弹性力学题库.doc

合集下载

弹性力学100题

弹性力学100题

一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程B .近似方法C .边界条件D .附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效B .静力上等效C .平衡D .任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。

A. ①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162② II 单元的整体编码为426③ II 单元的整体编码为246④ III 单元的整体编码为243⑤ IV 单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤ 6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态C.三向应力状态,且z 是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的 463521I III II IVB.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学期末考试复习题

弹性力学期末考试复习题

弹性力学期末考试复习题
一、选择题
1. 弹性力学的基本假设是什么?
A. 材料是均匀的
B. 材料是各向同性的
C. 材料是线弹性的
D. 所有选项都是
2. 弹性模量和泊松比之间有什么关系?
A. 它们是独立的
B. 它们之间存在数学关系
C. 弹性模量总是大于泊松比
D. 泊松比总是小于0.5
二、简答题
1. 简述胡克定律的基本内容及其适用范围。

2. 解释什么是平面应力问题和平面应变问题,并给出它们的区别。

三、计算题
1. 给定一个矩形板,尺寸为2米×1米,厚度为0.1米,材料的弹性
模量为200 GPa,泊松比为0.3。

若在板的一侧施加均匀压力为1 MPa,求板的中心点的位移。

2. 一个圆柱形压力容器,内径为2米,外径为2.05米,材料的弹性
模量为210 GPa,泊松比为0.3。

求在内部压力为10 MPa时,容器壁
的最大应力。

四、论述题
1. 论述弹性力学在工程实际中的应用及其重要性。

2. 讨论材料的非线性行为对弹性力学分析的影响。

五、案例分析题
分析一个实际工程问题,如桥梁、大坝或高层建筑的结构设计,说明
在设计过程中如何应用弹性力学的原理来确保结构的稳定性和安全性。

结束语
弹性力学是一门理论性和实践性都很强的学科,希望同学们能够通过
本次复习,加深对弹性力学基本原理的理解和应用能力,为解决实际
工程问题打下坚实的基础。

祝大家考试顺利!。

弹性力学复习题---有答案

弹性力学复习题---有答案

弹性力学复习题---有答案一、选择题1. 下列材料中,( D )属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

2 关于弹性力学的正确认识是(A )。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

3. 弹性力学与材料力学的主要不同之处在于( B )。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

4. 所谓“完全弹性体”是指( A )。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

5. 所谓“应力状态”是指( B )。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。

6. 变形协调方程说明( B )。

A. 几何方程是根据运动学关系确定的,因此对于弹性体的变形描述是不正确的;B. 微分单元体的变形必须受到变形协调条件的约束;C. 变形协调方程是保证所有弹性体变形协调条件的必要和充分条件;D. 变形是由应变分量和转动分量共同组成的。

7. 下列关于弹性力学基本方程描述正确的是( A )。

A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;D. 变形协调方程是确定弹性体位移单值连续的唯一条件;8、弹性力学建立的基本方程多是偏微分方程,最后需结合( B )求解这些微分方程,以求得具体问题的应力、应变、位移。

A.几何方程B.边界条件C.数值方法D.附加假定9、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程具有下列关系(B )。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。

A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。

A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。

答案:内2. 弹性力学的基本假设之一是______连续性假设。

答案:材料3. 弹性力学中,应变的量纲是______。

答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。

答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。

答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。

2. 解释弹性力学中的杨氏模量和剪切模量。

答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。

3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。

四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。

弹性力学100题

弹性力学100题

弹性力学100题一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合(C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A相容方程 B •近似方法C •边界条件D •附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用(B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A.几何上等效B・静力上等效C平衡D •任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为(B )。

A •平衡方程、几何方程、物理方程完全相同B •平衡方程、几何方程相同,物理方程不同C •平衡方程、物理方程相同,几何方程不同D •平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足(A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。

A.①②④B.②③④C.①②③D.①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是(D )。

①I单元的整体编码为162②II单元的整体编码为426③II单元的整体编码为246④III单元的整体编码为243⑤IV单元的整体编码为564图1A.①③B.②④C.①④D.③⑤6.平面应变问题的微元体处于(C )A.单向应力状态B.双向应力状态C.三向应力状态,且-是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,(CA.应力分量和位移分量都是轴对称的B.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为「的矩形截面柱,应力分量为:匚x =0fy Ay B, xy 0对图(a)和图(b)两种情况由边界条件确定的常数A及B的关系是(C )A.A 相同,B也相同B.A 不相同,B也不相同C.A 相同,B不相同D.A 不相同,B 相同图 2图39、上右图3示单元体剪应变丫应该表示为(B )◎备DA冷B10、设有平面应力状态二X =ax by, ;「y = ex dy, xy dx - ay - x,其中,a,b,c,d 均为常数,为容重。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中的胡克定律描述的是:A. 应力与位移的关系B. 应力与应变的关系C. 应变与位移的关系D. 位移与力的关系2. 以下哪个不是弹性力学的基本假设?A. 连续性假设B. 均匀性假设C. 各向同性假设D. 各向异性假设3. 弹性模量和泊松比的关系是:A. E = 2G(1+ν)B. E = 3K(1-2ν)C. E = 3K(1+ν)D. E = 2G(1-ν)4. 以下哪种材料可以看作是各向同性材料?A. 木材B. 钢筋混凝土C. 单晶硅D. 多晶硅5. 应力集中现象通常发生在:A. 均匀受力区域B. 材料的中间区域C. 材料的边缘或孔洞附近D. 材料的内部二、简答题(每题10分,共30分)6. 简述平面应力和平面应变的区别。

7. 解释什么是圣维南原理,并简述其应用。

8. 描述弹性力学中的主应力和主应变的概念及其意义。

三、计算题(每题25分,共50分)9. 一个长方体材料块,尺寸为L×W×H,受到均匀压力p作用于其顶面,求其内部任意一点处的应力状态。

10. 已知某材料的弹性模量E=200 GPa,泊松比ν=0.3,求其剪切模量G。

答案一、选择题1. 答案:B(应力与应变的关系)2. 答案:D(各向异性假设)3. 答案:A(E = 2G(1+ν))4. 答案:D(多晶硅)5. 答案:C(材料的边缘或孔洞附近)二、简答题6. 答案:平面应力是指材料的一个方向(通常是厚度方向)的应力为零,而平面应变是指材料的一个方向(通常是厚度方向)的应变为零。

平面应力通常用于薄板或薄膜,而平面应变用于长厚比很大的结构。

7. 答案:圣维南原理指出,在远离力作用区域的地方,局部应力分布对整个结构的应力状态影响很小。

这个原理常用于简化复杂结构的应力分析。

8. 答案:主应力是材料内部某一点应力张量的最大值,主应变是材料内部某一点应变张量的最大值。

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1、所谓“完全弹性体”是指(B)。

A、材料应力应变关系满足虎克定律B、材料的应力应变关系与加载时间、历史无关C、本构关系为非线性弹性关系D、应力应变关系满足线性弹性关系2、关于弹性力学的正确认识是(A)。

A、计算力学在工程结构设计中的作用日益重要B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设C、任何弹性变形材料都是弹性力学的研究对象D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析3、下列对象不属于弹性力学研究对象的是(D)。

A、杆件B、板壳C、块体D、质点4、弹性力学研究物体在外力作用下,处于弹性阶段的应力、应变和位移。

5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围和精度。

与材料力学相比弹性力学的特点有哪些?答:1)研究对象更为普遍;2)研究方法更为严密;3)计算结果更为精确;4)应用范围更为广泛。

6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。

(×)改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围和精度。

7、弹性力学对杆件分析(C)。

A、无法分析B、得出近似的结果C、得出精确的结果D、需采用一些关于变形的近似假定8、图示弹性构件的应力和位移分析要用什么分析方法?(C)A 、材料力学B 、结构力学C 、弹性力学D 、塑性力学解答:该构件为变截面杆,并且具有空洞和键槽。

9、弹性力学与材料力学的主要不同之处在于( B )。

A 、任务B 、研究对象C 、研究方法D 、基本假设10、重力、惯性力、电磁力都是体力。

(√)11、下列外力不属于体力的是(D )A 、重力B 、磁力C 、惯性力D 、静水压力12、体力作用于物体内部的各个质点上,所以它属于内力。

(×)解答:外力。

它是质量力。

13、在弹性力学和材料力学里关于应力的正负规定是一样的。

( × )解答:两者正应力的规定相同,剪应力的正负号规定不同。

14、图示单元体右侧面上的剪应力应该表示为(D )A 、xy τB 、yx τC 、zy τD 、yz τ 1τ2τ3τ4τO xyz15、按弹性力学规定,下图所示单元体上的剪应力( C )。

A 、均为正B 、41,ττ为正,32,ττ为负C 、均为负D 、31,ττ为正,42,ττ为负16、按材料力学规定,上图所示单元体上的剪应力(D )。

A 、均为正B 、41,ττ为正,32,ττ为负C 、均为负D 、31,ττ为正,42,ττ为负17、试分析A 点的应力状态。

答:双向受压状态18、上右图示单元体剪应变γ应该表示为( B )A 、xy γB 、yz γC 、zx γD 、yx γ19、将两块不同材料的金属板焊在一起,便成为一块(D )。

A、连续均匀的板B、不连续也不均匀的板C、不连续但均匀的板D、连续但不均匀的板20、下列材料中,(D )属于各向同性材料。

A、竹材B、纤维增强复合材料C、玻璃钢D、沥青21、下列那种材料可视为各向同性材料(C )。

A、木材B、竹材C、混凝土D、夹层板22、物体的均匀性假定,是指物体内各点的弹性常数相同。

23、物体是各向同性的,是指物体内某点沿各个不同方向的弹性常数相同。

24、格林(1838)应用能量守恒定律,指出各向异性体只有21 个独立的弹性常数。

25、如图所示受轴向拉伸的变截面杆,若采用材料力学的方法计算其应力,所得结果是否总?能满足杆段平衡和微元体平衡27、解答弹性力学问题,必须从静力学、几何学和物理学三方面来考虑。

28、对棱边平行于坐标轴的正平行六面体单元,外法线与坐标轴正方向一致的面称为正面,与坐标轴 相反 的面称为负面,负面上的应力以沿坐标轴 负 方向为正。

29、弹性力学基本方程包括 平衡微分 方程、 几何 方程和 物理 方程,分别反映了物体 体力分量 和 应力分量 , 形变分量 和 位移分量 , 应力分量 和 形变分量 之间的关系。

30、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。

但是 并不直接 作强度和刚度分析。

31、弹性力学可分为数学弹性力学和实用弹性力学两个部分。

前者只用精确的数学推演而不引用任何关于应变状态或应力分布的 假定 ;在实用弹性力学里,和材料力学类同,也引用一些关于应变或应力分布的假设,以便简化繁复的数学推演,得出具有相当实用价值 近似解 。

32、弹性力学的研究对象是 完全弹性体 。

33、所谓“应力状态”是指( B )。

A. 斜截面应力矢量与横截面应力矢量不同B. 一点不同截面的应力随着截面方位变化而改变C. 3个主应力作用平面相互垂直D. 不同截面的应力不同,因此应力矢量是不可确定的34、切应力互等定理根据条件( B )成立。

A. 纯剪切B. 任意应力状态C. 三向应力状态D. 平面应力状态35、在直角坐标系中,已知物体内某点的应力分量为:⎪⎪⎪⎭⎫ ⎝⎛-=01001-001010-001ij σMPa ;试:画出该点的应力单元体。

解:该点的应力单元体如下图(强调指出方向);36、试举例说明正的应力对应于正的应变。

解答:如梁受拉伸时,其形状发生改变,正的应力(拉应力)对应正的应变。

37、理想弹性体的四个假设条件是什么?解答:完全弹性的假设、连续性的假设、均匀性的假设、各向同性的假设。

凡是满足以上四个假设条件的称为理想弹性体。

38、xy τ和yx τ是否是同一个量?xy γ和yx γ是否是同一个量?解答:不是,是。

39、第二章 平面问题的基本理论1、如图所示的三种情况是否都属于平面问题?如果是平面问题,是平面应力问题还是平面应变问题?x xy y yy y y O O O O O OZZ q q q()z q ()z q ()a ()b ()c答:平面应力问题、平面应变问题、非平面问题2、当问题可当作平面应力问题来处理时,总有0===yz xz z ττσ。

(√)解答:平面应力问题,总有0===yz xz z ττσ3、当物体可当作平面应变问题来处理时,总有0===yz xz z γγε。

(√)解答:平面应变问题,总有0===yz xz z γγε4、图示圆截面柱体R <<l ,问题属于平面应变问题。

(×)解答:平面应变问题所受外力应该沿柱体长度方向不变。

5、图示圆截面截头锥体R <<l ,问题属于平面应变问题。

(×)lR解答:对于平面应变问题,物体应为等截面柱体。

6、严格地说,一般情况下,任何弹性力学问题都是空间问题,但是,当弹性体具有某些特殊的形状,且受有某种特殊的外力时,空间问题可简化为平面问题。

7、平面应力问题的几何形状特征是 等厚度薄板(物体在一个方向的几何尺寸远小于其他两个方向的几何尺寸)。

8、平面应变问题的几何形状特征是很长的等截面柱体 。

9、下列各图所示结构应力分析问题属于什么问题?薄板属于问题挡土墙属于问题隧道属于问题答:平面应力、平面应变、平面应变10、柱下独立基础的地基属于 问题,条形基础下的地基属于 问题。

答:半空间半平面、平面应变11、高压管属于 平面应变 问题;雨蓬属于 板 问题。

12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为z 轴方向)( C )。

A 、xB 、yC 、zD 、z y x ,,13、平面应力问题的外力特征是(A )。

A 只作用在板边且平行于板中面B 垂直作用在板面C 平行中面作用在板边和板面上D 作用在板面且平行于板中面14、在平面应力问题中(取中面作xy 平面)则 (C )。

A 、0=z σ,0=wB 、0≠z σ,0≠wC 、0=z σ,0≠wD 、0≠z σ,0=w15、在平面应变问题中(取纵向作z 轴)(D )。

A 、0=z σ,0=w ,0=z εB 、0≠z σ,0≠w ,0≠z εC 、0=z σ,0≠w ,0=z εD 、0≠z σ,0=w ,0=z ε16、下列问题可简化为平面应变问题的是(B )。

A 、墙梁B 、高压管道C 、楼板D 、高速旋转的薄圆盘17、下列关于平面问题所受外力特点的描述错误的是(D )。

A 、体力分量与z 坐标无关B 、面力分量与z 坐标无关C 、z f ,z f 都是零D 、z f ,z f 都是非零常数18、在平面应变问题中,z σ如何计算?(C )A 、0=z σ不需要计算B 、由()[]y x z z E εεμεσ+-=1直接求 C 、由()y x z σσμσ+=求D 、=z σz f解答:平面应变问题的()[]y x z z E σσμσε+-=1,所以()y x z σσμσ+= 19、平面应变问题的微元体处于(C )。

A 、单向应力状态B 、双向应力状态C 、三向应力状态,且z σ是一主应力D 、纯剪切应力状态解答:因为除了y x σσ,以外,0≠z σ,所以单元体处于三向应力状态;另外z σ作用面上的剪应力0=zx τ,0=zy τ,所以z σ是一主应力20、对于两类平面问题,从物体内取出的单元体的受力情况 有(平面应变问题的单元体上有z σ ) 差别,所建立的平衡微分方程 无 差别。

21、平面问题的平衡微分方程表述的是( A )之间的关系。

A 、应力与体力B 、应力与面力C 、应力与应变D 、应力与位移22、设有平面应力状态,by ax x +=σ,dy cx y +=σ,x ay dx xy γτ---=,其中d c b a ,,,均为常数,γ为容重。

该应力状态满足平衡微分方程,其体力是( D )。

A 、0=x f ,0=y fB 、0≠x f ,0=y fC 、0≠x f ,0≠y fD 、0=x f ,0≠y f解答:代入平衡微分方程直接求解得到23、如图所示,悬臂梁上部受线性分布荷载,梁的厚度为1,不计体力。

试利用材料力学知识写出x σ,xy τ表达式;并利用平面问题的平衡微分方程导出y σ,xy τ表达式。

1分析:该问题属于平面应力问题;在材料力学中用到了纵向纤维互不挤压假定,即无y σ存在,可以看出上边界存在直接荷载作用,则会有应力y σ存在,所以材料所得结果是不精确的;在平衡微分方程二式中都含有xy τ,联系着第一、二式;材料力学和弹性力学中均认为正应力x σ主要由弯矩引起。

解:横截面弯矩:l qx M Z 63-=,横截面正应力y x lhq J y M Z Z x 332-==σ 代入平衡微分方程的第一式得:()x f y x lh q ydy x lh q dy x x xy +==∂∂-=⎰⎰2232336στ(注意未知量是y x ,的函数),由()02=±=h y xyτ得出()243x lh q x f -=, 可见()2223443h y x lh q xy -=τ 将xy τ代入平衡微分方程的第二式得:()()x g x y h y lh q dy x xyy +--=∂∂-=⎰233342τσ ()02==hy y σ,()x l q x g 2-=,()x h y h y lh q y 3233342+--=σ 24、某一平面问题的应力分量表达式:23x xy Ax σ=-+,32xy By Cx y τ=--,232y Bxy σ=-,体力不计,试求A ,B ,C 的值。

相关文档
最新文档