最新八年级下册一次函数复习教案新人教版

合集下载

人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式

人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式
人教版八年级下册数学教案:19.2.2待定系数法求一次函数解析式
一、教学内容
本节课我们将学习人教版八年级下册数学第19章《一次函数》的19.2.2节:待定系数法求一次函数解析式。教学内容主要包括以下两部分:
1.理解待定系数法的概念,并掌握其步骤。
2.利用待定系数法求解以下类型的一次函数解析式:
-给定两点求函数解析式;
3.培养学生的合作交流能力,通过小组讨论、互助学习,使学生学会倾听他人意见,表达自己的观点,提高团队协作能力。
4.培养学生的创新意识,鼓励学生在掌握待定系数法的基础上,探索解题的其他方法,激发学生的创新思维。
三、教学难点与重点
1.教学重点
-待定系数法的概念及其应用:使学生掌握待定系数法的基本原理,并能够运用该方法求解一次函数解析式。
-给定斜率和一点求函数解析式;
-给定截距和一点求函数解析式。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识解决实际问题的能力,通过待定系数法求解一次函数解析式,使学生能够将数学与生活实际相结合,增强数学应用意识。
2.培养学生的逻辑思维能力和推理能力,让学生在求解过程中学会分析问题、制定解题策略,并逐步形成严谨的数学思维。
-掌握一次函数图像与解析式之间的关系:学生需要理解一次函数图像与斜率、截距之间的联系,以便在求解过程中更好地理解问题。
具体细节如下:
1.教学重点细节
-待定系数法的概念:通过实例引入,解释何为待定系数,并强调其在求解一次函数解析式中的重要性。
-求解步骤的讲解:详细讲解如何根据给定条件列出方程,如何解方程得到k和b的值,并最终得到一次函数的解析式。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解待定系数法的基本概念。待定系数法是一种求解一次函数解析式的方法,通过设定未知系数,列出方程组,进而求解出函数的解析式。它在解决实际问题中有着广泛的应用。

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案

人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。

本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。

二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。

但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。

三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。

2.理解一次函数的性质,能够解释一次函数图象的变换。

3.能够运用一次函数解决实际问题,提高学生的数学应用能力。

四. 教学重难点1.一次函数的图象特征和性质的理解。

2.一次函数图象的实际应用。

五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。

六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。

2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。

3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。

七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。

3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。

4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。

5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。

人教版数学八年级下册《一次函数与一元一次方程》教案1

人教版数学八年级下册《一次函数与一元一次方程》教案1

人教版数学八年级下册《一次函数与一元一次方程》教案1一. 教材分析人教版数学八年级下册《一次函数与一元一次方程》是学生在学习了代数和几何基础知识后,进一步深化对函数和方程的理解的重要内容。

本节课通过介绍一次函数和一元一次方程的定义、性质、图像以及解法,使学生能够掌握解决实际问题的方法,提高解决问题的能力。

二. 学情分析学生在之前的学习中已经接触过函数和方程的知识,对一些基本概念和运算规则有一定的了解。

但一部分学生可能对一次函数和一元一次方程的联系和应用还不够清晰,解题时不能灵活运用。

因此,在教学过程中,要关注这部分学生的学习需求,通过具体实例和练习,帮助他们理解和掌握知识。

三. 教学目标1.知识与技能:理解一次函数和一元一次方程的定义,掌握一次函数的性质和图像,学会解一元一次方程。

2.过程与方法:通过观察、分析、归纳、实践等方法,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.一次函数的定义和性质。

2.一元一次方程的解法和应用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、讨论和交流,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的一次函数和一元一次方程的案例和练习题。

2.准备多媒体教学设备,如PPT等。

七. 教学过程1.导入(5分钟)通过一个实际问题引出一次函数和一元一次方程的概念,激发学生的兴趣。

2.呈现(10分钟)讲解一次函数和一元一次方程的定义、性质和图像,让学生通过观察和分析,理解两者的联系。

3.操练(10分钟)让学生分组讨论和解答一些关于一次函数和一元一次方程的练习题,巩固所学知识。

4.巩固(5分钟)通过一些实际问题,让学生运用一次函数和一元一次方程的知识解决问题,提高学生的应用能力。

5.拓展(5分钟)引导学生思考一次函数和一元一次方程在实际生活中的应用,激发学生的创新意识。

人教版八年级数学下册19章一次函数复习教学设计

人教版八年级数学下册19章一次函数复习教学设计
4.熟练运用一次函数的图像解决线性方程和不等式问题,如求解方程的根、不等式的解集等。
(二)过程与方法
1.通过对一次函数图像的观察、分析,培养学生的观察能力和空间想象力。
2.引导学生运用数形结合的方法,将一次函数与实际问题相结合,提高学生解决问题的能力。
3.通过小组合作、讨论、交流等学习方式,培养学生的团队协作能力和表达能力。
b.斜率k和截距b对一次函数图像的影响;
c.一次函数在实际生活中的应用。
2.各小组汇报:每个小组选派一名代表汇报讨论成果,其他小组成员进行补充。
3.教师点评:针对各小组的讨论情况,给予积极评价和指导,强调重点,纠正错误。
(四)课堂练习
1.基础练习:设计一些基础题目,让学生独立完成,巩固一次函数的基本概念和性质。
8.情感教育,培养良好态度:关注学生的情感体验,营造轻松、愉快的学习氛围,引导学生树立正确的价值观,培养良好的学习态度。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的手机话费套餐为例,展示不同套餐的价格与通话时长之间的关系。引导学生观察、分析并发现其中存在的数学规律,从而引出一次函数的概念。
(2)小组合作完成一份关于一次函数在生活中的应用报告,内容包括:问题背景、数学模型、解决方案、实际操作及Байду номын сангаас果分析。
5.自主学习任务:
(1)查阅资料,了解一次函数在其他学科领域的应用,如物理、经济等;
(2)总结一次函数学习过程中的心得体会,分析自己的学习方法,为下一阶段学习制定合理的学习计划。
2.突破重点,化解难点:针对斜率k和截距b的概念,采用直观的图像演示和实际案例分析,帮助学生理解其物理意义。同时,通过小组合作、讨论交流,让学生在互动中加深对一次函数性质的理解。

最新人教版八年级数学第19章一次函数复习课教学设计

最新人教版八年级数学第19章一次函数复习课教学设计

一次函数复习课教学设计一、内容和内容解析1.内容本课的内容是人教版八年级下册第19章复习课,是对本章关于一次函数重点内容的复习。

本章中关于一次函数的知识结构如图2.内容解析本课是在学习完函数的概念及其表示法,学习了一次函数的有关知识后,进行的全章内容的回顾与复习活动,整理全章的知识结构,巩固用待定系数法求一次函数解析式,概括函数研究的思想方法:抽象的思想、模型的思想、对应的思想、数形结合的思想。

通过本课的学习使学生巩固一次函数图象的画法和一次函数的性质,并对一次函数进行拓展,是今后继续学习其它函数的基础,本章起着承上启下的作用。

本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。

综上所述,本节课的教学重点是:1、巩固一次函数概念,图像及性质;2、掌握待定系数法求函数解析式;3、学会应用数形结合思想分析数学问题,解决数学问题。

二、目标和目标解析1. 目标(1).整理本章学习内容,建立相关知识之间的联系;(2).能用待定系数法求一次函数的解析式;(3).能用数形结合思想解决数学问题。

2.目标解析目标(1)要求学生在复习巩固的过程中,进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路。

目标(2)要求学生明确一次函数一般解析式y=k x +b(k、b为常数,k≠0),会用待定系数法即根据已知条件列关于常数k、b的方程组,从而求解一次函数的解析式。

目标(3)要求学生感受到“以图表示数,以数解释形”,并在这种用图形表示数学对象的过程中发展数学直观能力,发展数学感知能力,要求学生能通过图象的直观观察发现其特征;发展数学表征能力,要求学生会用图像描述变量之间的对应关系,用变量的变化规律解释图形的特征。

三、教学问题诊断分析本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。

原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路。

人教版八年级下册数学教案9.2.3一次函数与二元一次方程(组)

人教版八年级下册数学教案9.2.3一次函数与二元一次方程(组)
其次,小组讨论的环节,我发现学生们参与度很高,但有些小组在讨论时可能会偏离主题。今后,我需要在给出讨论主题时更加明确具体,同时加强在讨论过程中的引导,确保每个小组都能围绕核心知识点展开讨论。
关于实践活动,我认为让学生动手操作一次函数图象与二元一次方程的实验很有帮助,他们通过实际操作对知识有了更深的理解。不过,我也注意到有些学生在操作过程中对图象的解读不够准确,可能需要在操作前给出更详细的指导。
还有一个值得注意的地方是,在总结回顾环节,有些学生对一次函数与二元一次方程在实际生活中的应用还不够自信。我觉得在今后的教学中,应该多设计一些与实际相结合的练习题,让学生有更多机会将所学知识应用于解决实际问题。
-难点二:从图象中识别二元一次方程组的解。学生可能不熟悉如何从两条直线的交点中找到方程组的解。
举例:指导学生观察两条直线图象的交点,并通过实际操作,如使用直尺和量角器,来精确找出交点的坐标。
-难点三:在实际问题中建立一次函数模型。学生可能不知道如何将现实生活中的问题转化为数学模型。
举例:提供多个实际问题,如成本与销售量关系,让学生练习如何提取关键信息,建立一次函数模型,并通过图象分析解决问题。
2.二元一次方程组的图象表示方法;
3.通过一次函数图象求解二元一次方程(组);
4.实际问题中一次函数与二元一次方程(组)的应用。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识分析和解决问题的能力,特别是在解决实际问题时,能够将问题抽象为一次函数与二元一次方程(组)模型;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数与二元一次方程的基本概念。一次函数是形如y=kx+b的函数,它描述了两个变量之间的线性关系。而二元一次方程则是包含两个未知数的方程,如kx-y+b=0。它们在解决实际问题中起着重要作用。

数学人教版八年级下册一次函数复习教学设计

数学人教版八年级下册一次函数复习教学设计

《一次函数》复习课教学设计与反思一、复习目标知识目标:了解一次函数的概念,掌握一次函数的图象和性质;能正确画出一次函数的图象,并能根据图象探索函数的性质;能根据具体条件列出一次函数的关系式。

能力目标:理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力。

情感目标:通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

教学重点与难点重点:根据不同条件求一次函数的解析式。

难点:根据函数图象探索其性质。

教法与学法教法分析: 经过精心的整理,我把本单元的知识归纳成“六求”,采用的“演绎法”向学生传授。

由于是复习课,我采用边讲边练和问题教学的方式。

学法指导: 在这节课之前,我已经让全班同学拟定复习计划书,很多同学在计划书中都提出函数是难点,希望能多复习一点,我把这一信息反馈给班级,使全班同学都有一种意见得到尊重的满足感,并产生了强烈的主动求知欲望。

另外,通过向学生展示我对本单元的归纳,培养学生自己动脑,自己归纳总结的能力,从而掌握一种良好的复习方法。

二、教学过程(一)、知识回顾:由于是复习课,所以开门见山地给出一次函数的定义,图象和性质。

(二)、提出“六求”:本单元的知识点比较繁多,而且在初中数学中所占的地位也比较重要。

因此,我用“六个求”来对于本单元进行复习:1、求系数(指数):例1、已知函数y=(k-1)x + m-2①若它是一个正比例函数,求k , m的值。

②若它是一个一次函数,求k , m的值。

分析:这类题目是考察同学们对函数解析式的特征的理解,在讲解时要突出两个疑难:一是一次函数中自变量的指数等于1,而不是0;二是一次函数解析式中自变量的系数不为零。

2、求位置:是指一次函数的图象在坐标系中的位置,直线经过的象限:一般的,一条直线都经过三个象限,由于新教材不注重k,b的符号决定直线经过的象限的理解,且加上我班学生的基础较差,成绩一般。

人教版八年级数学下册教案:19.2.3一次函数与方程,不等式

人教版八年级数学下册教案:19.2.3一次函数与方程,不等式
人教版八年级数学下册教案:19.2.3一次函数与方程,不等式
一、教学内容
本节课选自人教版八年级数学下册19.2.3节,主要内容包括:
1.一次函数与一元一次方程的关系:利用一次函数图像求解一元一次方程,以及方程的解与函数图像上点的坐标关系。
2.一次函数与一元一次不等式的关系:根据一次函数图像,判断不等式的解集,并能在数轴上表示出来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数与方程、不等式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,我鼓励学生们提出自己的观点,并进行交流。大家普遍对一次函数与方程、不等式在实际生活中的应用表现出较高的兴趣。但在讨论过程中,我也注意到有些学生参与度不高,可能是由于他们对这一知识点还不够自信。因此,我需要在今后的教学中,更加关注这部分学生,鼓励他们积极参与,提高自信心。
总体来说,今天的教学还有许多需要改进的地方。首先,我需要在讲解难点时,更加注重学生的接受程度,适时调整教学节奏,确保每一个学生都能跟上。其次,针对学生在一次函数图像与不等式解集关系上的困惑,我计划在下一节课中增加一些更具针对性的练习和案例分析,帮助他们更好地理解这一部分内容。
3.应用实际问题:结合生活实例,让学生学会运用一次函数与方程、不等式的关系解决问题,如利润问题、速度问题等。
4.练习题:通过练习题巩固一次函数与方程、不等式的转换与应用,提高学生实际操作学知识解决实际问题的能力,使学生能够结合一次函数与方程、不等式的知识,分析并解决生活中的数学问题,提升数学应用意识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章一次函数
教学目标
1.能根据具体问题中的数量关系和变化规律体会一次函数的意义,并根据已知条件确定一次函数的表达式。

2.会画一次函数图象,根据一次函数图象和解析表达式理解其性质。

3.能运用类比思想比较一次函数和正比例函数的异同点,初步体会数形结合思想,并能运用数形结合的方法解决有关实际问题,并尝试用函数的方法描述有关实际问题,对变量的变化规律进行初步预测。

一、本章知识梳理 1.一般的若
y kx b =+(k ,b 是常数,且0k ≠)
,那么y 叫做x 的一次函数,
当b=0时,一次函数y=也叫正比例函数。

2.正比例函数kx y =(0k ≠)是一次函数的特殊形式,当=0时,y=0,故正比例函数图像过原点(0,0).
3.一次函数的图像和性质:
说明:(1)与坐标轴交点(0,b )和(-
k
,0), b 的几何意义:_____________________ (2)增减性: >0,y 随的增大而增大;<0,y 随增大而减小.
(3)倾斜度:||越大,图象越接近于y 轴;||越小,图象越接近于轴。

(4)图像的平移: 当b>0时,将直线y=的图象向上平移b 个单位可得y=+b 的图像;
当b<0时,将直线y=的图象向下平移b 个单位可得y=+b 的图
像.
4.直线b 1=1+b 1与直线y 2=2+b 2(1≠0 ,2≠0)的位置关系.
①1≠2⇔y 1与y 2相交;
②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2)
; ③⎩⎨⎧≠=21
21,b b k k ⇔y 1与y 2平行;
④⎩⎨
⎧==2
121,
b b k k ⇔y 1与y 2重合.
5.一次函数解析式的确定,主要有三种方法: (1)由已知函数推导或推证
(2)由实际问题列出二元方程,再转化为函数解析式。

(3)用待定系数法求函数解析式。

二、典例精析
题型一:一次函数的概念
例1.已知函数y=(m-2)3
2
-m
x
+3,当m 为何值时,y 是的一次函数?
解析:根据一次函数的定义,的次数必须为1,系数不为0,即可求出m 的值。

练习:1.已知函数y=(m-1)+m 是一次函数,求m 的范围。

2.已知函数y=(-1)+2
-1,当____________时,它是一次函数,当__________时,它是正比例函数。

答案:1.m ≠1 2. ≠1, -1
题型二:一次函数的图像与性质
例2.对于一次函数y=﹣2+4,下列结论错误的是( ) A . 函数值随自变量的增大而减小 B . 函数的图象不经过第三象限
C . 函数的图象向下平移4个单位长度得y=﹣2的图象
D . 函数的图象与轴的交点坐标是(0,4)
解析:这是探究型题目,考查一次函数的性质;一次函数图象与几何变换。

分别根据一次函数的性质及函数图象平移的法则进行解答即可. 答:选D
A .∵一次函数y=﹣2+4中=﹣2<0,∴函数值随的增大而减小,故本选项正确;
B .∵一次函数y=﹣2+4中=﹣2<0,b=4>0,∴此函数的图象经过一.二.四象限,不经过第三象限,故本选项正确;
C .由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2的图象,故本选项正确;
D .∵令y=0,则=2,∴函数的图象与轴的交点坐标是(2,0),故本选项错误. 练习:1.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )
2.一次函数y=+2经过点(1,1),那么这个一次函数( )B (A )y 随的增大而增大 (B )y 随的增大而减小 (C )图像经过原点 (D )图像不经过第二象限
3.如果0ab >,
0a c <,则直线a c
y x b b
=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
题型三:一次函数解析式和图象的确定
例3.直线与轴交于点A (-4,0),与y 轴交于点B ,若点B 到轴的距离为2,求直线的解析式。

分析:确定一次函数解析式问题,用待定系数法,同时要寻求隐含条件,从而确定和b 的值。

解 ∵点B 到轴的距离为2, ∴点B 的坐标为(0,±2),
设直线的解析式为y=±2,
∵直线过点A(-4,0),∴0=-4±2,
解得:=±, ∴直线AB的解析式为y=+2或y=--2.
例4.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()
A .
B

C

D
.答:选C.
练习:
1.如图,直线AB与轴交于点A(1,0),与y轴交于点B(0,﹣
2).
(1)求直线AB的解析式
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
分析:待定系数法求一次函数解析式。

本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式
解答:解:(1)直线AB的解析式为y=2﹣2.(2)点C的坐标是(2,2).
2.周一的升旗仪式上,同学们看到匀速上升的旗子,能反应其高度与时间关系的图象大致是( D )
A .B

C

D

分析:本题是一次函数的应用题,考查了函数图象,根据题意判断出旗子的高度与时间是一次函数关系,并且随着时间的增大高度在不断增大是解题的关键.
题型四:一次函数的实际应用
例5.随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销商计划用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车.两种轿车的进价和售价如下表:
类别甲乙
进价(万元/台)10.
5
6
售价(万元/台)11.
2 6 . 8
(1
(2)如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.
(注:其他费用不计,利润=售价﹣进价)
考点:一次函数的应用;一元一次不等式组的应用。

分析:(1)设购进甲款轿车辆,则购进乙款轿车(30﹣)辆,根据:用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车,列不等式组,求的取值范围,再求正整数的值,确定方案;
(2)根据:利润=(售价﹣进价)×辆数,总利润=甲轿车的利润+乙轿车的利润,列出函数关系式,根据的取值范围求最大利润.
解:(1)设购进甲款轿车辆,则购进乙款轿车(30﹣)辆,依题意,得
228≤10.5+6(30﹣)≤240,
解得102
3
≤≤13
1
3
,∴整数=11,12,13,
有三种进货方案:购进甲款轿车11辆,购进乙款轿车19辆;购进甲款轿车12辆,购进乙款轿车18辆;
购进甲款轿车13辆,购进乙款轿车17辆.
(2)设总利润为W(万元),则W=(11.2﹣10.5)+(6.8﹣6)(30﹣)=﹣0.1+24,∵﹣0.1<0,W随的减小而增大,
∴当=11时,即购进甲款轿车11辆,购进乙款轿车19辆,利润最大,
最大利润为W=﹣0.1×11+24=22.9万元.
点评:本题考查了一次函数的应用.关键是明确进价,售价,购进费用,销售利润之间的关系,利用一次函数的增减性求解.
三.师生小结
1.熟悉一次函数的一般形式,会判断一次函数。

2.一次函数的图像和性质是中考重点。

3.用待定系数法求一次函数的解析式的方法可归纳为:一设、二列、三解、四还原。

4.会简单的一次函数应用题:(1)建立函数数学模型的方法;(2)分段函数思想的应用。

相关文档
最新文档