反比例函数的意义ppt课件
合集下载
反比例函数中K的几何意义课件

总结词
k值决定了反比例函数图像的形状和 位置。
详细描述
在反比例函数y=k/x中,k值决定了图 像的形状和位置。当k>0时,图像出 现在第一象限和第三象限;当k<0时 ,图像出现在第二象限和第四象限。
k的正负与图像的位置
总结词
k的正负决定了图像所在的象限。
详细描述
当k>0时,图像分布在第一象限和第三象限;当k<0时,图像分布在第二象限和 第四象限。
拓展反比例函数的应用领域
随着科学技术的发展,反比例函数的应用领域也在不断扩大。未来我们可以尝试将反比例 函数应用于其他领域,如经济学、生物学等,以解决实际问题。
探索与其他数学知识的联系
反比例函数作为数学中的一个重要概念,与其他数学知识有着密切的联系。未来我们可以 进一步探索反比例函数与其他数学知识之间的联系,以促进数学学科的发展。
k值对反比例函数图像的影响
随着k值的增大或减小,反比例函数的图像会向内或
反比例函数在实际生活中有着广泛的应用,如电流与电阻、电容与电压
等物理量之间的关系可以用反比例函数来描述。
对反比例函数的研究展望
深入探究反比例函数的性质
尽管我们已经对反比例函数的性质有了一定的了解,但仍有许多未知的性质等待我们去发 现和研究。例如,反比例函数的极限行为、奇偶性等性质。
反比例函数的性质
反比例函数具有以下性质:当 x 增大时,y 值会减小;当 x 减小 时,y 值会增大。这是因为 xy =
k 的关系。
在图像上,反比例函数的两个分 支在 x 轴和 y 轴上分别趋于无穷
大和无穷小。
反比例函数在坐标系中的图像是 不闭合的,且无限接近于坐标轴
。
Part
02
k值决定了反比例函数图像的形状和 位置。
详细描述
在反比例函数y=k/x中,k值决定了图 像的形状和位置。当k>0时,图像出 现在第一象限和第三象限;当k<0时 ,图像出现在第二象限和第四象限。
k的正负与图像的位置
总结词
k的正负决定了图像所在的象限。
详细描述
当k>0时,图像分布在第一象限和第三象限;当k<0时,图像分布在第二象限和 第四象限。
拓展反比例函数的应用领域
随着科学技术的发展,反比例函数的应用领域也在不断扩大。未来我们可以尝试将反比例 函数应用于其他领域,如经济学、生物学等,以解决实际问题。
探索与其他数学知识的联系
反比例函数作为数学中的一个重要概念,与其他数学知识有着密切的联系。未来我们可以 进一步探索反比例函数与其他数学知识之间的联系,以促进数学学科的发展。
k值对反比例函数图像的影响
随着k值的增大或减小,反比例函数的图像会向内或
反比例函数在实际生活中有着广泛的应用,如电流与电阻、电容与电压
等物理量之间的关系可以用反比例函数来描述。
对反比例函数的研究展望
深入探究反比例函数的性质
尽管我们已经对反比例函数的性质有了一定的了解,但仍有许多未知的性质等待我们去发 现和研究。例如,反比例函数的极限行为、奇偶性等性质。
反比例函数的性质
反比例函数具有以下性质:当 x 增大时,y 值会减小;当 x 减小 时,y 值会增大。这是因为 xy =
k 的关系。
在图像上,反比例函数的两个分 支在 x 轴和 y 轴上分别趋于无穷
大和无穷小。
反比例函数在坐标系中的图像是 不闭合的,且无限接近于坐标轴
。
Part
02
人教版数学九年级下册26.1.1反比例函数中K的几何意义课件

,求$k$的值。
利用K值解决实际问题
例题3:某工厂生产A、B两种配套产品 ,其中每天生产$x$吨A产品,需生产 $y$吨B产品。已知生产A产品的成本与 产量的平方成正比。经测算,生产1吨 A产品需要4万元,而B产品的成本为每
吨8万元。求
(1)生产A、B两种配套产品的平均成本 的最小值;
(2)若原料供应商对这种小型工厂供货 办法使得该工厂每天生产A产品的产量 $x$在$0 < x leqslant 2$的范围内, 那么在这种情况下,该工厂应生产A产
当$K < 0$时,距离公式同样适用, 只是图像位于第二、四象限。
K值与角度关系
对于反比例函数图像上任意一点,其与原点连线的倾斜角$theta$与该点 的横坐标$x$和纵坐标$y$满足关系:$tantheta = frac{y}{x} = frac{K}{x^2}$。
当$K > 0$时,$theta$为锐角或直角;当$K < 0$时,$theta$为钝角或 直角。
随着$|K|$的增大,倾斜角$theta$也逐渐增大,但始终不会超过直角。
05
典型例题解析
求反比例函数中K值
01
例题1
已知反比例函数$y = frac{k}{x}$的图像经过点 $A(2,3)$,求$k$的值。
02
例题2
已知反比例函数$y = frac{k}{x}$的图像经过点 $B(m,n)$和$C(p,q)$,且$mn = 6$,$pq = 8$
06
课堂小结与拓展延伸
课堂小结
反比例函数$y = frac{k}{x}$($k neq 0$)中,比例系数$k$的几 何意义:过双曲线上任意一点引 $x$轴、$y$轴垂线,所得矩形面
积为$|k|$。
利用K值解决实际问题
例题3:某工厂生产A、B两种配套产品 ,其中每天生产$x$吨A产品,需生产 $y$吨B产品。已知生产A产品的成本与 产量的平方成正比。经测算,生产1吨 A产品需要4万元,而B产品的成本为每
吨8万元。求
(1)生产A、B两种配套产品的平均成本 的最小值;
(2)若原料供应商对这种小型工厂供货 办法使得该工厂每天生产A产品的产量 $x$在$0 < x leqslant 2$的范围内, 那么在这种情况下,该工厂应生产A产
当$K < 0$时,距离公式同样适用, 只是图像位于第二、四象限。
K值与角度关系
对于反比例函数图像上任意一点,其与原点连线的倾斜角$theta$与该点 的横坐标$x$和纵坐标$y$满足关系:$tantheta = frac{y}{x} = frac{K}{x^2}$。
当$K > 0$时,$theta$为锐角或直角;当$K < 0$时,$theta$为钝角或 直角。
随着$|K|$的增大,倾斜角$theta$也逐渐增大,但始终不会超过直角。
05
典型例题解析
求反比例函数中K值
01
例题1
已知反比例函数$y = frac{k}{x}$的图像经过点 $A(2,3)$,求$k$的值。
02
例题2
已知反比例函数$y = frac{k}{x}$的图像经过点 $B(m,n)$和$C(p,q)$,且$mn = 6$,$pq = 8$
06
课堂小结与拓展延伸
课堂小结
反比例函数$y = frac{k}{x}$($k neq 0$)中,比例系数$k$的几 何意义:过双曲线上任意一点引 $x$轴、$y$轴垂线,所得矩形面
积为$|k|$。
反比例函数中k的几何意义-优质课公开课课件一等奖

坐标轴围成的矩形的面积,发现,无论图像
上的点如何移动,矩形的面积却始终不变,
且刚好为 。接着,我们发现双曲线上的点
||
与坐标轴围成的三角形的面积始终为 ,可
2
见值常常与图形的面积相联系。
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
3
相交于、两
点,过作 ⊥ 轴,过作 ⊥ 轴,则
图中阴影部分的面积为( )
A、2
B、3
C、4
D、6
3
点和点都在反比例函数 = 的图像上
⊥ 轴, ⊥ 轴
△ = △
3
=
2
阴影部分的面积就是两个三角形面积之和,为3
正确答案是选项B。
我们通过探究反比例函数图像上的点与
历史课件:/kejian/lishi/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/
美术课件:/kejian/meishu/
科学课件:/kejian/kexue/
物理课件:/kejian/wuli/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
A、2
B、4
C、6
D、8
两个矩形的面积相等,且都为比例系数4。
1 = 矩形 − 阴影矩形 = 4 − 1 = 3
2 = 矩形 − 阴影矩形 = 4 − 1 = 3
上的点如何移动,矩形的面积却始终不变,
且刚好为 。接着,我们发现双曲线上的点
||
与坐标轴围成的三角形的面积始终为 ,可
2
见值常常与图形的面积相联系。
PPT模板:/moban/
PPT素材:/sucai/
PPT背景:/beijing/
3
相交于、两
点,过作 ⊥ 轴,过作 ⊥ 轴,则
图中阴影部分的面积为( )
A、2
B、3
C、4
D、6
3
点和点都在反比例函数 = 的图像上
⊥ 轴, ⊥ 轴
△ = △
3
=
2
阴影部分的面积就是两个三角形面积之和,为3
正确答案是选项B。
我们通过探究反比例函数图像上的点与
历史课件:/kejian/lishi/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/
美术课件:/kejian/meishu/
科学课件:/kejian/kexue/
物理课件:/kejian/wuli/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
A、2
B、4
C、6
D、8
两个矩形的面积相等,且都为比例系数4。
1 = 矩形 − 阴影矩形 = 4 − 1 = 3
2 = 矩形 − 阴影矩形 = 4 − 1 = 3
第26章 反比例函数——反比例函数中k的几何意义课件

6
拓展3 : A(x1,y1)在反比例函数y= (>)图像上
2
(3) 如图 ,点B(x2,y2 )为反比例函数y=- (x <0)图像上一点.求△OAB的面积.
补
E
S△AOB= S梯形ABEF-S△AOF-S△BOE
=S梯形ABEF-3-1
=S梯形ABEF-4
| −
|(| |+| | )
2
(1) 如图,点B(x2,y2 )为反比例函数y= (x>0)图像上一点.
若A,B为两函数同一象限的点,求 △ OAB的面积.
S△AOE≠S△BOF
S△AOB= S梯形AEFB+S△AOE-S△BOF
=S梯形AEFB+3-1
=S梯aAEFB+2
E
F
| − |(| |+| | )
=
等底等高,
面积不变
N
x
利用平行转化解决面积问题
变形
等底等高,
面积不变
变形
利用平行转化解决面积问题
1、如图6, P是反比例函数y=(x>0)图象上的一点,PM⊥y,点Q,N在x轴
4
上,QN∥PM,且QN=PM,四边形PMQN的面积为4,则k=____________.
6
D
2、如图,已知点A在反比例函数y=
6
1、如图,反比例函数y= 的图像经过A(1,6),B(3,2)两点,求△AOB 的面积
.
F
方法2: S△AOB= S△AOE-S△BOE
或S△AOB= S△OBF-S△OAF
补
E
F
G
E
方法3: S△AOB= S矩形OEGF-S△BOE-S△ABG- S△OAF
拓展3 : A(x1,y1)在反比例函数y= (>)图像上
2
(3) 如图 ,点B(x2,y2 )为反比例函数y=- (x <0)图像上一点.求△OAB的面积.
补
E
S△AOB= S梯形ABEF-S△AOF-S△BOE
=S梯形ABEF-3-1
=S梯形ABEF-4
| −
|(| |+| | )
2
(1) 如图,点B(x2,y2 )为反比例函数y= (x>0)图像上一点.
若A,B为两函数同一象限的点,求 △ OAB的面积.
S△AOE≠S△BOF
S△AOB= S梯形AEFB+S△AOE-S△BOF
=S梯形AEFB+3-1
=S梯aAEFB+2
E
F
| − |(| |+| | )
=
等底等高,
面积不变
N
x
利用平行转化解决面积问题
变形
等底等高,
面积不变
变形
利用平行转化解决面积问题
1、如图6, P是反比例函数y=(x>0)图象上的一点,PM⊥y,点Q,N在x轴
4
上,QN∥PM,且QN=PM,四边形PMQN的面积为4,则k=____________.
6
D
2、如图,已知点A在反比例函数y=
6
1、如图,反比例函数y= 的图像经过A(1,6),B(3,2)两点,求△AOB 的面积
.
F
方法2: S△AOB= S△AOE-S△BOE
或S△AOB= S△OBF-S△OAF
补
E
F
G
E
方法3: S△AOB= S矩形OEGF-S△BOE-S△ABG- S△OAF
1.2反比例函数k的几何意义PPT优秀课件

S OA 1 2 POA A P 1 2|m |•|n|1 2|k|
y
y
P(m,n)
P(m,n)
2021/6/3
oA
x
oA
x
18
2.如图,点P是反比例函数图象上的一点,过点P分别向x
轴、y轴作垂线,若阴影部分面积为1,则这个反比例函
数的关系式是
.y 2 x
y
y
P
P
C o O D xx
y k (k 0) 的面积不变性
3.如图,S矩形
OAPB= __y__,S△OAP= .
y 4
BP P
x
OA
x
4.观察图中各个三角形 的面积,你有什么发现?
y
o
A
y 4 x
x
2021/6/3
10
反比例函数 y
k x
上一点P(x0,y0),过点
P分别作PA⊥y轴,PB⊥X轴,垂足分别为A、
B,则矩形AOBP的面积为 k ;
且S△AOP= S△BOP = k
。
2
2021/6/3
11
1.通过本节课的学习,你有什么收获? 还有什么困惑吗?
2.你对自己本节课的表现满意吗?为
什么? 数缺形时少直觉,
形少数时难入微.
2021/6/3
12
如图 ,在y1(x0)的图像上有A三 ,B,C点, x
经过三点分x轴 别引 向垂,交 线x轴于 A1,B1,C1三点 , 边结 OA,OB,OC,记OA1A,OB1B,OCC 1的 面积分别 S1,为 S2,S3,则有__. y
则 S矩O 形APBOAAP |m|•|n||k|(如图)所
y
y
反比例函ppt课件

2024年中考数学复习
第三章 函 数
第四节 反比例函数
课标解读
① 结合具体情境体会反比例函数的意义,能根据已 知条件确定反比例函数表达式。 ② 能画出反比例函数的图象,根据图象和解析表达 式 y k (k≠0 )探索并理解其性质(k>0和k<0时,
x
图象的变化)。 ③ 能用反比例函数解决某些实际问题。
课堂小结
本节课主要复习了哪些知识?
反比例函数的定义和反比例函数的性质; 反比例函数与面积的结合; 反比例函数表达式的确定; 反比例函数与一次函数的综合应用。
运用了哪些数学思想和方法?
函数的思想、方程的思想、数形结合的思想等。
课后作业
必做题: 1、完成学案课后作业题; 2、完成《试题研究精练本》3、8、9、14、19.
本题型主要考察反比例函数中 k 的几何意义.
解法途径:
理解反比例函数中 k 的几何意义,把面积想办法转化
为与 k 相关的量.
3.反比例函数表达式的确定
(陕西2018中考真题)13. 若一个反比例函数的图象经 过点A(m,m)和B(2m,-1),则这个反比例函数的表达 式为___y __4x___. (陕西2023中考副题)15. 已知点A是第二象限内一点, 过点A作AB⊥x轴于点B,且△ABO的面积为3 3 .若反比 例函数的图象经过点A,则这个反比例函数的表达式为 __y ___6_x3__.
2.利用反比例函数的性质,特别是反比例函数图象上的 点的横纵坐标的乘积是定值。
2.与反比例函数图象上的点有关的面积问题
(陕西2019中考真题)13. 如图,在平面直角坐标系中, 过点M(-3,2)分别作x轴、y轴的垂线与反比例函数 y 4
x 的图象交于A、B两点,则四边形MAOB的面积为__1_0_.
第三章 函 数
第四节 反比例函数
课标解读
① 结合具体情境体会反比例函数的意义,能根据已 知条件确定反比例函数表达式。 ② 能画出反比例函数的图象,根据图象和解析表达 式 y k (k≠0 )探索并理解其性质(k>0和k<0时,
x
图象的变化)。 ③ 能用反比例函数解决某些实际问题。
课堂小结
本节课主要复习了哪些知识?
反比例函数的定义和反比例函数的性质; 反比例函数与面积的结合; 反比例函数表达式的确定; 反比例函数与一次函数的综合应用。
运用了哪些数学思想和方法?
函数的思想、方程的思想、数形结合的思想等。
课后作业
必做题: 1、完成学案课后作业题; 2、完成《试题研究精练本》3、8、9、14、19.
本题型主要考察反比例函数中 k 的几何意义.
解法途径:
理解反比例函数中 k 的几何意义,把面积想办法转化
为与 k 相关的量.
3.反比例函数表达式的确定
(陕西2018中考真题)13. 若一个反比例函数的图象经 过点A(m,m)和B(2m,-1),则这个反比例函数的表达 式为___y __4x___. (陕西2023中考副题)15. 已知点A是第二象限内一点, 过点A作AB⊥x轴于点B,且△ABO的面积为3 3 .若反比 例函数的图象经过点A,则这个反比例函数的表达式为 __y ___6_x3__.
2.利用反比例函数的性质,特别是反比例函数图象上的 点的横纵坐标的乘积是定值。
2.与反比例函数图象上的点有关的面积问题
(陕西2019中考真题)13. 如图,在平面直角坐标系中, 过点M(-3,2)分别作x轴、y轴的垂线与反比例函数 y 4
x 的图象交于A、B两点,则四边形MAOB的面积为__1_0_.
八年级数学下册第11章反比例函数:反比例函数pptx课件新版苏科版

知1-练
例 1 [月考·泰兴] 下列函数:① y = x-2; ② y = 3x;③ y =
x-1;④ y = x+21. 其中 y是x的反比例函数的有(
)
A. 0 个
B. 1 个
C. 2 个
D. 3 个
知1-练
解题秘方:紧扣反比例函数的定义及表达式的“三种形式” 进行识别 . 解:① y=x-2是一次函数;② y= 3x是反比例函数;③ y= x-1是反比例函数;④ y= x+21不是y关于x的反比例函数 .故 y是x的反比例函数的有:②③,共 2个. 答案:C
知1-讲
2. 反比例函数的表达式的三种形式
① y = kx,② y = kx-1,③ xy = k.(其中k为常数,k≠0)
特别提醒:形
如
y
=
1 x
+1,(x+1)y=3,y
=(x+1)-1等
函数都不是 y关于x的反比例函数 .
3. 反比例关系与反比例函数的关系
知1-讲
(1)如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例
vt=480,即
t=
480 v
,
t是v的反比例函数,符合题意.
知2-练
方法点拨 用反比例函数的表达式表示实际问题的方法:先找出
两个变量之间的等量关系,然后经过变形即可得出 . 注意:实际问题中的反比例函数,自变量的取值范围
一般都是大于零的实数 .
反比例函数
反比例 函数
定义
表达式的形式
表达式的确定
知1-练
方法提醒 判断一个函数是不是反比例函数的两种方法:
(1)按照反比例函数的定义判断 . (2)看两个变量的关系式是否符合反比例函数的表达式的三
反比例函数课件

反比例函数的图像表示
反比例函数图像的描绘
通过给出具体的函数解析式,例如`y = 1/x`,并确定函数图 像的草图,使学生能够掌握反比例函数图像的基本形状和特 征。
图像的平移和伸缩
解析式的变化如何影响图像的平移和伸缩,例如`y = k/x`中 ,当`k`大于零时,图像向上或向右延伸;当`k`小于零时,图 像向下或向左延伸。
探讨未来反比例函数在数学和 其他领域的应用趋势
THANK YOU.
反比例函数的性质应用
解决实际问题
通过具体的实际问题,例如计算面积、解决电路问题等,使学生能够理解如何应 用反比例函数的性质解决实际问题。
数学建模
通过使用反比例函数建立数学模型,例如解决资源分配问题、解决经济问题等, 使学生能够理解数学建模的基本步骤和方法。
03
反比例函数的基本表达式和计算
反比例函数的基本表达式
反比例函数的性质概述
函数解析式的特点
解析式中的系数`k`如何影响函数的性质,例如当`k`大于零时,函数的定义域 和值域是什么,函数的单调性和奇偶性如何等。
反比例函数与其它函数的比较
通过比较反比例函数和其他基本初等函数(如正比例函数、一次函数、二次 函数等),理解反比例函数的特性和与其他函数的区别。
反比例函数的性质
自变量$x$的取值范围是不等于0 的一切实数
反比例函数在实际应用中的拓展思路
利用反比例函数解决实际问题,例如:工程问题、经济问题等 通过实例分析,深入挖掘反比例函数的扩展应用
反比例函数的总结与展望
总结反比例函数的核心知识点 和解题方法
分析反比例函数在数学学科和 其他学科中的应用前景
总结竞赛中反比例函数的核心知识点 和考察重点。