2011年上海市中考数学知识点考点总结
上海初中中考数学知识点总结

上海初中中考数学知识点总结上海初中中考数学知识点总结上海市初中中考数学知识点大全1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)。
2011年上海市中考数学知识点考点总结

2011上海市中考数学知识点考点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
2011上海中考数学基础复习汇总(沪科版)共80多页

特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
(3)函数与几何结合求值或证明。(4)求函数解析式及定义域。 3、几何证明及计算 (1)特殊三角形的边、角计算(2)特殊三角形的边、角计算。(3) 特殊三角形、特殊四边形的性质应用(4)三角形中位线(5)全等三角形、 相似三角形的判定和性质应用(6)正多边形的对称性问题(7)圆的垂径定 理,圆的切线判定及性质(8)图形运动问题(平移、旋转、翻折)(9)几 何图形与锐角三角比结合证明或计算 (10) 几何图形与函数结合证明或计算 *相似三角形的性质的考察加大力度,主要考察学生的思维及能力解 决。 4、 统计 (1)求平均数。(2)求中位数。(3)求数据总数。(4)求频率。 (5)与方程结合。(6)根据图像回答有关问题。如补齐图形。(7) 用统计学知识判断某些统计方法的合理性。 重视数学与生活的联系,尤其是热点问题及背景模型的能力解决 四、出现得比较多的考点 1、圆与正多边形知识的考查 2、统计方面的知识点 至少有一道大题是关于统计方面。而且都与图表相联系。 3、一元二次方程根与系数关系 、根的判别式 由于一元二次方程和二次函数有较大的关系, 因此, 这方面的内容有较 多的考查点及考查形式, 但是新教材中由于一元二次方程根与系数关系出现 在拓展 2 中,已经不在属于或不会进入考试范围。 4、几何图形运动 :有 2 题左右出现 5、几何和代数结合 单纯的考查几何证明题可能性不大, 很多都是与代数的内容相结合, 特 别是和函数的内容结合起来,综合考查数形结合、分类讨论及方程思想。
第一部分:基础知识汇总 数学定理 公式汇编(有些不在大纲范围,但高分必 须知道的)
一、数与代数 1. 数与式 (1)实数 性质: ①实数 a 的相反数是—a, 实数 a 的倒数是 (a≠0) ;
上海中考数学知识点汇总(简洁版)

上海初中数学知识点汇总
第九章
解直角三角形
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tgA= ;ctgA= .
2.特殊角的三角函数值:
0° 30° 45° 60° 90°
3.互余两角的三角函数关系:sin(90°-α)=cosα
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和
角。
2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的
处理
1.俯、仰角
2.方位角、象限角
3.坡度
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方
程的办法解决。
★重点★解直角三角形
第十
章圆一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等
圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:
⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
弦切角的度数等于它所夹的弧的圆心角的度数的一半.。
上海中考数学知识点

上海中考数学知识点上海中考数学涵盖了众多重要的知识点,对于学生的数学素养和综合能力有着全面的考查。
以下将为大家详细梳理这些知识点。
首先是数与代数部分。
整数、分数、小数的概念和运算规则是基础中的基础。
正数、负数的认识以及有理数的四则运算,需要学生熟练掌握。
代数式方面,包括整式、分式和二次根式。
整式的加减乘除运算,以及因式分解的方法,如提公因式法、公式法等,都是常考的内容。
分式的化简求值,以及二次根式的性质和运算,也是重点。
方程与不等式更是重中之重,一元一次方程、二元一次方程组、一元二次方程的解法及应用,都需要学生有清晰的思路和准确的计算能力。
不等式的性质和解法,以及通过不等式解决实际问题,也是常见的考点。
函数部分,一次函数、反比例函数和二次函数是核心。
一次函数的图像和性质,包括斜率、截距的意义,以及如何通过解析式求函数值和坐标。
反比例函数的表达式、图像特点以及应用。
二次函数的解析式形式,如一般式、顶点式、交点式,图像的开口方向、对称轴、顶点坐标,以及利用二次函数解决最值问题和实际生活中的抛物线问题。
接着是图形与几何。
三角形是几何的基础,包括三角形的内角和定理、三边关系定理,全等三角形和相似三角形的判定和性质。
特殊三角形,如等腰三角形、等边三角形和直角三角形的性质和判定,也是重点。
四边形方面,平行四边形、矩形、菱形、正方形的性质和判定,以及它们之间的关系。
圆的知识点包括圆的基本性质,如圆心角、圆周角的定理,圆的切线的性质和判定,以及圆与直线、圆与圆的位置关系。
图形的变换,如平移、旋转、轴对称,需要学生理解变换的性质,并能在解题中灵活运用。
然后是统计与概率。
数据的收集、整理与描述,包括普查和抽样调查的方法,统计图(如条形统计图、折线统计图、扇形统计图)的特点和应用。
数据的分析,平均数、中位数、众数的计算和意义,方差的计算和意义。
概率方面,了解随机事件和确定事件,计算简单随机事件的概率,通过列表法或树状图法求概率。
上海中考数学知识点梳理

上海中考数学知识点梳理1.数与代数(1)整数:整数的概念、整数的加法、减法、乘法和除法运算、整数的乘方。
(2)有理数:有理数的概念、有理数的加法、减法、乘法和除法运算、有理数的乘方、开方。
(3)分数:分数的概念、分数的加法、减法、乘法和除法运算、分数的乘方、倒数。
(4)百分数:百分数的概念、百分数与分数的相互转化、百分数之间的比较。
(5)比例与比例的应用:比例的概念、比例的性质、比例的种类、比例的计算、比例问题的应用。
(6)平均数:算术平均数、加权平均数。
2.函数与方程(1)函数:函数的概念、函数的图像、函数的性质、函数的应用。
(2)一次函数:一次函数的概念、一次函数的图像、一次函数的性质、一次函数的应用。
(3)二次函数:二次函数的概念、二次函数的图像、二次函数的性质、二次函数的应用。
(4)方程:方程的概念、方程的解、方程的性质、方程的应用。
3.几何(1)平面几何:平面图形的性质(点、线、面)、平面图形的分类与特征、平面图形的面积与周长。
(2)三角形:三角形的性质、三角形的分类、三角形的面积与周长。
(3)四边形:四边形的性质、四边形的分类、四边形的面积与周长。
4.统计与概率(1)统计:统计调查与统计分析、频数与频率、统计图表与直方图的绘制与分析。
(2)概率:随机事件的概念、概率的计算、概率的性质、概率在实际问题中的应用。
此外,上海中考数学考试还会涉及到一些数学思维与方法,如解决问题的策略与方法、解决问题的分析与推理、解决问题的模型、解决问题的证明等。
考生需要熟练掌握这些数学思维与方法,并能够灵活运用于各种题型中。
2011年上海中考数学考纲

2011年中考上海卷考试手册-数学科一、考试性质和命题指导思想上海市初中毕业数学科统一学业考试是义务教育阶段的终结性考试.它的指导思想是有利于推进中小学实施素质教育,有利于推进中小学课程改革,有利于促进初中教育教学改革,有利于切实减轻中学生过重的学业负担,有利于培养学生的创新精神和实践能力,有利于促进学生全面和谐、富有个性的发展,有利于学生在高中教育阶段的可持续发展.考试结果既是衡量初中学生是否达到毕业标准的重要依据,也是高中阶段各类学校招生的重要依据.考试对象为2011年完成上海市全日制九年制义务教育学业的九年级学生.二、考试目标本考试考查考生的数学基础知识和基本技能;考查考生的逻辑推理能力、运算能力、空间观念;考查考生解决简单问题的能力.依据《上海市中小学数学课程标准(试行稿)》(2004年10月版)规定的初中阶段(六至九年级)课程目标,确定如下具体考试目标.1.基础知识和基本技能A知道、理解或掌握“数与运算”、“方程与代数”、“图形与几何”、“函数与分析”和“数据整理与概率统计”中的相关知识.B领会字母表示数的思想、化归思想、方程思想、函数思想、数形结合思想、分类讨论思想、分解与组合思想等基本数学思想;掌握待定系数法、消元法、换元法、配方法等基本数学方法.C能按照一定的规则和步骤进行计算、画图和推理2.逻辑推理能力A知道进行数学证明的重要性,掌握演绎推理的基本规则和方法.B 能简明和有条理地表述演绎推理过程,合理解释推理演绎的正确性.3.运算能力^ A知道有关算理.B能根据问题条件,寻找和设计合理、有效的运算途径.C能通过运算进行推理和探求.4.空间观念A能根据条件画简单平面图形和空间图形.B能进行几何图形的基本运动和变化.C能够从复杂的图形中区分基本图形,井能分析其中的基本元素及其关系.D能由基本图形的性质导出复杂图形的性质.5.解决简单问题的能力A能对文字语言、图形语言、符号语言进行相互转译.B知道一些基本的数学模型,并通过运用,解决一些简单的实际问题.C初步掌握观察、操作、比较、类比、归纳的力法;懂得“从特殊到一般”、“从一般到特殊”及“转化”等思维策略.D初步会对问题进行多方面的分析,对问题解决的结果进行合理解释.E会用已有的知识经验,解决新情境中的数学问题.三、考试内容依据上海市教育委员会《上海市中小学数学课程标准(试行稿)》(2004年10月版)规定的初中阶段(六至九年级)的内容与要求,就相关知识与技能,明确相应考试内容及要求.(一)考试内容中各层级的认知水平、基本特征及其表述中所涉及的行为1.“图形与几何”部分占全卷分值的40%左右,其他部分占全卷分值的60%左右。
2011年中考数学必背知识点

- 1 -2011年中考数学必背知识点一.不为0的量1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02.(a ≥0) 3. a 2n≥0(n 为自然数) 三.绝对值:(0)(0)aa a aa ≥⎧=⎨-⎩< 四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=为x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10)五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)。
4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b ≥≥=≥> (四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,xx 1+x 2= -b a ;x 1x 2=ca(五)二次函数抛物线的三种表达形式:一般式:y = ax 2+bx +c =0(a ≠0) 顶点式:2()y a x h k =-+ 双根式:12()()y a x x x x =--其中2bh a=-,244ac b k a -=,12x x 、为抛物线与x轴两交点的横坐标,且此两交点间距离为12x x -=(六)统计1.平均数:121()n x x x x n=++… 2.加权平均数:11221()k k x x f x f x f n=++…,其中12k f f f n +++=3.方差:222212n 1()()()s x x x x x x n ⎡⎤=-+-+-⎣⎦…(七)锐角三角函数22sin sin cos 1tan cot 1tan cos ααααααα⋅+=,=,=(八)圆1.面积2S r π=, 周长2C r π=, 弧长180n rl π=, 213602n R S lR π==扇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011上海市中考数学知识点考点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y 是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
㈡空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角线:①线段有两个端点。