b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
(c)如果每维有5层(包括all),如“student<major<status<university<all”, 该立方体包含多少方体?
合,因为它是松散耦合和 紧密耦合的折中。
第2章数据预处理
2.2假设给定的数据集的值已经分组为区间。区间和对应的频率如下。
年龄
频率
1~5
200
5~15
450
15~20
300
20~50
1500
50~80
700
80~110
44
计算数据的近似中位数值。
2.4假定用于分析的数据包含属性age。数据元组的age值(以递增序)是:13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。
(a)画出一个等宽为10的等宽直方图;
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。
解答:
(b)为如下每种抽样技术勾画例子:SRSWOR,SRSWR,聚类抽样,分层
抽样。使用大小为5的样本和层“青年”,“中年”和“老年”。 元组:
用箱深度为3的分箱均值光滑对以上数据进行光滑需要以下步骤:
�步骤1:对数据排序。(因为数据已被排序,所以此时不需要该步骤。)
�步骤2:将数据划分到大小为3的等频箱中。

数据仓库与数据挖掘教程(第2版)课后习题答案 第二章

数据仓库与数据挖掘教程(第2版)课后习题答案 第二章

数据仓库与数据挖掘教程(第2版)课后习题答案第二章1. 什么是数据仓库?它与传统数据库有什么不同?答:数据仓库是一个面向主题、集成、稳定、可学习的数据集合,用于支持企业决策制定和决策支持系统。

与传统数据库相比,数据仓库更注重数据的整合和大数据的处理能力,以支持更高级别的数据分析和决策。

2. 什么是元数据?有哪些类型?答:元数据指描述数据仓库中数据的数据,用于描述数据的含义、格式、内容、质量、来源、使用和存储等方面的信息。

元数据有三种类型:技术元数据、业务元数据和操作元数据。

3. 数据仓库的架构有哪些组成部分?请简述各组成部分的作用。

答:数据仓库的架构主要包括数据源、数据抽取、清理和转换、存储和管理、元数据管理、查询和分析等几个组成部分。

- 数据源:指数据仓库的数据来源,可以是事务处理系统、外部数据源、第三方提供商等。

- 数据抽取、清理和转换:将数据从各种不同的来源抽取出来并转化为简单、标准的格式,以便进行加工和分析。

- 存储和管理:将经过抽取、转换和清洗后的数据存储在数据仓库中并进行管理,查找、更新和删除等操作。

- 元数据管理:对数据仓库中的元数据进行管理,并将其存储在元数据存储库中。

- 查询和分析:通过各种查询和分析工具来进行数据挖掘、分析和报告。

4. 请列出数据仓库中的三种主要数据类型。

答:数据仓库中的三种主要数据类型包括事实数据、维度数据和元数据。

5. 请列出数据仓库的三种不同的操作类型。

答:数据仓库的三种不同的操作类型包括基础操作、加工操作和查询操作。

6. 数据挖掘的定义是什么?答:数据挖掘是一种通过分析大量数据来发现有意义模式、趋势和关联的过程。

它是既包含统计学、机器学习和数据库技术的交叉学科,又包含更广泛的知识和业务领域。

7. 请列出数据挖掘中的四个主要任务。

答:数据挖掘中的四个主要任务包括描述性数据挖掘、预测性数据挖掘、关联数据挖掘和分类和聚类。

8. 数据仓库中经常使用OLAP分析方式,您了解OLAP是什么吗?答: OLAP是一种面向主题的数据分析方式,可以帮助用户对快速变化的数据进行多维分析和决策支持。

数据挖掘课后答案

数据挖掘课后答案

5
0 1Sample
Min Outlier Max Outlier
Q2
2) Suppose that the data for analysis includes the attribute grade. The grade values for the data tuples are:
4, 5, 9, 11, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20
4, 5, 9, 11, 12, 13, 13, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20
Q2
(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data? • The first quartile (corresponding to the 25th percentile) of the data is: 12. The third quartile (corresponding to the 75th percentile) of the data is: 17.
Min Outlier Max Outlier
Boxplot Example 2
35 30 25 20 15 10
Min=2 Q1=3 Median=7 Q3=13 Max=30 Terminate whiskers at the most extreme observation within 1.5×IQR of the quartiles Q1- 1.5×IQR=-12 Q2+1.5×IQR=28

数据挖掘习题及解答-完美版

数据挖掘习题及解答-完美版

Data Mining Take Home Exam学号: xxxx 姓名: xxx 1. (20分)考虑下表的数据集。

(1)计算整个数据集的Gini 指标值。

(2)计算属性性别的Gini 指标值(3)计算使用多路划分属性车型的Gini 指标值 (4)计算使用多路划分属性衬衣尺码的Gini 指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么? 解:(1) Gini=1-(10/20)^2-(10/20)^2=0.5 (2)Gini=[{1-(6/10)^2-(4/10)^2}*1/2]*2=0.48 (3)Gini={1-(1/4)^2-(3/4)^2}*4/20+{1-(8/8)^2-(0/8)^2}*8/20+{1-(1/8)^2-(7/8)^2}*8/2 0=26/160=0.1625(4)Gini={1-(3/5)^2-(2/5)^2}*5/20+{1-(3/7)^2-(4/7)^2}*7/20+[{1-(2/4)^2-(2/4)^2}*4/ 20]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。

2. (20分)考虑下表中的购物篮事务数据集。

(1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。

(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。

(3)将每个顾客ID作为一个购物篮,重复(1)。

应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。

(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。

答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。

(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。

数据挖掘课后习题

数据挖掘课后习题

(实验项目) DBLP数据集包括100万篇发表在计算机科学会议和杂志上的论文项。

在这些项中,很多作者都有合著关系。

(a) 提出一种方法,挖掘密切相关的(即,经常一起合写文章)合著者关系。

解决问题的大致过程:1.DBLP数据集是一个XML文件,先对XML文件解析,得到一个超过1G的TXT文件,处理文件数据格式,并截取前20000行数据,格式如下图:2.使用FP-Tree算法,设置支持度为3,得到的满足条件的频繁项集如下图:说明:以上结果只是一部分,由于数据集很庞大,限于篇幅,不便全部展示。

(b) 根据挖掘结果和本章讨论的模式评估度量,讨论哪种度量可能比其他度量更令人信服地揭示紧密合作模式。

关于作者A(Dimitris Papadias)和作者B(Yufei Tao)的2×2的相依表(显示期望值)Yufei Tao 非(Yufei Tao)和Dimitris Papadias 26(0.0045) 60(86) 86非(Dimitris Papadias) 59(84.9955) 1609994(1609968) 1610053 和85 1610054 16101391. 使用提升度的相关分析P({A}) = 86/1610139 = 5.28e -5P({B}) = 85/1610139 = 5.28e -5P({A,B}) = 26/1610139 = 1.61e -5提升度为P({A,B})/(P({A})×P({B}) )=1.61e -5/(5.28e -5×5.28e -5)=57752. 使用χ2进行相关分析χ2 = (26-0.0045)2/0.0045 + (60-86)2/86 + (59-84.9955)2/84.9955 + (1609994-1609968)2/1609968 = 1502383. 全置信度P(A|B) = 26/85 = 0.306P(B|A) = 26/86 = 0.302all_conf(A,B) = min{P(A|B),P(B|A)} = 0.3024. 最大置信度max_conf(A,B) = max{P(A|B),P(B|A)} = 0.3065. KulczynskiKulc(A,B) = 1/2 *(P(A|B)+P(B|A)) = 0.3046.余弦Cosine(A,B) = P(A|B)×P(B|A) = 0.304比较6种模式评估度量:上述6种模式评估中,提升度和χ2的计算受零事务的影响很大,在上面的例子中,AB表示零事务的个数。

数据挖掘 习题及参考答案

数据挖掘 习题及参考答案
实际生活的例子:
①电信行业中利用数据挖掘技术进行客户行为分析,包含客户通话记录、通话时间、所 开通的服务等,据此进行客户群体划分以及客户流失性分析。
②天文领域中利用决策树等数据挖掘方法对上百万天体数据进行分类与分析,帮助天文 学家发现其他未知星体。
③制造业中应用数据挖掘技术进行零部件故障诊断、资源优化、生产过程分析等。
第 4 页 共 27 页
(b)对于数据平滑,其它方法有: (1)回归:可以用一个函数(如回归函数)拟合数据来光滑数据; (2)聚类:可以通过聚类检测离群点,将类似的值组织成群或簇。直观地,落在簇集合 之外的值视为离群点。
2.6 使用习题 2.5 给出的 age 数据,回答以下问题: (a) 使用 min-max 规范化,将 age 值 35 转换到[0.0,1.0]区间。 (b) 使用 z-score 规范化转换 age 值 35,其中,age 的标准偏差为 12.94 年。 (c) 使用小数定标规范化转换 age 值 35。 (d) 指出对于给定的数据,你愿意使用哪种方法。陈述你的理由。
回归来建模,或使用时间序列分析。 (7) 是,需要建立正常心率行为模型,并预警非正常心率行为。这属于数据挖掘领域
的异常检测。若有正常和非正常心率行为样本,则可以看作一个分类问题。 (8) 是,需要建立与地震活动相关的不同波形的模型,并预警波形活动。属于数据挖
掘领域的分类。 (9) 不是,属于信号处理。
1.6 根据你的观察,描述一个可能的知识类型,它需要由数据挖掘方法发现,但本章未列出。 它需要一种不同于本章列举的数据挖掘技术吗?
答:建立一个局部的周期性作为一种新的知识类型,只要经过一段时间的偏移量在时间序列 中重复发生,那么在这个知识类型中的模式是局部周期性的。需要一种新的数据挖掘技 术解决这类问题。

数据挖掘习题及解答-完美版

数据挖掘习题及解答-完美版

Data Mining Take Home Exam学号: xxxx 姓名: xxx(1)计算整个数据集的Gini指标值。

(2)计算属性性别的Gini指标值(3)计算使用多路划分属性车型的Gini指标值(4)计算使用多路划分属性衬衣尺码的Gini指标值(5)下面哪个属性更好,性别、车型还是衬衣尺码?为什么?(3)=26/160=0.1625]*2=8/25+6/35=0.4914(5)比较上面各属性的Gini值大小可知,车型划分Gini值0.1625最小,即使用车型属性更好。

2. ((1) 将每个事务ID视为一个购物篮,计算项集{e},{b,d} 和{b,d,e}的支持度。

(2)使用(1)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。

(3)将每个顾客ID作为一个购物篮,重复(1)。

应当将每个项看作一个二元变量(如果一个项在顾客的购买事务中至少出现一次,则为1,否则,为0)。

(4)使用(3)的计算结果,计算关联规则{b,d}→{e}和{e}→{b,d}的置信度。

答:(1)由上表计数可得{e}的支持度为8/10=0.8;{b,d}的支持度为2/10=0.2;{b,d,e}的支持度为2/10=0.2。

(2)c[{b,d}→{e}]=2/8=0.25; c[{e}→{b,d}]=8/2=4。

(3)同理可得:{e}的支持度为4/5=0.8,{b,d}的支持度为5/5=1,{b,d,e}的支持度为4/5=0.8。

(4)c[{b,d}→{e}]=5/4=1.25,c[{e}→{b,d}]=4/5=0.8。

3. (20分)以下是多元回归分析的部分R输出结果。

> ls1=lm(y~x1+x2)> anova(ls1)Df Sum Sq Mean Sq F value Pr(>F)x1 1 10021.2 10021.2 62.038 0.0001007 ***x2 1 4030.9 4030.9 24.954 0.0015735 **Residuals 7 1130.7 161.5> ls2<-lm(y~x2+x1)> anova(ls2)Df Sum Sq Mean Sq F value Pr(>F)x2 1 3363.4 3363.4 20.822 0.002595 **x1 1 10688.7 10688.7 66.170 8.193e-05 ***Residuals 7 1130.7 161.5(1)用F检验来检验以下假设(α = 0.05)H0: β1 = 0H a: β1≠ 0计算检验统计量;是否拒绝零假设,为什么?(2)用F检验来检验以下假设(α = 0.05)H0: β2 = 0H a: β2≠ 0计算检验统计量;是否拒绝零假设,为什么?(3)用F检验来检验以下假设(α = 0.05)H0: β1 = β2 = 0H a: β1和β2 并不都等于零计算检验统计量;是否拒绝零假设,为什么?解:(1)根据第一个输出结果F=62.083>F(2,7)=4.74,p<0.05,所以可以拒绝原假设,即得到不等于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1 章数据仓库的概念与体系结构1. 面向主题的,相对稳定的。

2. 技术元数据,业务元数据。

3. 联机分析处理OLAP。

4. 切片(Slice),钻取(Drill-down 和Roll-up 等)。

5. 基于关系数据库。

6. 数据抽取,数据存储与管理。

7. 两层架构,独立型数据集市,依赖型数据集市和操作型数据存储,逻辑型数据集市和实时数据仓库。

8. 可更新的,当前值的。

9. 接近实时。

10. 以报表为主,以分析为主,以预测模型为主,以营运导向为主。

11. 答:数据仓库就是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,通常用于辅助决策支持。

数据仓库的特点包含以下几个方面:(1)面向主题。

操作型数据库的数据组织是面向事务处理任务,各个业务系统之间各自分离;而数据仓库中的数据是按照一定的主题域进行组织。

主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点领域,一个主题通常与多个操作型业务系统或外部档案数据相关。

(2)集成的。

面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。

而数据仓库中的数据是在对原有分散的数据库数据作抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企事业单位一致的全局信息。

也就是说存放在数据仓库中的数据应使用一致的命名规则、格式、编码结构和相关特性来定义。

(3)相对稳定的。

操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。

数据仓库的数据主要供单位决策分析之用,对所涉及的数据操作主要是数据查询和加载,一旦某个数据加载到数据仓库以后,一般情况下将作为数据档案长期保存,几乎不再做修改和删除操作,也就是说针对数据仓库,通常有大量的查询操作及少量定期的加载(或刷新)操作。

(4)反映历史变化。

操作型数据库(OLTP)主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含较久远的历史数据,因此总是包括一个时间维,以便可以研究趋势和变化。

数据仓库系统通常记录了一个单位从过去某一时点(如开始启用数据仓库系统的时点)到目前的所有时期的信息,通过这些信息,可以对单位的发展历程和未来趋势做出定量分析和预测。

12. 答:(1)两层架构(Generic Two-Level Architecture)。

(2)独立型数据集市(Independent Data Mart)。

(3)依赖型数据集市和操作型数据存储(Dependent Data Mart and Operational Data Store)。

(4 )逻辑型数据集市和实时数据仓库(Logical Data Mart and Real-Time DataWarehouse)。

13. 答:数据仓库技术的发展包括数据抽取、存储管理、数据表现和方法论等方面。

在数据抽取方面,未来的技术发展将集中在系统集成化方面。

它将互连、转换、复制、调度、监控纳入标准化的统一管理,以适应数据仓库本身或数据源可能的变化,使系统更便于管理和维护。

在数据管理方面,未来的发展将使数据库厂商明确推出数据仓库引擎,作为数据仓库服务器产品与数据库服务器并驾齐驱。

在这一方面,带有决策支持扩展的并行关系数据库将最具发展潜力。

在数据表现方面,数理统计的算法和功能将普遍集成到联机分析产品中,并与Internet/Web 技术紧密结合。

按行业应用特征细化的数据仓库用户前端软件将成为产品作为数据仓库解决方案的一部分。

数据仓库实现过程的方法论将更加普及,将成为数据库设计的一个明确分支,成为管理信息系统设计的必备。

14. 答:(1)IBM 公司提供了一套基于可视化数据仓库的商业智能(BI)解决方案,包括:Visual Warehouse(VW)、Essbase/DB2 OLAP Server 5.0、IBM DB2 UDB,以及来自第三方的前端数据展现工具(如BO)和数据挖掘工具(如SAS)。

其中,VW 是一个功能很强的集成环境,既可用于数据仓库建模和元数据管理,又可用于数据抽取、转换、装载和调度。

Essbase/DB2 OLAP Server 支持“维”的定义和数据装载。

Essbase/DB2 OLAP Server 不是ROLAP(Relational OLAP)服务器,而是一个(ROLAP 和MOLAP)混合的HOLAP 服务器,在Essbase 完成数据装载后,数据存放在系统指定的DB2 UDB 数据库中。

它的前端数据展现工具可以选择Business Objects 的BO、Lotus 的Approach、Cognos 的Impromptu 或IBM 的Query Management Facility;多维分析工具支持Arbor Software 的Essbase 和IBM(与Arbor 联合开发)的DB2 OLAP 服务器;统计分析工具采用SAS 系统。

(2)Oracle 数据仓库解决方案主要包括Oracle Express 和Oracle Discoverer 两个部分。

Oracle Express 由四个工具组成:Oracle Express Server 是一个MOLAP(多维OLAP)服务器,它利用多维模型,存储和管理多维数据库或多维高速缓存,同时也能够访问多种关系数据库;Oracle Express Web Agent 通过CGI 或Web 插件支持基于Web 的动态多维数据展现;Oracle Express Objects 前端数据分析工具(目前仅支持Windows 平台)提供了图形化建模和假设分析功能,支持可视化开发和事件驱动编程技术,提供了兼容Visual Basic 语法的语言,支持OCX 和OLE;Oracle Express Analyzer 是通用的、面向最终用户的报告和分析工具(目前仅支持Windows 平台)。

Oracle Discoverer 即席查询工具是专门为最终用户设计的,分为最终用户版和管理员版。

在Oracle 数据仓库解决方案的实施过程中,通常把汇总数据存储在Express 多维数据库中,而将详细数据存储在Oracle 关系数据库中,当需要详细数据时,Express Server 通过构造SQL 语句访问关系数据库。

(3)Microsoft 将OLAP 功能集成到SQL Server 数据库中,其解决方案包括BI 平台、BI 终端工具、BI 门户和BI 应用四个部分,如图1.1。

①BI 平台是BI 解决方案的基础,包括ETL 平台SQL Server 2005 IntegrationService(SSIS)、数据仓库引擎SQL Server 2005 RDBMS 以及多维分析和数据挖掘引擎SQL Server 2005 Analysis Service、报表管理引擎SQL Server 2005 Reporting Service。

②BI 终端用户工具,用户通过终端用户工具和Analysis Service 中的OLAP 服务和数据挖掘服务进行交互来使用多维数据集和数据挖掘模型,终端用户通常可使用预定义报表、交互式多维分析、即席查询、数据可视化、数据挖掘等多种方法。

③BI 门户提供了各种不同用户访问BI 信息的统一入口。

BI 门户是一个数据的汇集地,集成了来自不同系统的相关信息。

用户可以制定个性化的个人门户,选择和自己相关性最强的数据,提高信息访问和使用的效率。

④BI 应用是建立在BI 平台、BI 终端用户工具和BI 统一门户这些公共技术手段之上的满足某个特定业务需求的应用,例如零售业务分析、企业项目管理组合分析等。

第2 章数据仓库的数据存储与处理1. 企业级数据仓库(EDW)。

2. 单一的,详细的。

3. 最初填充数据仓库。

4. 越高,越低,越多。

5. 提高,预处理,事实表。

6. 自然键(Natural Key),代理键(Surrogate Key)。

7. 星型模式。

8. 早期细节级,轻度综合级。

9. 答:简单地说,数据是从企业内外部的各业务处理系统(操作型数据)流向企业级数据仓库(EDW)或操作型数据存储区(ODS),在这个过程中,要根据企业(或其他组织)的数据模型和元数据库对数据进行调和处理,形成一个中间数据层,然后再根据分析需求,从调和数据层(EDW、ODS)将数据引入导出数据层,如形成满足各类分析需求的数据集市。

10. 答:数据的ETL 过程就是负责将操作型数据转换成调和数据的过程。

如上面的2.3.1 小节所述,这两种数据具有明显的区别,因此,数据调和是构建一个数据仓库中最难的和最具技术挑战性的部分。

在为企业级数据仓库填充数据的过程中,数据调和可分为两个阶段:一是企业级数据仓库(EDW)首次创建时的原始加载;二是接下来的定期修改,以保持EDW 的当前有效性和扩展性。

整个过程由四个步骤组成:抽取、清洗、转换、加载和索引。

事实上,这些步骤可以进行不同的组合,如,可以将数据抽取与清洗组合为一个过程,或者将清洗和转换组合在一起。

通常,在清洗过程中发现的拒绝数据信息会送回到源操作型业务系统中,然后将数据在源系统中加以处理,以便在以后重新抽取。

11. 答:在星模式中,事实表居中,多个维表呈辐射状分布于其四周,并与事实表连接。

位于星形中心的实体是事实表,是用户最关心的基本实体和查询活动的中心,为数据仓库的查询活动提供定量数据。

位于星模式四周的实体是维度实体,其作用是限制和过滤用户的查询结果,缩小访问X围。

每个维表都有自己的属性,维表和事实表通过关键字相关联。

12. 答:因为数据仓库或数据集市的数据总是历史的数据,需要时间维来区别。

第3 章数据仓库系统的设计与开发1. 在线分析处理(OLAP) 分析。

2. 信息包图法,维度,类别,度量。

3. 逻辑模型。

4. 事务事实,快照事实,线性项目事实。

5. 聚合。

6. 时间,区域。

7. 退化维。

8. 无变化,缓慢变化,剧烈变化。

9. 索引。

10. 反向规X化,引入冗余。

11. 答:信息包图法,也叫用户信息需求表,就是在一X平面表格上描述元素的多维性,其中的每一个维度用平面表格的一列表示,通常的维度如时间、地点、产品和顾客等;而细化本列的对象就是类别,例如时间维度的类别可以细化到年、月、日,甚至小时;平面表格的最后一行(代表超立方体中的单元格)即为指标度量值,例如,某年在某销售点的某类产品的实际销售额。

创建信息包图时需要确定最高层和最低层的信息需求,以便最终设计出包含各个层次需要的数据仓库。

总之,信息包图法是一种自上而下的数据建模方法,即从用户的观点开始设计(用户的观点是通过与用户交流得到的),站在管理者的角度把焦点集中在企业的一个或几个主题上,着重分析主题所涉及数据的多维特性,这种自上而下的方法几乎考虑了所有的信息源,以及这些信息源影响业务活动的方式。

相关文档
最新文档