电阻元件伏安特性测定数据处理
电阻元件的伏安特性实验报告

竭诚为您提供优质文档/双击可除电阻元件的伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
实验一 元件伏安特性的测量

1.学习逐点测试法,测量线性、非线性电阻元件的伏安特 性以及电压源的外特性;
2.利用测量结果,用描点法绘制元件的VAR曲线; 3.学习常用的直流电工仪表和实验设备的使用方法。
二. 实验原理
伏安特性:被测元件两端电压U,与通过它的电流I之间的
函数关系I=f(U) ,这种函数关系称为元件的VAR,有时也 称为元件外特性。 伏安特性曲线:在U-I平面坐标上绘出的U-I曲线。 实验室常用的电阻元件:
1.线性电阻:符合欧姆定律,
c
U=IR,其伏安特性为直线a。
2.非线性电阻:
①白炽灯泡:伏安特性为曲线b。
d
②二极管:伏安特性曲线为c、d。
3.电压源外特性: 其伏安特性为U=E-R0I
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
三. 实验内容
1.测定线性电阻的伏安特性
调节稳压电源的值,读记相对应的电流电压数据,用坐标 纸画出其伏安特性曲线,并说明伏安特性曲线的形状。
电工电子实验台:
实验仪器名称
规格型号
直流稳压电源 1-18v可调
直流电压表 20v量程
直流电流表50Ω2W
电位器
470Ω3W
小灯泡
6.3v
导线
数量
1 1 1 1 1 1 1 若干
1.电压源 2.电流源 3.电压表20v量程 4.九孔方板 电流表200mA
器件盒、线路板和导线
1~18v
表1-1 线性电阻R的伏安特性测量值
I/mA 0 30 40 50 60 70 80 100 U/V
2.测定非线性电阻的伏安特性
稳+
+
_
mA
电阻伏安特性曲线实验报告

电阻伏安特性曲线实验报告电阻伏安特性曲线实验报告引言电阻是电路中最基本的元件之一,电阻伏安特性曲线则是描述电阻器在电流和电压之间的关系的重要工具。
本实验旨在通过测量不同电阻下的电流和电压,绘制电阻伏安特性曲线,并探讨电阻器的基本特性。
实验步骤1. 实验器材准备:准备好电源、电阻箱、电流表、电压表等实验仪器。
2. 搭建电路:将电源的正极与电阻箱相连,再将电阻箱与电流表相连,最后将电流表与电压表相连,形成一个简单的串联电路。
3. 调节电阻箱:根据实验要求,依次选取不同的电阻值,将电阻箱调节到相应的数值。
4. 测量电流和电压:在每个电阻值下,分别测量电流表和电压表的读数,并记录下来。
5. 绘制电阻伏安特性曲线:根据测得的电流和电压数据,绘制电阻伏安特性曲线。
实验结果与分析在实验过程中,我们选取了几个不同的电阻值进行测量,并记录下了相应的电流和电压数据。
通过这些数据,我们绘制了电阻伏安特性曲线。
从曲线可以看出,电阻和电流之间呈线性关系,即符合欧姆定律。
根据欧姆定律,电阻的阻值等于通过它的电流与电压之比。
因此,我们可以通过测量电流和电压,计算出电阻的阻值。
此外,从曲线的斜率可以得出电阻的阻值。
斜率越大,说明电阻越小;斜率越小,说明电阻越大。
这与我们在电路中常见的情况相符:电阻越小,通过的电流越大。
实验误差的讨论在实验中,我们可能会遇到一些误差,影响实验结果的准确性。
以下是一些可能的误差来源和讨论:1. 仪器误差:电流表和电压表有一定的测量误差,这可能会导致实际测量值与理论值之间存在一定的差异。
为了减小仪器误差,我们可以使用更精确的测量仪器。
2. 电源波动:电源的电压可能存在一定的波动,这也会对实验结果产生影响。
为了减小电源波动带来的误差,我们可以使用稳压电源或者进行多次测量取平均值。
3. 电阻内部结构:电阻器内部结构的不完美也可能导致实验结果的误差。
例如,电阻器的接触不良、温度变化等因素都可能影响电阻的阻值。
实验一 电路元件伏安特性的测试(含数据处理)

实验一电路元件伏安特性的测试(含数据处理)实验一--电路元件伏安特性的测试(含数据处理)实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌控线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理表明电路元件的特性一般可用该元件上的端电压u与通过该元件的电流i之间的函数关系i=f(u)来表示,即用i-u平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。
实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。
万用表的欧姆档就可以在某一特定的u和i之下测到对应的电阻值,因而无法测到非线性电阻的伏安特性。
通常就是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式r=u/i求测电阻值。
1.线性电阻器的伏安特性符合欧姆定律u=ri,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。
オオオオオオオオオオオオネ1-1元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。
一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。
通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得u/i不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。
3.半导体二极管也就是一种非线性电阻元件,其伏安特性例如图1-1(c)右图。
二极管的电阻值随其电压或电流的大小、方向的发生改变而发生改变。
它的正向压降不大(通常锗管及约为0.2~0.3v,硅管约为0.5~0.7v),正向电流随其正向压降的增高而急剧下降,而逆向电压从零一直减少至十几至几十伏时,其逆向电流减少不大,粗略地可以视作零。
电学元件伏安特性的测量实验报告

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。
(2)学习直流稳压电源、万用表、电压表的使用方法。
二、实验原理及说明(1)元件的伏安特性。
如果把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。
(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。
元件的电阻值可由下式确定:R=u/i=(mu/mi)tgα,期中mu和mi分别是电压和电流在u-i平面坐标上的比例。
三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。
(2)反向特性测量。
(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。
表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时一定要考虑正确使用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习使用基本电学仪器及线路连接方法。
2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。
3.学习根据仪表等级正确记录有效数字及计算仪表误差。
准确度等级见书66页。
100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。
(完整word版)实验4元件伏安特性的测定

实验4 电阻元件伏安特性的测量【实验目的】1.验证欧姆定律;2.掌握测量伏安特性的基本方法;3.学会直流电源、电压表、电流表、电阻箱等仪器的正确使用方法。
【实验仪器】V~特性实验仪1台、专用连接线10根、电源线1根、保险丝(1A,FB型电阻A321已在电源插座中)2根、待测二极管、稳压二极管、小灯泡各2只。
【实验原理】1.电学元件的伏安特性在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与端电压之间的关系称为电学元件的伏安特性。
在欧姆定律R=式中,电压U的单位U⋅I为伏特,电流I的单位为安培,电阻R的单位为欧姆。
一般以电压为横坐标和电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。
图4-1 线性元件的伏安特性图4-2 非线性元件的伏安特对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比关系变化,即其伏安特性曲线为一直线。
这类元件称为线性元件,如图4-1所示。
至于半导体二极管、稳压管等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线。
这类元件称为非线性元件,如图4-2所示为某非线性元件的伏安特性。
在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电压和通过的电流均不超过额定值。
此外,还必须了解测量时所需其它仪器的规格(如电源、电压表、电流表、滑线变阻器等的规格),也不得超过其量程或使用范围。
根据这些条件所设计的线路,可以将测量误差减到最小。
2.实验线路的比较与选择a 电流表内接b 电流表外接图4-3 电流表的内、外接线路在测量电阻R 的伏安特性的线路中,常有两种接法,即图4-3 (a)中电流表内接法和图4-3 (b)中电流表外接法。
电压表和电流表都有一定的内阻(分别设为V R 和A R )。
简化处理时直接用电压表读数U 除以电流表读数I 来得到被测电阻值R ,即I U R /=,这样会引进一定的系统性误差。
电阻元件伏安特性的测定(7周)

I = I S − U ⋅ GS
图1 - 3
电流源外特性
5、线性电阻:线性电阻元件的特性可以用该元件两端的电 、线性电阻: 压U与流过的电流 的关系来表征。即满足于欧姆定律: 与流过的电流I的关系来表征。即满足于欧姆定律: 与流过的电流 的关系来表征 欧姆定律
R= U I
坐标平面上, 在U-I坐标平面上,线性电阻的伏安特性曲线是一条通过原 坐标平面上 线性电阻的伏安特性曲线是一条通过原 点的直线,具有双向性, 所示。 点的直线,具有双向性,图1-5(a) 所示。 6、非线性电阻:非线性电阻元件的电压、电流关系,不能 、非线性电阻:非线性电阻元件的电压、电流关系, 用欧姆定律来表示,它的伏安特性一般为一曲线。 用欧姆定律来表示,它的伏安特性一般为一曲线。图1-5(b) 给出的是一般晶体二极管的伏安特性曲线。 给出的是一般晶体二极管的伏安特性曲线。
表1-3 非线性电阻元件实验数据
0 1 1.5 2 3 4 5 6 7 8 9
U(V) I(mA) R=U/I( )
五、实验报告要求 1、根据实验数据,在坐标平面上按比例绘出 、根据实验数据, 每个被测对象的伏安特性曲线。 每个被测对象的伏安特性曲线。 2、根据实验结果,总结、归纳被测各元件的 、根据实验结果,总结、 特性。 特性。 3、回答 思考题1、 。 、回答P103思考题 、2。 思考题
U = U
S
− RS ⋅ I
图1 - 2
电压源特性
4、 直流电流源 、
理想的直流电流源输出固定幅值的电流, 理想的直流电流源输出固定幅值的电流,而其端 的直流电流源输出固定幅值的电流 电压的大小取决于外电路,因此它的外特性曲线是 电压的大小取决于外电路,因此它的外特性曲线是 平行于电压轴的直线,如图1-3( )中实线所示。 平行于电压轴的直线,如图 (a)中实线所示。 实际电流源可以用一个理想电流源Is和电导Gs 电流源可以用一个理想电流源 实际电流源可以用一个理想电流源 和电导 的电路模型来表示, (Gs=1/Rs)相并联的电路模型来表示,实际电流 ) 并联的电路模型来表示 源的外特性曲线如图1-3( )中虚线所示。如图1源的外特性曲线如图 (a)中虚线所示。如图 3(b)所示。图1-3(a)中的角 越大,说明实际 越大, ( )所示。 ( )中的角θ越大 电流源内电导Gs值越大 实际电流源的电流I和电 值越大。 电流源内电导 值越大。实际电流源的电流 和电 的关系式为: 压U的关系式为: 的关系式为
电工电路实验:电路元件伏安特性测试

电工电路实验:电路元件伏安特性测试一、实验目的1.学会识别常用电路元件的方法。
2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法。
3.掌握元件特性的示波测量法,加深对元件特性的理解。
二、预习要求1.参看附录,了解数字示波器和信号源的使用方法。
2.线性电阻与非线性电阻的概念是什么?电阻器与二极管的伏安特性有何区别?3.稳压二极管与普通二极管有何区别,其用途是什么?三、实验原理1.伏安特性的定义在电路中,电路元件的特性一般用该元件上的电压U与通过元件的电流I之间的函数关系U=f(I)来表示,这种函数关系称为该元件的伏安特性,有时称外部特性。
2.线性和非线性元件伏安特性本实验所用的负载为常用的线性电阻、非线性电阻元件。
其中线性电阻元件的伏安特性为一条通过坐标原点的直线,如图-1所示。
一般二极管为非线性电阻元件,它的正向压降很小(一般锗管为0.2~0.3V,硅管为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十多到几十伏时,其反向电流增加很小,可视为零。
由图-2可见,二极管具有单向导电性,但反向电压加得过高超过管子的极限值,则会导致管子损坏。
图-1 线性电阻的伏安特性图-2 普通二极管的伏安特性稳压二极管是非线性元件,正向伏安特性类似普通二极管,但其反向伏安特性则较特别,在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(一般称稳定电压)电流突然增加,以后它的端电压维持恒定不再随外电压升高而增加。
利用这种特性在电子设备中有着广泛的应用。
3.示波器测量信号的基本知识示波器的最大特点是能将抽象的电信号和电信号产生过程转变成具体的可见的图像,以便人们对信号和电路特性进行定性分析和定量测量,如信号的幅度、周期、频率、脉冲宽度及同频信号的相位。
常用的示波器分为模拟示波器和数字示波器。
(1)数字示波器的基本测量知识①信号电压的测量。
示波器测试线与被测信号连接后,选择“AUTO”钮,再选“Measure”钮,选择“电压测量”菜单,用多功能钮选择菜单中最大值(Um)、峰峰值(UP-P)、有效值(Urms)等,直接读出各值。