新人教版初中八年级下册数学19.2.2 一次函数

合集下载

新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

新人教版八年级数学下册《十九章 一次函数  19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。

19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2 一次函数——待定系数法求一次函数解析式教案引言本教案旨在教授八年级下册数学课程中的一次函数待定系数法求解问题。

一次函数是初等数学中最基本的函数之一,待定系数法则是解决一次函数问题中常用的一种方法。

本教案将帮助学生掌握待定系数法的基本原理,并通过具体例题的讲解,引导学生能够独立解决一次函数问题,并运用所学知识解决实际生活中的问题。

目标•理解一次函数的概念及特征•掌握待定系数法求解一次函数的步骤和方法•能够独立解决一次函数相关问题•运用所学知识解决实际问题教学内容1.一次函数回顾2.待定系数法求一次函数解析式的步骤和方法3.实例分析与解题训练4.应用案例分析教学步骤一、一次函数回顾1.提问:什么是一次函数?2.引导学生回顾一次函数的定义和示例,并讨论函数的特征。

二、待定系数法求一次函数解析式的步骤和方法1.引入待定系数法的概念,解释其基本原理。

2.解释待定系数法的求解步骤:–步骤一:列方程–步骤二:解方程–步骤三:找到解析式3.用具体例子演示待定系数法的求解过程,并解释其中的关键步骤和技巧。

三、实例分析与解题训练1.展示一些具体的一次函数问题,并引导学生运用待定系数法解决这些问题。

2.让学生分组进行练习,相互交流并解答问题。

四、应用案例分析1.提供一些实际生活中的问题,要求学生运用所学知识解决这些问题。

2.引导学生思考如何用一次函数和待定系数法来建立模型和解决问题。

总结与反思通过本节课的学习,学生应该对一次函数的特点和待定系数法有较为全面的理解,并能够灵活运用待定系数法解决一次函数问题。

同时,学生应该能够将所学知识运用到实际生活中,解决与一次函数相关的问题。

希望学生们能够通过课后的复习和实践,进一步巩固所学内容,并提升自己的问题解决能力。

课后作业1.自选一个实际生活中的问题,并用一次函数和待定系数法解决。

2.阅读教材相关章节,复习一次函数的相关知识。

注意:以上内容仅供参考,老师可以根据班级实际情况和教学需要进行适当调整。

人教版八年级数学下册19.2.2一次函数的概念优秀教学案例

人教版八年级数学下册19.2.2一次函数的概念优秀教学案例
本节课的教学目标是通过实例让学生理解一次函数的概念,掌握一次函数的性质,并能运用一次函数解决实际问题。为了达到这个目标,我设计了以下教学步骤:
1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。

人教版数学八年级下册19.2.2一次函数(第2课时)优秀教学案例

人教版数学八年级下册19.2.2一次函数(第2课时)优秀教学案例
(二)问题导向
在教学过程中,我会提出一系列问题,引导学生思考和探究。例如:“一次函数的表达式是什么?它有什么特点?”“一次函数的图像是什么样子的?它与一次函数的性质有什么关系?”通过这些问题,激发学生的思维,培养学生的解决问题能力。
(三)小组合作
在学生掌握一次函数的性质后,我会组织学生进行小组合作,共同探讨一次函数在实际生活中的应用。每个小组可以选择一个实际问题,运用一次函数的知识进行解决。通过小组合作,培养学生的团队协作能力和沟通能力。
3.小组合作的学习方式:在学生掌握一次函数的性质后,我组织了小组合作活动,让学生共同探讨一次函数在实际生活中的应用。这种小组合作的学习方式培养了学生的团队协作能力和沟通能力,使他们在讨论和解决问题中能够相互学习和共同进步。
4.反思与评价的环节:在课程的最后,我让学生进行反思和评价,回顾自己在这节课中学到了什么,有什么收获和感悟。这种反思与评价的环节使学生能够总结经验,提高学习能力。同时,我也对学生的学习情况进行评价,注重培养学生的思维能力、创新能力和合作能力。
人教版数学八年级下册19.2是“人教版数学八年级下册19.2.2一次函数(第2课时)”,在上一课时中,学生已经初步了解了什么是一次函数,以及一次函数的表达式。本课时,我将引导学生深入学习一次函数的性质,包括单调性、截距等,并通过实例让学生理解一次函数在实际生活中的应用。
(二)讲授新知
在讲授新知环节,我会结合教材和教学资源,系统地讲解一次函数的性质,包括单调性、截距等。在讲解过程中,我会运用生动的例子和动画演示,帮助学生直观地理解一次函数的性质。同时,我会鼓励学生积极参与,提问和解答疑问,确保学生对一次函数的知识有深入的理解。
(三)学生小组讨论
在学生掌握一次函数的性质后,我会组织学生进行小组讨论。每个小组会选择一个实际问题,运用一次函数的知识进行解决。我会提供一些实际问题作为参考,如:“某商品原价为100元,打8折后的价格是多少?”,“某运动员跑步的速度是每分钟80米,他跑完1000米需要多少时间?”等。通过小组讨论,培养学生的团队协作能力和沟通能力。

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
(四)课堂练习,500字
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。

人教版数学八年级下册19.2.2一次函数说课稿

人教版数学八年级下册19.2.2一次函数说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与一次函数相关的实际情境,如“小明骑自行车去图书馆,速度和时间的关系”,让学生思考如何用数学模型来描述这种关系。
2.提出问题:在此基础上,提出问题:“如何表示速度和时间的关系?”引导学生回顾已学的线性方程知识,为新课的学习做好铺垫。
1.创设生活情境:通过引入实际生活中的问题,让学生感受到一次函数的实用性和趣味性,提高他们的学习兴趣。
2.互动教学:设计小组讨论、同桌交流等环节,鼓励学生主动参与,培养合作精神和沟通能力。
3.游戏化学习:设计一些与一次函数相关的数学游戏,让学生在轻松愉快的氛围中掌握知识。
4.成就激励:对学生在课堂上的表现给予积极的评价和鼓励,提高他们的自信心,激发学习动力。
在这个阶段,学生的学习习惯各异,一些学生习惯于被动接受知识,依赖教师的讲解,而较少主动思考和探索。同时,他们的合作学习能力有待提高,需要教师在教学中引导和培养。
(二)学习障碍
学生在学习本节课之前,应当具备以下前置知识或技能:
1.掌握线性方程的基本概念和解法。
2.能够绘制简单图形,如直线、点等。
3.理解函数的基本概念,知道函数是一种特殊的关系。
本节课的主要知识点包括:一次函数的定义、表达式、图像及性质。具体地,学生会学习到以下内容:
1.一次函数的定义:形如y=kx+b(k≠0)的函数,其中k和b是常数,称为一次函数。
2.一次函数的表达式:y=kx+b,其中k表示斜率,b表示截距。
3.一次函数的图像:一条直线。
4.一次函数的性质:斜率k的正负决定直线的斜率方向;截距b表示直线与y轴的交点。

19.2.2 一次函数的图象和性质八年级数学下册

19.2.2 一次函数的图象和性质八年级数学下册

形如 y=kx+b(k,b是常数,k≠0) 的函数,叫做一次函数;
当b=0时,y=kx+b就变成了 y=kx ,所以说正比例函数
是一种特殊的一次函数.
正比例函数的图象是一条经过
原 点的 直线 .
正比例函数
一次函数
解析式 y =kx(k≠0)
解析式 y =kx+b(k≠0)
图象:经过原点和
(1,k)的一条直线
2 2
4
2
2
4
27 9
的面积为 或 .
4 4
课堂小结
与y轴的交点是(0,b),
图象
b
与x轴的交点是( k,0),
当k>0, b>0时,经过一、二、三象限;
一次函数
的图象和
性质
当k>0 ,b<0时,经过一、三、四象限;
当k<0 ,b>0时,经过 一、二、四象限;
当k<0 ,b<0时,经过二、三、四象限.
C.y1<y2<0
D.y2<0<y1
11. (上海中考)如果一次函数 y=kx+3 (k 是常数,k≠0)的图象经过点(1,0),
那么 y 的值随 x 的增大而 减小
(填“增大”或“减小”).
12.函数 y=3x-2 的图象是把 y=3x 的图象向 下 平移 2
个单位得到
的,那么把 y=3x-2 的图象向上平移 4 个单位,所得直线的解析式为
k>0
k<0
y
y

x

O x
O
性质:k>0,y 随x 的
增大而增大;k<0,y
随 x 的增大而减小.
针对函数 y =kx+b,要研究什么?怎样研究?

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列表
描点
连线
y
x -2 -1 0 1 2
12
y=-6x 12 6 0 -6 -12
10
y=-6x+5 17 11 5 -1 -7
8
6
4
2
-2 -1 O 1 2 3 x
探究新知
19.2 一次函数/
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观
察结果并与同伴交流.
这两个函数的图象形状都 是一条直线,并且倾斜程度相同 .函 数y=-6x的图象经过原点,函数 y=-6x+5的图象与y轴交于点(0,5), 即它可以看作由直线y=-6x向 上 平 移 5 个单位长度得到.
y(元)与收入x(元)之间的函数解析式. 解:y=0.03×(x-3500) (3500<x<5000)
课堂检测
19.2 一次函数/
能力提升题
(2)某人月收入为4160元,他应缴所得税多少元? 解:当x=4160时,y=0.03×(4160-3500)=19.8(元).
(3)如果某人本月应缴所得税19.2元,那么此人本月工资是多少元?
y = k(常数)x + b(常数)
探究新知
19.2 一次函数/
一般地,形如y=kx+b (k, b 是常数,k≠0)的函数,叫 做一次函数.
一次函数的特点如下:
(1)解析式中自变量x的次数是 1 次;
(2)比例系数 k≠0

(3)常数项:通常不为0,但也可以等于0.
探究新知
19.2 一次函数/
课堂检测
19.2 一次函数/
基础巩固题
4.已知y与x-3成正比例,当x=4时,y=3. (1)写出y与x之间的函数关系式,并指出它是什么函数; (2)求x=2.5时,y的值.
解 :(1)设y=k(x-3) 把 x=4,y=3 代入上式,得 3= k(4-3) 解得 k=3, ∴y=3(x-3) ∴ y=3x-9,y是x的一次函数.
解:是函数关系,函数解析式为G=h-105
探究新知
19.2 一次函数/
(3)某城市的市内电话的月收费额y(单位:元)包括月租 费22元和拨打电话x分钟的计时费(按0.1元/分钟收取).
解:是函数关系,函数解析式为y=0.1x+22
(4) 把一个长10cm、宽5cm的长方形的长减少xcm,宽 不变,长方形的面积y(单位:cm2)随x的变化而变化.
解:是函数关系,函数解析式为y=-5x+50 (0≤x≤10)
探究新知
19.2 一次函数/
【讨论】分别说出这些函数的常数、自变量,这些函数解析
式有哪些共同特征? 解:
(1)c=7t-35的常数为7、-35,自变量为t; (2)G=h-105的常数为1、-105,自变量为h; (3)y=0.1x+22的常数为0.1、22,自变量为x; (4)y=-5x+50的常数为-5、50,自变量为x.
人教版 数学 八年级 下册
19.2 一次函数/
19.2 一次函数 19.2.2 一次函数
第一课时 第二课时 第三课时 第四课时
第一课时
19.2 一次函数/
一次函数的概念及解析式
y y=2x-12
O -12
6x
返回ቤተ መጻሕፍቲ ባይዱ
导入新知
19.2 一次函数/
某登山队大本营所在地的气温为5℃,海拔每升高1km气 温下降6℃.登山队员由大本营向上登高x km时,他们所在位 置的气温是y℃.试用函数解析式表示y与x的关系.
解得m=-2.
(1)k ≠ 0; (2)自变量x的指
即m=-2时,这个函数是正比例函数. 数是“1”
巩固练习
19.2 一次函数/
3.已知函数y=2x|m|+(m+1). (1)若这个函数是一次函数,求m的值; (2)若这个函数是正比例函数,求m的值. 解:(1)由题意得: m 1 因此 m=±1.
解:设此人本月工资是x元,则 19.2=0.03×(x-3500), 解得 x=4140.
答:此人本月工资是4140元.
课堂检测
19.2 一次函数/
拓广探索题
如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的一次函数吗?
如果是,请指出相应的k与b的值.
A
解: (1)∵BC边上的高AD也是BC边上的中线,
(2)由题意得:m+1=0 , 解得m= -1.
探究新知
19.2 一次函数/
知识点 2 利用一次函数解答实际问题
汽车油箱中原有油50升,如果汽车每行驶50千米耗油9升,
求油箱的油量y(单位:升)随行驶路程x(单位:千米)变化的
函数关系式,并写出自变量的取值范围,y 是 x 的一次函数吗?
解:油量y与行驶时间x的函数关系式为:y
【讨论】一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数 是正比例函数. (2)正比例函数是一种特殊的一次函数.
巩固练习
19.2 一次函数/
1.下列函数中哪些是一次函数,哪些又是正比例函数?
(1) y 8x ;
(2) y 8 ;
x
(3) y 5x 2 6 ; (4) y 0.5x 1
第二课时
19.2 一次函数/
一次函数的图像和性质
y y =-3x+1 y =-x+1 6
4
y =3x+1 y =x+1 C
2B A
-5
O -2
E
D
5x
返回
导入新知
19.2 一次函数/
我们最快捷、最正确地画出正比例函数的图象时, 通常在直角坐标系中选取哪两个点?
答:画正比例函数y=kx(k≠0)的图像,一般地, 过原点和点(1,k).
19.2 一次函数/
知识点 1 一次函数的概念
(1)有人发现,在20~25℃时蟋蟀每分鸣叫次数c与温度t(单位: ℃)有关,即c的值约是t的7倍与35的差.
解:是函数关系,函数解析式为c=7t-35 (20≤t≤25) (2)一种计算成年人标准体重G(单位:千克)的方法是: 以厘米为单位量出身高值h,再减常数105,所得的差是G的值.
y
12 10 8 6 4 2
-2 -1O 1 2 3 x
探究新知
19.2 一次函数/
2.(1)画一次函数 y =2x-3 的图象.
y
列表 描点 连线
4
y =2x y =2x-3
x … -2 -1 0 1 2 … y … -7 -5 -3 -1 1 …
2
-2 O -2
2x
(2)画正比例函数 y =2x的图象. -4
解: (2)当 h
3 ,有
3 3x 2
.解得x=2.
(3)∵ S 1 AD BC 1 3 x x 3 x2,
2
22
4
即S
3 x2, 4
∴S不是x的一次函数.
课堂小结
19.2 一次函数/
一次函数 的概念
形式:y=kx+b(k≠0) 特别地,当b=0时, y=kx(k≠0)是正比例函数
一次函数的简单应用
巩固练习
19.2 一次函数/
连接中考
(2019•陕西)根据记录,从地面向上11km以内,每升高1km, 气温降低6℃;又知在距离地面11km以上高空,气温几乎不变. 若地面气温为m(℃),设距地面的高度为x(km)处的气温为y (℃) (1)写出距地面的高度在11km以内的y与x之间的函数表达式; (2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻, 她从机舱内屏幕显示的相关数据得知,飞机外气温为﹣26℃时, 飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;
【思考】能用这种方法作出一次函数的图象吗?
素养目标
19.2 一次函数/
3. 能灵活运用一次函数的图象与性质解答有关 问题.
2.能从图象角度理解正比例函数与一次函数的 关系.
1. 会画一次函数的图象,能根据一次函数的图 象理解一次函数的增减性 .
探究新知
19.2 一次函数/
知识点 1 一次函数的图象 1.画出函数y=-6x与y=-6x+5的图象.
课堂检测
19.2 一次函数/
基础巩固题
1. 下列函数中,y是x的一次函数的是( C )
① y x6 ② y 2
x
③y8
x
④ y7x
A. ①②③ C. ①④
B. ①③④ D. ②③④
课堂检测
19.2 一次函数/
基础巩固题
2.下列说法正确的是( D ) A.一次函数是正比例函数 B.正比例函数不是一次函数 C.不是正比例函数就不是一次函数 D.正比例函数是一次函数 3. 要使y=(m-2)xn-1+n是关于x的一次函数,n,m应满 足 n=2 , m≠2 .
y=5-6x 这个函数是正比例函数吗?它与正比例函数有什么不同? 这种形式的函数还会有吗?
素养目标
19.2 一次函数/
3. 能利用一次函数解决简单的实际问题.
2. 能辨别正比例函数与一次函数的区别与联系.
1. 结合具体情境理解一次函数的意义,能结合 实际问题中的数量关系写出一次函数的解析式.
探究新知
(2)当x=2.5时, y=3×2.5 - 9= -1.5.
课堂检测
19.2 一次函数/
能力提升题
我国现行个人工资、薪金所得税征收办法规定:月收入低 于3500元的部分不收税;月收入超过3500元但低于5000元的部 分征收3%的所得税……如某人月收入3860元,他应缴个人工资、 薪金所得税为:(3860-3500)×3%=10.8元. (1)当月收入大于3500元而又小于5000元时,写出应缴所得税
相关文档
最新文档