量子力学(第十一章)
第11章 原子发射光谱_2016

尾焰区在内焰区上方,无色透明,温度较低, 在6000K以下,只能激发低能级的谱线。
特点:蒸发温度高,稳定性好,适用范围广
28 28
ICP-AES仪器
IRIS Intrepid全谱直读等 离子体发射光谱仪(ICPAES) 是美国热电公司生产 的原子光谱分析仪器,采 用CID检测器和设计独特 的光学系统,具有高分辨 率、高灵敏度,可同时测 定元素周期表中的73种元 素,每个元素波长可任意 选择,最大限度地减少了 元素之间的相互干扰。适 用于金属、环境、地球化 学等领域对元素的高精度 分析。
29
光电直读光谱仪和摄谱仪
1. 光电直读光谱仪
直接利用光电检测系统将谱线的光信号转换为电信号,并 通过计算机处理、打印分析结果的光谱仪。 两种类型:单通道和多通道 单通道:一个出射狭缝和一 个光电倍增管,可接受一条谱 线,构成一个测量通道; 通过转动光栅或光电倍增管 进行扫描,在不同时间检测不 同谱线。
33
11.3 原子光谱分析方法
定性分析
1. 分析线
分析线:用于确定某一元素的特征谱线。复杂元素的谱 线可能多至数千条,只选择其中几条特征谱线检验 ,称其为分析线——最后线和灵敏线; 最后线:随浓度降低,谱线数目减小,直到最后消失的 谱线 灵敏线:元素特征谱线中强度较大的谱线.最易激发的 能级所产生的谱线,每种元素都有一条或几条谱线 最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线。通常也 是最灵敏线和最后线。
第十一章
原子发射光谱法
Atomic Emission Spectrometry (AES)
原子发射光谱分析法(atomic emission
spectroscopy ,AES):元素在受到热或
量子力学基本原理与基本概念小结-第16讲

薛定谔方程的评论
2、薛定谔方程是时间一次、坐标二次偏微分方程, 不具有相对论协变性(时空对称性),因而不是 微观粒子的相对论性量子力学运动方程。薛定谔 方程是建立在非相对论时空和非相对论运动学基 础之上的非相对论量子力学。
3、非相对论性量子多体理论,虽然引进了粒子产生、 消灭算符和二次量子化表象,但它们描述的是粒子 从一个量子态向另一个量子态的跃迁与转变,并没 有真正涉及粒子的产生和消灭。
薛定谔方程中的波函数的物理本质是什么呢?
波恩的观点:
薛定谔方程中的波函数代表的是一种概率,而 绝对不是薛定谔本人所理解的是电荷(电子) 在空间中的实际分布。波函数,准确地说 r 2 代表了电子在某个地点出现的概率,电子本身 不会像波那样扩展开去,但它的出现概率则像 一个波。
“微观粒子的运动状态用波函数描述,描写粒 子的波是概率波”,这是量子力学的一个基本 假设(基本原理)
WII
WII
N
III
(c e c e ) III iknIII ( xb) n
III iknIII ( xb) n
n1
2 ny
sin( ).
WIII
WIII
超晶格结构中电子的薛定谔方程与波函数如何写?
理想超晶格
d
含缺陷结构超晶格
复杂体系中电子运动
多粒子系统的Schrődinger方程
原则上只要对上式进行求解即可得出所有物理性质,然而由于电子之间的相互作用的复杂性, 要严格求出多电子体系的Schrődinger方程解是不可能的,必须在物理模型上进一步作一系列 的近似。
(一)薛定谔方程
Schrodinger 的方程一般表达式
i
(r,t)
Hˆ (r, t )
大学物理:第11章-相对论1-洛伦兹时空变换和速度合成

力学定律:F ma 推论:a在所有惯性系中保持不变 数学上:伽利略变换
1 伽利略变换:
正变换
x' x ut y' y z' z t' t
逆变换
x x'ut' y y' z z'
t t'
y S y' S'
1905年,爱因斯坦发表了具有划时代意义的论文 《论动体的电动力学》,提出了爱因斯坦相对性原理 和光速不变原理,作为狭义相对论的两条基本假设。
1、伽利略变换的困难
1).电磁场方程组不服从伽利略变换 伽利略变换需要修正?
电磁学基本规律不遵从相对性原理? 修正电磁学
2). 伽利略修正导致一些实验无法观测的新现象 伽利略变换不适于光或电磁波的运动(高速运动)。
az az
在两个惯性系中
a a
2、伽利略变换与绝对时空概念
t t' 得: t t'
即:在S系和S’系中的观察者对任意两事件之间的时 间间隔进行测量,测量结果与参照系无关。
在牛顿力学中,时间是绝对的。
同一根棒在不同参考系中的长度:
L x2 x1
L' x'2 x'1
由伽利略变换得: x2 x1 x于力学定理
速度与参考系有关,相对的
狭义相对 光速, 是绝对的 论力学 时间测量 长度测量 与参考系有关,相对的 质量测量
惯性系等价适用于一切物理定理
2、洛伦兹变换:
相对论的基本原理出发,推导洛仑兹变换 为简明扼要,只考虑沿x方向有相对运动
(1) 时空均匀性,线性变换,一次方程
量子力学目录20152

目录第一章量子力学的起源——量子力学的产生背景 (1)1.1经典物理学的辉煌 11.1.1经典力学 (1)1.1.2热学 (1)1.1.3电磁场理论 (2)1.2 辐射的粒子性 31.3 玻尔的原子模型 101.4 粒子的波动性 15第二章量子力学的基本观念——量子力学的哲学 (25)2.1双缝干涉实验 252.2微观粒子双缝干涉实验的分析 302.3量子力学的基本观念 342.4关于测不准原理 372.5结语 46第三章量子力学的基本原理——量子力学的诸定律 (49)3.1量子力学的立论方式 493.2波函数 503.3波函数的演化 553.3.1物质波 (56)3.3.2薛定谔方程的引入 (58)3.3.3关于薛定谔方程的讨论 (62)3.4动量的测量 653.5物理量用算符表示 683.6物理量测量的可能值 813.7小结——波动力学的基本原理 88第四章简单量子体系——能量本征值问题 (93)4.1 关于薛定谔方程的求解 934.2 一维无限深势阱——束缚态之一 964.3 一维简谐振子——束缚态之二 984.4 一维本征值问题的一般讨论 1054.5*其它势场的本征值问题 1144.6 散射态 1214.7 三维简单势场问题 1344.8 周期性边界条件 136第五章角动量——角动量本征值问题 (143)5.1 算符的对易关系 1435.2 角动量算符 1545.3 角动量的本征值问题 156第六章中心势场中的粒子——三维中心势场的能量本征值问题 (175)6.1中心势场的能量本征值问题 1756.2三维自由粒子 1796.3三维方势阱 1816.4氢原子 184第七章电磁场中的带电粒子——电磁场中的能量本征值问题 (197)7.1 分析力学回顾 1977.2与经典力学的相似性 2017.2.1 Ehrenfest定理 (201)7.2.2两种力学的相似性 (202)7.2.3量子化方法 (204)7.3电磁场中的Hamilton算符 2057.4均匀磁场中的带电粒子 2087.5均匀电场中的带电粒子 2147.6规范不变性 2167.6.1规范变换下波函数的改变 (216)7.6.2 Aharanov-Bohm效应 (217)第八章自旋角动量——粒子的内禀性质 (223)8.1角动量的实验测量 2238.2粒子的自旋 2278.2.1角动量本征值问题的一般解 (227)8.2.2自旋 (233)8.2.3自旋的矩阵表示 (234)8.2.4自旋1/2 (239)8.2.5实验的量子理论解释 (243)第九章近似方法I——定态S方程的近似解 (245)chrodinger9.1 问题概述 2459.2非简并能级的微扰理论 2459.3简并情况下的定态微扰论2499.4 变分方法 253第十章近似方法II——含时S方程的近似解 (259)chrodinger10.1含时微扰问题 25910.2含时微扰理论 26010.3常微扰 26310.3.1跃迁概率 (263)10.3.2黄金规则 (266)10.4周期微扰 26810.5原子与辐射的相互作用 27210.6电偶极跃迁的选择定则 281第十一章(定态)散射理论——三维非束缚态问题 (287)11.1问题概述 28711.2散射截面 28811.3散射振幅 29311.3.1处理散射的定态方法 (294)11.3.2散射截面的计算 (295)11.4玻恩近似 29611.5分波法 303第十二章多粒子体系——一个说不完的话题 (309)12.1量子多粒子体系 30912.2 二体问题 31112.3无相互作用多粒子体系 31312.4 全同多粒子体系 31612.5 例——两个电子的原子 32712.6 多电子原子(in preparation)12.7 分子(in preparation)12.8 原子核体系(in preparation)附录A 耦合质点组的振动 (331)A.1两个质点的耦合质点组的振动 331NA.2个质点的耦合质点组的振动 337A.3连续型耦合质点组的振动与Fourier级数 342A.4无界连续型耦合质点组的振动与Fourier积分 348A.5简正模与简谐波 351附录B 波包 (353)B.1色散关系和群速 353B.2波包的运动 357索引 (369)。
量子力学基础教程陈鄂生

i (mk ) t
2
二、共振跃迁 末态能量大于初态能量 1.共振吸收(受激吸收)
Em Ek 时, mk
Wk m t Fmk 4
2 2
0 。若 mk,则
i mk t
e
1
2
mk
Fmk sin
2 2
2
mk
2 2
t
mk
其中二级修正: t 1 imnt (2) (1) (t )e dt am (t ) an (t ) H mn i n 0
五、跃迁几率与跃迁速率 一级近似下 : (r , t ) am (t )e
m iEmt /
m ( r )
iEmt /
e
iEk t /
y z 0
z ~ 1011 m, ~ 106 m z
cos( 2
z t ) cos t
2 z
sin t
ˆ F ˆ cos t ,其中 F ˆ e x 于是 H 0
ii.共振跃迁速率
wk m
wk m
e2 02
(0) (1) a ( t ) a ( t ) a am (t )的一级近似:m m m (t ),
dam (t ) 1 dt i
imnt a (t )H mn (t )e (0) n n
a 其中一级修正为:
(1) m
1 i
t
0
imk t H mk (t )e dt
方程左乘 (r )后做全空间积分
* m
n
n
dam (t ) iEnt / (t )e iEnt / i e an (t ) H mn dt n
量子力学基础15级11

Lˆz
i 4
3
2
sin2
0
d
d
sin2 d
0
Lz 2
2
Lˆz
Lz
2
d
2
Lˆz
2
d
4 2
3
2
0
0
d
d
2
sin2 d
4202sin 2 2 d
3 0
4 2 3
f
n
x
x, t dx
cn t2 1
1
n
第三节 展开假定 测量和连续谱
F在上的取值 为n的几率
W n cn t 2
有退化时W n cni t 2
i
i为退化指标
2
第三节 展开假定 测量和连续谱
测量过程归纳如下:
x,0 Hˆ x,t0
依据展开假定:平均值 Fˆ n cn t2
n
作业:证明上面两种平均值的表达式是等价的
5
第四节 平均值和测不准关系
2。差方平均值 为了定量地描述每一次个别测量结果与平均值的统 计偏差的大小,亦即为了定量地描述物理量取值不 确定的程度,引进差方平均值。
每次测量结果的差方F2 n F 2
假定Fˆ具有混合谱
Fˆfnx n fnx Fˆf x f x
fn , f 构成正交完备系,任意 有物理意义的归一化 波函数 x,t,总可以向完备基展开 :
x,t cnt fnx c t f xd
n
F cn t2n c t2d n
量子力学导论答案下(7-12)

第七章 粒子在电磁场中的运动7.1)设带电粒子在互相垂直的均匀电场ε和均匀磁场B 中运动,求能级本征值和本征。
(参《导论》225P )解:以电场方向为x 轴,磁场方向为z 轴,则()0,0,εε=, ()B ,0,0= (1)去电磁场的标势和矢势为x εφ-=, ()0,,0Bx = (2)满足关系φε-∇=, ⨯∇=粒子的Hamiton 量为 x q p x C qB p p u H z y x ε-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+=22221 (3) 取守恒量完全集为()z y p p H ,,,它们的共同本征函数可写成()()()z p y p i z y ex z y x +=ψψ,, (4)其中y P 和z P 为本征值,可取任意函数。
()z y x ,,ψ满足能量本证方程: ()()z y x E z y x H ,,,,ψψ=因此()x ψ满足方程()()()x E x x q x p x C qB p p u z y x ψψεψ=-⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-+22221 (5) 亦即,对于()x ψ来说,H 和F 式等价:()2222222222122z y y p p u x p uC qB q x uC B q x u H ++⎪⎭⎫ ⎝⎛+-+∂∂-⇒ε ()()22202222022222221222z y p p u x uCB q x x uC B q x u ++--+∂∂-= (6) 其中 ⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+=u p B C qB uC p uC qB q B q uC x y y εε2220 (7) 式(6)相当于一维谐振子能量算符()uCB q x x u x u =-+∂∂-ωω ,212202222 再加上两项函数,因此本题能级为()222022221221z y p p u x uC B q n E ++-⎪⎭⎫ ⎝⎛+=ω222221221z y p u p B C B u C uC q B n +--⎪⎭⎫ ⎝⎛+=εε (8) 其中y P 和z P 为任意实数, ,2,1,0=n式(4)中 为以()x ψ为()0x x -变量的一维谐振子能量本征函数,即()()()202ξξψψ-=-=e H x x x n n (9)()ξn H 为厄密多项式,()()00x x C B q x x u -=-=ωξ 。
第十一章 离子键,共价键和分子间作用力

时,V最小,E最小, 形成稳定
化学键。
2个1s 电子反向自旋成键为基态:两核重叠电子云密 度增大,形成负电区,降低了核间的正电排斥,增加 了两核对核间负电荷区域的吸引。 2个1s 电子平行自旋不能成键为排斥态:两核间电子 云密度为零。
负电区
r=74<53×2 H2分子的两种状态
电子云密 度=0
ψⅠ=ψa+ψb
六方(SiO2)
a=bc, ==90° =120°
单斜(KClO3)
abc ==90° 90°
三斜(CuSO4)
abc 90°
(二)晶体的类型
AB型离子化合物的三种晶体结构类型
(1)CsCl型晶体 属简单立方晶格 配位比 8 8 ׃
晶胞中离子的个数:
Cs+: 1个
第一节
离子键和离子晶体
一、离子键
(一)离子键的形成和本质
电负性相差大的金属和非金属原子相遇时,有达到 稳定结构倾向,容易发生电子的转移,产生正、负离 子。 n Na(3s1) n Na+(2s22p6)↘ n Cl(3s23p5) n Cl-(3s23p6)↗ n NaCl
对主族元素,稳定结构是指具有稀有气体的电子结 构,如钠和氯;对过渡元素,d 轨道经常处于半充满 (例外较多),如Fe3+(3d5)。
8
s Na+ M7
d Cr3+, Mn2+ Fe3+, Co2+ Ni2+, V3+
2
s Li+ Be2+
18
ds Cu+ Ag+ Hg2+
18+2
p Sn2+ Pb2+ Bi3+