HFSS三腔矩形波导滤波器的仿真经验
HFSS学习经验小结

HFSS学习小结11、对称的使用对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。
这里面的约束主要在几何对称和激励对称要求。
如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2个对称(E 和H 对称),将可以大大节约时间和设备资源。
2、面的使用在实际问题中,有很多结构是可以使用2 维面来代替的,使用2 维面的好处是可以极大的减少计算量并且结果与使用 3 维实体相差无几。
例如计算一个微带的分支线耦合器,印制板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。
再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。
3、Lump Port(集中端口)的使用在HFSS8 里提供了一种新的激励:Lump Port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。
LumpPort 也可以使用一个面来代表,要注意的是对该Port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。
4、关于辐射边界的问题在不需要求解近(远)场问题时,比如密封在金属箱体里面的滤波器等密闭问题,无需设置辐射边界。
在需要求解场分布或者方向图时,必须设置辐射边界。
这里有些需要注意的问题:在计算大带宽周期性结构时,比如3 个倍频程,最好分段计算,例如以一个倍频程为一段,也就是说在不同的频段计算时设置不同大小的辐射边界,否则在计算的频率边缘难以保证计算精度;其次,辐射边界的大小和问题的具体形状密切相关,如果物体的外部轮廓可以装在一个球或并不过分的椭球中时,宜采用立方体边界——简单有效,如果问题的外部轮廓较为复杂或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增益较低(比如2dB),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另在HFSS 8 中提供了一种新的吸收边界——PML 边界条件,对于这种边界,笔者并不是很满意,尽管其有效距离为八分之一个中心波长——是老边界的一半,可以减少计算量,然而这种边界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有很多的空间是无用的,此时还不如使用老边界灵活。
微波专业技术与天线实验3利用HFSS仿真分析矩形波导

微波技术与天线实验报告实验名称:实验3:利用HFSS仿真分析矩形波导学生班级:学生姓名:学生学号:实验日期:2011年月日一、 实验目的学会HFSS 仿真波导的步骤,画出波导内场分布随时间变化图,理解波的传播与截止概念;计算传播常数并与理论值比较。
二、 实验原理矩形波导的结构如图1,波导内传播的电磁波可分为TE 模和TM 模。
x yz图 1矩形波导1) TE 模,0=z E 。
coscos z z mn m x n y H H e a b γππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-= 2sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=-2sin cos z x mn c m m x n y H H e k a a bγλπππ-= 2cos sin z y mn c n m x n y H H e k ba b γλπππ-= 其中,c kmn H 是与激励源有关的待定常数。
2) TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
HFSS的协同仿真讲解

协同仿真定义设置
选择“Circuit”
Ansoft Designer Model
Port1
1:1
2:1
1:1
2:1
1:1
2:1
1:1
2:1
Port2 1:1
A=a B=b
2:1
1:1
A=a B=b
2:1
1:1
A=a B=b
2:1
A=a
A=a
A=a
B=b
B=b
B=b
Designer端口设置
Designer仿真设置
dB(S(Port2,Port1)) LinearFrequency
17.50
18.00
CST MWS模型
端口设置
扫频及对称性设置
基于模板的后处理设置
设置参数扫描并计算
导出ADS模型
在ADS中导入CST模型
在ADS中导入 CST模型(续)
在电路图中插入CST模型
电路图中放入波导
电路图中终端设置
仿真结果
Y1
0.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00 -70.00 -80.00
14.50
15.00
15.50
XY Plot 1
16.00
F [GHz]
16.50
17.00
Circuit1 ANSOFT
Curve Info
dB(S(Port1,Port1)) LinearFrequency
-10.00
XY Plot 1
m1
m2
-20.00
-30.00
-40.00
-50.00
-60.00
电磁场与微波技术实验2矩形波导仿真与分析

实验二 矩形波导仿真与分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导高次模的基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、预习要求1、 导波原理。
2、 矩形波导模式基本结构,及其基本电磁场分析和理论。
3、 HFSS 软件基本使用方法。
三、实验原理由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。
这里只分析TE 模(Ez=0)对于TE 模只要解Hz 的波动方程。
即采用分离变量,并带入边界条件解上式,得出TE 模的横向分量的复振幅分别为(1)矩形波导中传输模式的纵向传输特性①截止特性波导中波在传输方向的波数β由式9 给出222000220z z c z H H k H x y ∂∂++=∂∂式7000220002200020002()cos()sin()()sin()cos()()sin()cos()()cos()sin()z x c c z y c c y x H c x y H c H n m n E j j H x y k y k b a b H m m n E j j H x y k x k a a b E m m n H j H x y Z k a a b E n m n H j H x y Z k b a b ωμωμπππωμωμπππβπππβπππ∂⎧==⎪∂⎪⎪∂==-⎪∂⎪⎨⎪=-=⎪⎪⎪==⎪⎩式822222c c k k ππβλλ=-=-式9式中k 为自由空间中同频率的电磁波的波数。
要使波导中存在导波,则β必须为实数,即k 2>k 2c 或λ<λc(f >f c ) 式10如果上式不满足,则电磁波不能在波导内传输,称为截止。
故k c 称为截止波数。
矩形波导中TE 10模的截止波长最长,故称它为最低模式,其余模式均称为高次模。
由于TE 10模的截止波长最长且等于2a,用它来传输可以保证单模传输。
hfss腔体滤波器设计实例

hfss腔体滤波器设计实例HFSS(High Frequency Structure Simulator)是一种用于电磁场仿真和分析的软件工具。
它广泛应用于高频电磁场的建模和分析,可用于设计各种射频(RF)和微波器件,如天线、滤波器、耦合器等。
本文将以HFSS腔体滤波器设计实例为题,介绍如何利用HFSS软件进行腔体滤波器的设计。
我们需要明确腔体滤波器的基本原理。
腔体滤波器利用腔体的谐振模式和谐振频率来实现信号的滤波。
通过调整腔体的几何参数和材料特性,可以实现对特定频率范围内的信号进行滤波。
因此,腔体滤波器的设计关键在于确定合适的腔体结构和参数。
接下来,我们将以一个实际的设计例子来具体介绍HFSS腔体滤波器的设计流程。
假设我们要设计一个工作在2.4GHz频段的微波腔体滤波器。
首先,我们需要选择合适的腔体结构。
常见的腔体结构有矩形腔体、圆柱腔体等,根据设计要求选择合适的结构。
在HFSS中,我们可以通过绘制几何模型来定义腔体结构。
绘制完成后,我们需要定义腔体的材料属性,包括介电常数、磁导率等。
这些参数将直接影响腔体的谐振频率和模式。
接下来,我们可以利用HFSS的求解器进行电磁场仿真。
在仿真前,我们需要设置仿真的频率范围和精度。
根据设计要求,选择合适的频率范围,并设置适当的网格精度。
仿真完成后,我们可以通过HFSS的结果分析工具来分析仿真结果。
主要包括频率响应、S参数、电场分布等。
根据设计要求,对仿真结果进行评估和调整。
如果需要改善滤波器性能,可以通过调整腔体的几何参数和材料特性来实现。
在设计过程中,需要注意以下几点。
首先,腔体的尺寸和几何参数应该合理选择,以满足设计要求。
其次,材料的选择和特性对滤波器性能影响很大,需要选择合适的材料并设置正确的特性。
最后,仿真结果的准确性和稳定性也需要重视,可以通过调整网格精度和求解器参数来提高仿真结果的准确性。
HFSS是一种强大的工具,可以用于腔体滤波器的设计和分析。
实验二、 矩形波导TE10的仿真设计与电磁场分析

实验二、矩形波导TE 10的仿真设计与电磁场分析一、实验目的:1、 熟悉HFSS 软件的使用;2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法;3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。
二、预习要求1、 导波原理。
2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。
3、 HFSS 软件基本使用方法。
三、实验原理与参考电路3.1 3.1.1.对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。
由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。
为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的;② 波导管内无自由电荷和传导电流的存在;③ 波导管内的场是时谐场。
图1 矩形波导结构本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程:式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。
以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有222222222222222220T c E E E E k E k E x y z E E E k E x yE k E β∂∂∂∇+=+++∂∂∂∂∂=+-+∂∂=∇+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。
由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。
具体过程从略,这里00(,)(,)j z j z E E x y e H H x y eββ--⎧=⎪⎨=⎪⎩ 式1220E k E ∇+=22222222T c E E E x y k k β⎧∂∂∇=+⎪∂∂⎨⎪=-⎩其中式3222c x yk k k =+仅给出结果:从以上分析可得以下结论:(1)场的横向分量即可由纵向分量;(2) 既满足上述方程又满足边界条件的解有许多, 每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性;(3)k c 是在特定边界条件下的特征值, 它是一个与导波系统横截面形状、 尺寸及传输模式有关的参量。
微波技术与天线实验2利用HFSS仿真分析矩形波导

实验3:利用HFSS 仿真分析矩形波导一、 实验原理矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。
图1 矩形波导 1)TE 模,0=z E 。
coscos zz mn m x n y H H e a bγππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-=2sin cos z y mn c j m m x n y E H e k a a bγωμπππ-=-2sincos z x mn c m m x n y H H e k aa bγλπππ-=2cossin z y mn c n m x n y H H e k ba bγλπππ-=其中,c k 22m n a b ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+mn H 是与激励源有关的待定常数。
2)TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mnTE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
以a=23mm ,b=10mm 的空心矩形波导为例,由截止频率的计算公式22)()(21bna m f c +=με,可以计算GHz f cTE 52.610=,GHz f cTE 04.1320=,GHz f cTE 1501=,所以波导单模工作的频率范围为。
HFSS,天线,滤波器,学习记录

1)根据腔数和整体尺寸确定大致腔体尺寸2)单腔仿真,确定谐振杆和调谐杆的半径r1,r2,3)根据元件值计算理论耦合系数,然后做双腔仿真固定2)中得到的参数不变,对两腔间距W作参数扫描调整,输出K-W曲线,使得W满足K要求4)计算理论需要的Qe,再做单端口Qe仿真,调整连接引线接在谐振杆上的位置T直至符合要求5)根据以上得到的数据整体仿真6)得到的曲线很不理想,再调整获得合适的中心频率,带宽,但是通带衰减过大的问题始终无法解决随后对T调整,发现T越大反而通带衰减越小,而以前看到资料上说,中心抽头接入的位置应尽量靠近谐振杆的短路端,我现在选T=1.8mm,通带衰减最好才-13分你要用软件仿真腔体滤波器得到一个理想的结果是比较困难的,一般只要仿真出来有波形的样子,并且保证中心频率和带宽满足要求就可以加工了.一般都是能实调出来的.如果你非要在软件中调个好的波形出来,那就要不断的调整耦合以及有载Q值.其中影响最大的是K12和有载Q值,你调试的主要精力需要放在改变一二腔的距离,抽头高度,以及第一腔的加载螺钉上.过程是比较烦琐的,祝你早日成功!很多问题可以直接再论坛里搜索,比百度,好对哦了1、看下频率(因为这是后面HFSS或者CST仿真要用的单腔频率)2、看带宽和近端抑制点以及插损(这个可以用相关软件仿比如MA TLAB或者COUPLEFILA 仿真下需要几阶,几个传输零点以及交叉耦合的方式。
一般阶数越少,插损越好,抑制越插)3、再根据带宽所需要的耦合系数用HFSS或者CST仿真下,看谐振杆的间距或者耦合窗口应该定多大。
4、开始排腔,以及投入初样(一般开始做初样前还可以拿Desinger把电路仿真下,因为Desinger里面可以改变每个腔的Q值等,进行验证,看设计是否有明显的错误)5、调试,这个其实就是看个人的水平了,多动手多思考第四步排完腔一般我会用HFSS或者CST仿下Q值,看能否达到第二步用解析软件计算时预设的Q值,如果达不到就要重新考虑方案了看懂规范书抑制损耗回波功率互调温补要了解,先看通带曲线确定节数几传输零点个数零点实现形式和对应位置以及Q多少满足综合指标,仿单腔确定频率和Q值,观察几个元件间距(影响功率因素),后布局几点重要建议:布局的空间合理性和结构紧凑,生产可操作性,各个通道(单腔大小)分配均匀,功率要求尽量内部各个间距加大,互调高要对连接器表面处理材料光洁度做要求温补要考虑材料的不同环境下发生形变对指标的影响另外选用几种形式:交指梳状平行耦合,这就要看个人喜好了对于窄带滤波器来说,仿真频率必须放在中心频率上,收敛:maximum number 设置个几十,maximum delta s:0.02.看过一些资料,对耦合系数和端口外部Q值的计算都已了解,现在在仿真上有些问题,向大家请教一下第一个就是耦合会使谐振频率下降,所以仿真时会让单腔的谐振频率稍微高一些,那么一般应该高多少呢?第二个就是比如1、2两个腔的耦合窗尺寸已经调好了,耦合系数K12在中心频率和理论值差不多,接着在仿真2、3两个腔的时候,调节2、3腔之间耦合窗口大小使耦合系数K23与理论差不多的时候,谐振频率已经偏离了中心频率,这种情况接着怎么处理呢?需要调节什么参数呢?第三个就是在HFSS里用本征模仿真外部Q值的时候发现Q值与理论值一样的时候,此时的谐振频率与中心频率不一致,这种情况该如何处理呢?一,一般缩个15%~20%,原则上你能调回来就好二,改变谐振杆高度调频率啊,尽量在中心频率下算窗尺寸三,还是改变谐振杆的高度吧正耦合系数(磁耦合)可以很简单的通过腔与腔之间各种形状的开孔实现,《现代微波滤波器的结构与设计》里面有对应的相关公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以一个三腔矩形波导滤波器的仿真为例,我得到以下仿真经验:
1。
当计算出结构尺寸的时候,包括膜片间距和每个腔体的长度,要开始建立3D模型的时候,不必着急,现将这些数据进行一下预处理,腔体长度进行预缩短,最多不要超过0.03,膜片间距进行预加长,最多不要超过0.07。
这些数字可能打了也可能小了,按你仿真出来的曲线进行细致调节!我主要针对S21曲线的特点进行细致调节。
2。
如果通频带内有较大的波纹(超过最小插入损耗),那么一定要扩大内侧腔(同时缩短了外侧腔,这没有关系,正是需要),必要时同时减小外侧腔缩小的程度。
3。
大量数据表明:
内侧膜间距变小—〉频带右移,通频带左侧波纹变小,右侧变大;
外侧膜间距变大--〉频带左移,通频带左侧波纹变小,右侧变大;
以上变化,相对而言,通频带左侧波纹变化特别大。
因此如果通频带有偏移或者通频带左侧波纹太大,可以调整膜片间距,适当的调整并不会导致右侧波纹大过最小插入损耗。
4。
如果S11的曲线比较对称美观,说明调整的方向大致是对的,可以继续。
5。
如果S21曲线右侧带外抑制不足的时候(一般高端都不容易实现抑制,低端一般从一开始仿真就是对的),可增大外侧膜片间距,减小内侧膜片间距,一般得到的最后结果膜片尺寸是对称的,为方便生产也应尽量使其对称,即在改变间距的时候要对称地改。
此外,刚开始接触滤波器设计仿真的我还在实践中得到几条结论:
1。
S11的最大值是由给定的波纹决定的。
2。
S11的最大值、S21曲线的平滑程度和右侧带外抑制这三者之间有互相牵制的关系,仿真的时候不可能同时达到比较好的程度,只能尽量让这三者在符合要求的同时更好。
S11的最大值可单侧达到很好,但这样的话另一侧肯定很差。
S11也可以整体达到比较理想的程度,但是这时高端抑制必然不足。