电子元件伏安特性的测定

合集下载

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电学元件的伏安特性测量实验报告

电学元件的伏安特性测量实验报告

电学元件的伏安特性测量实验报告电学元件的伏安特性测量实验报告引言:电学元件的伏安特性是电子工程领域中一个重要的实验内容。

通过测量电流与电压之间的关系,可以了解元件的性能和特点。

本实验报告将介绍伏安特性测量实验的目的、原理、实验过程和结果分析。

一、实验目的本实验的主要目的是通过测量电阻、二极管和电容的伏安特性曲线,掌握这些电学元件的基本特性,并加深对电路中电流和电压之间关系的理解。

二、实验原理1. 电阻的伏安特性测量电阻是一个线性元件,其伏安特性曲线为一条直线,斜率为电阻值。

实验中,通过改变电阻上的电压,测量通过电阻的电流,然后根据欧姆定律计算电阻值。

2. 二极管的伏安特性测量二极管是一个非线性元件,其伏安特性曲线为一条指数曲线。

实验中,通过改变二极管的电压,测量通过二极管的电流。

由于二极管的正向电压与正向电流之间存在指数关系,因此需要在实验中选择适当的电压范围,以保证测量数据的准确性。

3. 电容的伏安特性测量电容是一个存储电荷的元件,其伏安特性曲线为一条斜率逐渐变小的曲线。

实验中,通过改变电容器两端的电压,测量电容器充电和放电的电流。

根据电容器的充放电过程,可以得到电容器的伏安特性曲线。

三、实验过程1. 电阻的伏安特性测量a. 搭建电路:将电阻与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

d. 根据欧姆定律,计算电阻的值。

2. 二极管的伏安特性测量a. 搭建电路:将二极管与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

d. 根据测量数据,绘制二极管的伏安特性曲线。

3. 电容的伏安特性测量a. 搭建电路:将电容器与电压源和电流表连接,保证电路的稳定性。

b. 调节电压源的电压,并记录电流表的读数。

c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。

大学物理实验电子元件伏安特性的测量实验报告

大学物理实验电子元件伏安特性的测量实验报告

大学物理实验电子元件伏安特性的测量实验报告
一、实验背景
伏安特性是电子元件特有的量化特性,可以在一定条件下揭示元件特性。

它指电子元
件在一定电压驱动器的作用下,随温度、频率和导通阻抗(或输入电阻)变化而产生不同
的电流。

实验室中,我们使用了特定的示波器和电源来测量NPN 型三极管伏安特性进行实验。

二、实验仪器和装备
实验背景实验室中的仪器和设备有:台式示波器,电压电源,波形分析仪,测量系统,以及电路板等。

三、实验设计
用示波器观察NPN三极管的伏安特性的变化,改变示波器的电压、频率和输入电阻来
测量NPN 类型三极管的伏安特性。

用电源给NPN 三极管供电,并使用测量系统记录电流。

四、实验结果与分析
(1)当电源电压改变时,NPN三极管伏安特性的测量变化如下图所示:
![image](figure_1.png)
可以从图中看出,随着电源电压的增大,NPN 三极管的伏安特性越来越陡峭。

五、结论
本次实验中,我们通过测量NPN 三极管伏安特性,发现电源电压、频率和输入电阻对其特性有影响。

实验证明,熟练掌握伏安特性的测量技术,可以帮助我们更好地理解电子
元件的性能。

实验一 电路元件伏安特性的测试(含数据处理)

实验一      电路元件伏安特性的测试(含数据处理)

实验一电路元件伏安特性的测试(含数据处理)实验一--电路元件伏安特性的测试(含数据处理)实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌控线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理表明电路元件的特性一般可用该元件上的端电压u与通过该元件的电流i之间的函数关系i=f(u)来表示,即用i-u平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档就可以在某一特定的u和i之下测到对应的电阻值,因而无法测到非线性电阻的伏安特性。

通常就是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式r=u/i求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律u=ri,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

オオオオオオオオオオオオネ1-1元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得u/i不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

3.半导体二极管也就是一种非线性电阻元件,其伏安特性例如图1-1(c)右图。

二极管的电阻值随其电压或电流的大小、方向的发生改变而发生改变。

它的正向压降不大(通常锗管及约为0.2~0.3v,硅管约为0.5~0.7v),正向电流随其正向压降的增高而急剧下降,而逆向电压从零一直减少至十几至几十伏时,其逆向电流减少不大,粗略地可以视作零。

伏安特性实验报告

伏安特性实验报告

伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告元件伏安特性的测定实验报告摘要:本实验旨在通过测量电阻、二极管和电容的伏安特性曲线,探究元件的电流与电压之间的关系。

实验结果表明,电阻的伏安特性为线性关系,二极管的伏安特性为非线性关系,而电容的伏安特性则呈现出充放电的特点。

引言:伏安特性是描述电子元件电流与电压之间关系的重要参数。

通过测量元件的伏安特性曲线,可以了解元件的工作状态、性能以及应用范围。

本实验将选取常见的电阻、二极管和电容进行测量,以探究它们的伏安特性。

实验方法:1. 实验仪器:万用表、电源、电阻箱、示波器等。

2. 实验步骤:a. 将电阻、二极管和电容依次连接到电路中。

b. 通过电源调节电压,同时用万用表测量电流和电压。

c. 记录不同电压下的电流数值,并绘制伏安特性曲线。

结果与讨论:1. 电阻的伏安特性:实验中选取了一个100欧姆的固定电阻进行测量。

结果显示,在不同电压下,电流与电压呈线性关系,即伏安特性为直线。

这符合欧姆定律,即电流与电压成正比,电阻为常数。

通过斜率可以计算出电阻值。

2. 二极管的伏安特性:实验中选取了一颗常见的硅二极管进行测量。

结果显示,在正向偏置时,电流与电压呈非线性关系,即伏安特性为曲线。

随着电压的增加,电流迅速增大,但增长速度逐渐减慢。

而在反向偏置时,二极管基本上不导电。

这说明二极管具有单向导电性,可用于整流等电路。

3. 电容的伏安特性:实验中选取了一个100μF的电容进行测量。

结果显示,在充电过程中,电容两端的电压随时间线性增加,而电流逐渐减小。

当电容充满电后,电流变为零。

而在放电过程中,电容两端的电压随时间线性减小,电流逐渐增大。

这说明电容具有储存和释放电能的特性,可用于滤波等电路。

结论:通过本实验的测量结果,可以得出以下结论:1. 电阻的伏安特性为线性关系,即电流与电压成正比。

2. 二极管的伏安特性为非线性关系,即正向偏置时电流迅速增大,反向偏置时基本不导电。

3. 电容的伏安特性表现为充放电过程,可储存和释放电能。

电工学实验——电路元件伏安特性的测绘

电工学实验——电路元件伏安特性的测绘

直流电流 源的伏安 特性测量
IS 24mA
U
I
I
RL
IS 24mA
Ri
1k
U
RL
理想直流电流源的实验数据 理想直流电流源的实验数据
RL( ) U(V) ( ) I(mA) ( )
300
200
100
50
22
实际直流电流源的实验数据
RL( ) U(V) ( ) I(mA) ( )
300
200
100
50
22
1、测量线性电阻元件的伏安特性 2、测量线性电阻元件的伏安特性 3、测量稳压管的伏安特性 4、测量二极管的伏安特性 5、测量直流电压和电流源的伏安特性 (选做) 选做)
实验设备
数字式万用表
指针式万用表
万用表使用时 要注意测量的 是交流还是直 流信号, 流信号,注意 选择量程, 选择量程,特 别要注意不要 用电流档去测 量电压, 量电压,会烧 坏万用表。 坏万用表。
实验目的实验内容1测量线性电阻元件的伏安特性2测量线性电阻元件的伏安特性3测量稳压管的伏安特性4测量二极管的伏安特性5测量直流电压和电流源的伏安特性选做实验设备数字式万用表指针式万用表直流稳压电源直流恒流源和电阻箱万用表使用时要注意测量的是交流还是直流信号注意选择量程特别要注意不要用电流档去测量电压会烧坏万用表
实验一 电路元件伏安特性的测绘
实验目的
1. 学会识别常用电路元件的方法。 学会识别常用电路元件的方法。 2. 掌握线性电阻、非线性电阻元件伏安特性的测绘。 掌握线性电阻、非线性电阻元件伏安特性的测绘。 3. 掌握实验台上直流电工仪表和设备的使用方法。 掌握实验台上直流电工仪表和设备的使用方法。
实验内容

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

1. 熟悉伏安特性实验的基本原理和操作步骤;2. 掌握伏安特性曲线的绘制方法;3. 研究电阻元件和二极管等非线性元件的伏安特性;4. 分析伏安特性曲线,了解元件的电气性能。

二、实验原理伏安特性曲线是指在一定条件下,元件两端电压与通过元件的电流之间的关系曲线。

对于线性电阻元件,其伏安特性曲线为一条通过坐标原点的直线,其斜率表示元件的电阻值。

对于非线性元件,其伏安特性曲线为曲线,无法用简单的线性关系表示。

本实验主要研究以下元件的伏安特性:1. 线性电阻元件:伏安特性曲线为直线,斜率为元件的电阻值;2. 二极管:伏安特性曲线为曲线,具有明显的非线性特性;3. 稳压二极管:伏安特性曲线为曲线,具有稳压特性。

三、实验仪器与设备1. 伏安特性测试仪;2. 直流稳压电源;3. 直流电压表;4. 直流电流表;5. 电阻元件;6. 二极管;7. 稳压二极管;8. 导线;9. 开关;10. 连接板。

1. 将伏安特性测试仪与直流稳压电源、直流电压表、直流电流表连接好;2. 将电阻元件、二极管、稳压二极管依次接入伏安特性测试仪;3. 设置直流稳压电源的输出电压,从低到高逐渐增加;4. 观察并记录伏安特性测试仪显示的电压与电流值;5. 绘制电阻元件、二极管、稳压二极管的伏安特性曲线;6. 分析伏安特性曲线,了解元件的电气性能。

五、实验数据及结果1. 电阻元件伏安特性曲线(1)线性电阻元件伏安特性曲线为直线,斜率为元件的电阻值;(2)曲线通过坐标原点,表示电阻值与电压、电流无关。

2. 二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,随着电压的增加,电流几乎不变。

3. 稳压二极管伏安特性曲线(1)正向特性曲线为曲线,随着电压的增加,电流逐渐增大;(2)反向特性曲线为曲线,当电压达到稳压值时,电流急剧增大。

六、实验结论1. 伏安特性实验可以直观地了解元件的电气性能;2. 伏安特性曲线的绘制方法简单易行;3. 通过分析伏安特性曲线,可以判断元件的质量和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
程。
• 针式仪表读数要读到有效位数(要估读1位)。
电子元件伏安特性的测定
伏安特性; • 实验原理; • 测量方法。
一、伏安特性
1.线性电阻:电阻值是一 常 数 ,I—U 特 性 曲 线 为一直线.
2.非线性电阻元件(如 二极管):电阻值变 化, R dU dI I—U曲线为曲线。
二、测量原理
1.基本思路:伏安测量法,Rx测
U I
目标:减少测量时电压表分流、电流表分
B)误差:很小,不存 在分流,又不存在分 压。
C)选择:任何电阻
均可用此法测量,当 较复杂。
补偿法测电阻
三、实验方法
1.实验板使用方法 2.电流表内、外接法的选择
电流表内接法: 电流表外接法:
RX RARV RX RARV
3.电表量程的选择和内阻的计算
• 电压表内阻:RV =每伏欧姆数(Ω/V)×量程。 • 电流表的内阻RA:查附录Ⅰ电表参数表。 • 常若电表的读数小于满刻度的1/3,应更换量
压产生的误差。
2. 伏安特性曲线测量的三种方法
• 电流表内接法
• 电流表外接法
• 补偿法
(1)电流表内接法
A)电路:
B)误差:偏大
U=IRx+IRA ,
Rx测
U I
I(Rx RA) I
R x RA
E内
Rx测 Rx
Rx
100%
RA 100% Rx
C)选择:当Rx>>RA时, 相对误差较小,可用 内接法测量。
内接法测电阻
(2)电流表外接法 A)电路: B)误差:偏小
Rx测
U ILeabharlann U IV IRU(
U 1
1
RX RV ) RX RV
RV RX
E外
Rx测 Rx
Rx
100%
Rx RV Rx
100%
C)选择:当RxRV时, 相对误差较小,可用 外接法测量。
外接法测电阻
(3)补偿法
A)电路:调节电位器 RI数电Go=和即 流0时R为I,1,,流电电当过压流电R表t表阻=的0的R,读x读的 数电即 压U为。电阻Rx 两端的
相关文档
最新文档