矩形波导的设计讲解
微波器件实验中的波导设计和信号传输分析方法

微波器件实验中的波导设计和信号传输分析方法微波器件是微波领域中的一类重要设备,广泛应用于通信、雷达、导航等领域。
在微波器件实验中,波导设计和信号传输分析是非常关键的一环。
本文将介绍常见的微波器件实验中的波导设计原理及信号传输分析方法。
一、波导设计原理微波器件中常用的波导设计有矩形波导、圆柱波导和同轴电缆等。
其中,矩形波导是最常见的一种。
矩形波导的设计原理基于电磁波在导体内传播的特性。
对于TE模式(横电模),电磁场只存在横向的磁场分量,而对于TM模式(横磁模),电磁场只存在横向的电场分量。
通过合理的波导尺寸设计,可以实现特定模式的传输。
波导的尺寸设计涉及到工作频率、工作模式以及波导材料的参数等。
通常,设计人员需要根据实际的工程需求,选择合适的工作频率和模式。
然后,通过波导的截面尺寸来满足相应的传输要求。
波导的截面尺寸包括宽度和高度,它们的比值被称为波导的宽高比。
不同的宽高比对应不同的截止频率、传输损耗和模式特性。
二、信号传输分析方法在微波器件实验中,信号传输分析是评估器件性能的重要手段。
常见的信号传输分析方法包括散射参数(S参数)分析和功率传输分析。
1. 散射参数(S参数)分析S参数是描述微波器件输入输出关系的一组参数。
对于两端口器件,例如功率放大器或滤波器,它们的输入和输出可以用S参数矩阵表示。
S参数矩阵具体包括S11、S12、S21、S22四个参数。
其中,S11表示从端口1发出的电磁波在端口1反向散射的比例;S12表示从端口2发出的电磁波在端口1反向散射的比例;S21表示从端口1发出的电磁波在端口2正向传输的比例;S22表示从端口2发出的电磁波在端口2反向散射的比例。
通过测量器件的S参数,可以分析器件的性能,例如传输损耗、反射损耗、带宽等。
同时,可以通过设计合适的匹配网络,来优化器件的性能,使其在设计频率范围内实现最佳传输。
2. 功率传输分析功率传输分析是评估微波器件输出功率的一种方法。
常见的功率传输分析方法有功率增益分析和功率波导分析。
第三章矩形截面金属波导

引言 金属波导中电磁场解的一般形式 矩形截面波导场方程的求解 矩形截面波导传输模式 矩形截面波导中的TE10模 矩形截面波导的工程应用
一 引言
波导管作为定向导引电磁波传输的机构, 是微波传输线的一种典型类型,它已不再 是普通电路意义上的传输线。虽然电磁波 在波导中的传播特性仍然符合本书第二章 中关于传输线的概念和规律,但是深入研 究导行电磁波在波导中的存在模式及条件, 横向分布规律等问题,则必须从场的角度 根据电磁场基本方程来分析研究。
mπ 2 nπ 2 2 β 2 = ω 2 ε ( k x2 + k y ) = ω 2 ε + a b mπ 2 nπ 2 kc2 = + = ωc 2 ε a b fc = 1 2π ε 1 m n + 2 a 2b
三 矩形截面波导场方程的求解
矩形截面波导结构和坐标如图所示,结构 参数内腔宽a和高b,电磁参数:腔内填充 介质介电常数和磁导率。 求解思路:先求纵场,再求横场。
y
b 0 z
、 ε
x a
矩形截面波导结构和坐标图
1 纵场满足方程和边界条件 很容易推导纵向场所满足的方程如下, TE波中Ψ表示磁场,TM波中Ψ表示电场。
模式存在的条件
对于一种模式,并不是所有的频率电磁波 都能以这种模式存在,或者说每一种模式 存在是有条件的。 这个条件就是这种模式一定能以行波的形 式在波导中传播。 相位常数是实数,其模平方要大于0。
β >0
2
截止频率和截止波长
根据相位常数和模式之间的关系,一种频率 电磁波能在矩形波导中以一种模式传播,则 其频率要大于某一个临界值,这个临界值称 为这种模式存在的截止频率。 截止频率对应波长称为截止波长,截止频率 和截止波长的乘积数值上等于电磁波在波导 填充介质为无界时的相速度。 根据模式截止特性容易判定矩形波导具有高 通的选频特性。
cst概述及太赫兹矩形波导的设计

cst概述及太赫兹矩形波导的设计CST是一款广泛应用于电磁场建模与仿真的软件,它能够帮助工程师和科研人员快速而准确地分析和优化电磁设备和系统。
太赫兹矩形波导是一种用于太赫兹频段的传输线结构,具有较低的传输损耗和较高的传输带宽。
本文将以CST为工具,介绍太赫兹矩形波导的设计过程和相关特性。
我们需要了解太赫兹频段。
太赫兹频段指的是位于微波和红外之间的电磁波频段,具有特殊的物理特性和广泛的应用前景。
太赫兹波在医学成像、安全检测、无线通信等领域具有重要的应用价值。
在CST中设计太赫兹矩形波导,首先需要确定波导的尺寸和材料。
波导的尺寸决定了波导的传输特性,而材料的选择则决定了波导的损耗和带宽。
根据需要传输的频率范围,可以选择合适的材料和尺寸。
需要在CST中建立波导的几何模型。
可以使用CST的建模工具,如绘图工具、拉伸工具等,快速地构建出波导的几何形状。
在建模过程中,需要注意保持波导的几何对称性,以确保波导的传输特性稳定。
接下来,需要设置波导的边界条件和激励方式。
边界条件决定了波导的边界如何与外界电磁场交互,而激励方式则决定了波导中的电磁场如何被激发和传输。
根据需要,可以选择合适的边界条件和激励方式,以满足设计要求。
完成波导的建模和设置后,可以使用CST进行仿真和分析。
通过CST提供的求解器,可以计算波导中的电磁场分布、传输损耗、传输带宽等重要参数。
根据仿真结果,可以对波导的设计进行优化和调整,以达到预期的传输性能。
需要对波导的设计进行验证和验证。
可以使用CST提供的后处理工具,对仿真结果进行分析和解释。
通过与理论计算和实验结果的比较,可以评估波导的设计是否满足要求,并进行必要的调整和改进。
CST是一款功能强大的电磁场建模与仿真软件,能够帮助工程师和科研人员设计和优化太赫兹矩形波导。
通过合理选择材料和尺寸,建立准确的几何模型,设置合适的边界条件和激励方式,以及进行准确的仿真和分析,可以得到满足要求的太赫兹矩形波导设计。
chap2 11矩形波导解读

在矩形波导作为传输线运用时,功率容量和衰减是 一个问题的两个方面。功率容量是为了使通信和雷达 “看”得远,减小衰减是为了保证功率不受损失,一个 “增产” ,一个“节支” ,相互依存,缺一不可。
(五)矩形波导的主模—TE10模
由式(2.50)得
PTE10
A2 a3bZ TEM
2
1 2a (2.66a)
(三)场结构和管壁电流分布
(6)波导横截面内电、磁力线疏密分布相间(体现的是驻波 特性),纵剖面内电、磁力线疏密分布同位(体现的是行波 特性)。
(7)波导中两大系列(TE、TM)波无穷多种模式(TEnm、 TMnm)的场分布可视为m、n取最小值时基本模式场图的组 合。
(五)矩形波导的主模—TE10模
(三)场结构和管壁电流分布
(3)遵循边界条件,理想导体波导壁处电场切向分量应为0, 则电力线应垂直于波导壁而生存,由规律(2)知磁力线必平 行相切于波导壁而生存。 (4)波导壁传导电流(称为壁电流)分布由 n Ht 确定,其中 n为波导壁面向场区一侧的外法向,Ht为壁处切向磁场分 布。 (5)波导空间磁力线始终自身闭合(因自然界不存在磁荷, 磁力线环绕传导或位移电流生存),电力线既有始于又终 止于波导壁而生存(壁处有表面电荷,体现电场的有散性) 的形式,也有闭合力线(体现时变场中电场的有旋性 E j B )
2ห้องสมุดไป่ตู้
(2.62) (2.64)
g
1 2a
k
2
vg v 1 2a
(2.65)
v
Z TE10
Z TEM
c
r r
(三)场结构和管壁电流分布 可见TE10模只有三个场分量存在,一个电场分量和两 个磁场分量。这里,将场的空间分布图形用z=0处的xy剖 面、x=a/2处的yz剖面和y=b/2处的xz剖面上的分布图表示。 并取瞬时进行作图,首先作三个剖面上的电场分布图。
《矩形波导TE波》PPT课件

2021/8/17
17
二、TE10波的功率和容量
图 13-5 尖端效应影响耐功率
2021/8/17
18
三、TE10波内壁电流
在电磁理论中已经讲过波导管壁的传导电流分
布是由管内磁场的切向分J 量s 所n 决H 定r 。
(13-8)
Js
Ht
n
图 13-6 波导管内壁电流
2021/8/17
19
三、TE10波内壁电流
目前的雷达战中,对提高峰值功率容量极为重视。
因为在一定意义上,功率就是作用距离,所以增加传
输线功率容量相当重要。
气体击空的实质是场拉出游离电子在撞到气体分子
之前已具有足够的动能,再次打出电子,形成连锁反
应,以致击穿。如果在概念上,我们加大气体密度,
就不会出现很大动能的电子,所以加大气压和降低温
度是增加耐压功率的常用办法。
是一个问题的两个方面:增加功率是为了使通讯雷
达“看”远,减小衰减是为了保证功率不受损失,
一个“增产”,一个“节支”,相互依存,缺一不
可。
一般认为波导空间(Air Space)是无耗的,所谓
衰减是指电流的壁损耗。假定P0是理想导体波导的
传输功率,则
P P0 e 2 az
P z
2aP0 e 2az
2021/8/17
2
波型阻抗
1
2021/8/17
1
2a
2
5
一、TE10波的另一种表示
我们在上面给出的TE10波表达式,是以Hz为领矢
矢量的。然而,在实用上也常有用Ey作领矢矢量,即
设
Ey E0sinaxejz
(13-1)
利用Maxwell方程
标准矩形波导

标准矩形波导标准矩形波导是一种常见的波导类型,广泛应用于微波和毫米波领域。
它具有简单的结构和良好的传输性能,因此在通信、雷达、无线电等领域得到了广泛的应用。
本文将介绍标准矩形波导的基本结构、工作原理和特点。
1. 基本结构。
标准矩形波导由金属矩形管和金属盖板组成。
矩形管的截面形状通常为矩形,其长宽比通常为1:2或1:1.5。
矩形管内部空间被金属盖板分割成上下两个空间,上空间为TE模式的传输空间,下空间为TM模式的传输空间。
矩形波导的工作频率取决于矩形管的尺寸和材料。
2. 工作原理。
当电磁波进入矩形波导时,会在矩形管内部产生TE和TM模式的传输。
TE模式是指电场垂直于传播方向,而TM模式是指磁场垂直于传播方向。
这两种模式在矩形波导内传播时,具有不同的传输特性,可以实现电磁波的传输和耦合。
3. 特点。
标准矩形波导具有以下特点:(1)低损耗,由于矩形波导内部是由金属构成的空间,因此能够减少电磁波的能量损耗,具有较低的传输损耗。
(2)宽带特性,矩形波导能够传输多种模式的电磁波,因此具有较宽的工作频带。
(3)抗干扰能力强,矩形波导的结构稳定,能够有效抵抗外部干扰,具有较强的抗干扰能力。
(4)易于加工和安装,矩形波导的结构简单,易于加工制造,也易于安装和维护。
4. 应用领域。
标准矩形波导广泛应用于通信、雷达、无线电等领域。
在通信系统中,矩形波导常用于微波信号的传输和耦合;在雷达系统中,矩形波导常用于天线的馈源和接收;在无线电系统中,矩形波导常用于天线的馈源和信号的传输。
5. 结语。
标准矩形波导作为一种常见的波导类型,具有简单的结构、良好的传输性能和广泛的应用前景。
随着无线通信和雷达技术的发展,矩形波导将继续发挥重要作用,并不断得到改进和应用。
希望本文能够对标准矩形波导的理解和应用有所帮助。
矩形波导的设计讲解

矩形波导的设计讲解矩形波导模式和场结构分析第⼀章绪论1.1选题背景及意义矩形波导(circular waveguide)简称为矩波导,是截⾯形状为矩形的长⽅形的⾦属管。
若将同轴线的内导线抽⾛,则在⼀定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。
矩波导加⼯⽅便,具有损耗⼩和双极化特性,常⽤于要求双极化模的天线的馈线中,也⼴泛⽤作各种谐振腔、波长计,是⼀种较常⽤的规则⾦属波导。
矩波导有两类传输模式,即TM 模和TE 模。
其中主要有三种常⽤模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。
在不同⼯作模式下,截⽌波长、传输特性以及场分布不尽相同,同时,各种⼯作模式的⽤途也不相同。
导模的场描述了电磁波在波导中的传输状态,可以通过电⼒线的疏密来表⽰场得强与弱。
本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常⽤模式,并利⽤MATLAB 和三维⾼频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。
1.2国内外研究概况及发展趋势由于电磁场是以场的形态存在的物质,具有独特的研究⽅法,采取重叠的研究⽅法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。
时域有限差分法就是实现直接对电磁⼯程问题进⾏计算机模拟的基本⽅法。
在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进⾏了⼤量的研究,主要是描述物体在瞬态电磁源作⽤下的理论。
另外,对于物体的电特性,理论上具有⼏乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作⽤。
英国物理学家汤姆逊(电⼦的发现者) 在1893 年发表了⼀本论述麦克斯韦电磁理论的书,肯定了矩⾦属壁管⼦(即矩波导) 传输电磁波的可实现性, 预⾔波长可与矩柱直径相⽐拟, 这就是微波。
他预⾔的矩波导传输, 直到1936 年才实现。
开缝矩形波导

开缝矩形波导开缝矩形波导是一种常用的微波器件,广泛应用于通信、雷达、微波炉等领域。
它是由一块金属板制成,通过在金属板上开缝来实现微波的传输和耦合。
本文将介绍开缝矩形波导的基本原理、结构特点、优缺点以及应用领域等方面的内容。
一、基本原理开缝矩形波导的基本原理是利用金属板上的开缝来实现微波的传输和耦合。
在金属板上开一条长短适中的缝隙,微波信号可以从缝隙中通过,并在波导内沿着金属板的表面传输。
当微波信号到达开口处时,一部分能量会透过缝隙穿过金属板,形成辐射场,另一部分则会沿着金属板传输。
在波导的另一端,开口处的微波信号再次透过缝隙穿过金属板,形成辐射场,从而实现了微波的传输和耦合。
二、结构特点开缝矩形波导的结构特点是由一块金属板制成,上面开有一条长短适中的缝隙。
波导的宽度和高度通常比较大,可以容纳较大的微波信号。
开缝矩形波导的结构简单,制作成本低廉,易于加工和制造。
同时,它的传输带宽比较大,能够传输较宽的频率范围内的微波信号,具有较好的通用性和适应性。
三、优缺点开缝矩形波导的优点是由于其结构简单,制作成本低廉,易于加工和制造。
同时,它的传输带宽比较大,能够传输较宽的频率范围内的微波信号,具有较好的通用性和适应性。
缺点是由于其开口处会产生辐射场,因此会存在一定的能量损耗。
此外,开缝矩形波导的尺寸较大,不适合在一些场合中使用。
四、应用领域开缝矩形波导广泛应用于通信、雷达、微波炉等领域。
在通信领域中,它主要用于微波通信系统中的信号传输和耦合。
在雷达领域中,它主要用于雷达信号的传输和接收。
在微波炉领域中,它主要用于微波炉内部的微波信号传输和辐射。
开缝矩形波导是一种常用的微波器件,具有结构简单、制作成本低廉、易于加工和制造等优点,广泛应用于通信、雷达、微波炉等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形波导模式和场结构分析第一章 绪论1.1选题背景及意义矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。
若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。
矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。
矩波导有两类传输模式,即TM 模和TE 模。
其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。
在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。
导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。
本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。
1.2国内外研究概况及发展趋势由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。
时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。
在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。
另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。
英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。
他预言的矩波导传输, 直到1936 年才实现。
汤姆逊成为历史上第一位预言波导的科学家。
这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。
英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了截止波长的概念。
瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式, 并讨论了矩波导中的主模。
到1931 年, 人们看出了波导技术会有实用价值。
1933 年, 已经有波长为15 cm 的信号源了。
美国贝尔实验室在20 世纪30 年代已经是一个庞大的研究机构, 它吸收了一大批科学家从事超高频技术的研究。
1936 年, 贝尔的科学家做实验, 实验波导线是长度为260 m 的青铜管, 直径12.5cm, 信号源输出波长为9 cm 。
实验表明, 在截止频率以上, 信号传输衰减很小。
后来, 人们把1936 年当作微波技术开始的年份。
为了对波导做出深刻的阐述, 贝尔实验室的专家继续作数学分析, 推出了完整的本征值方程, 并证明汤姆逊早年的方程是本征值方程的一个特例。
传输线技术发展到今天, 只用简短的文字已不能描述其品种的繁杂、发展的迅速和理论的艰深了。
例如, 就同轴电缆来说, 新技术之一是稳相同轴电缆, 其相位常数随环境温度和机械影响很小, 适用于对相位敏感的电子系统( 如卫星跟踪站和天文台) ; 就波导来说, 矩波导的主模11TE 模的极化平面不稳定, 使它甚至不能用于长度较大的天线馈线, 因此出现了椭矩波导。
目前椭矩波导已经广泛用于微波中继站和地球卫星站; 就传输线的集成化来说, 出现了微带传输线, 使传输线的小型化和平面化成为可能。
当然, 传输线新品种的开发, 又激发了理论工作的深入研究。
为了适应新的需求,需要是各种传输线模式之间进行变化,各种模式变化方面的研究应运而生,如同轴TEM 到矩波导11TE 模式变换。
经变换这种模式变换器可以承受高功率,中心频率上的转换效率大,反射损耗低等优点,是最近的热点研究。
1.3 本课题研究目标及主要内容1、研究目标该课题是在HFSS 的平台上实现矩形波导的设计与仿真,通过在HFSS 平台上对矩形波导的半径、主模工作频率等的设置来设计出要求所需的矩形波导。
其中要求矩形波导的半径为19.05mm ;主模的工作频率为5GHz ;完成对矩形波导的设计后要求画出矩形波导端口前10个模式的电场分布。
2、主要内容:本文针对矩形波导在HFSS 平台上的设计和仿真,需进行矩形波导的相关理论的理解,要求了解其工作原理。
要分析好矩形波导,首先求解电磁场纵向分量的波动方程, 求出纵向分量的通解, 并根据边界条件求出它的特解; 然后利用横向场与纵向场的关系式, 求出横向场的表达式; 最后讨论截止特性、传输特性、场结构和主要波型。
矩波导中11TE 、01TE 和01TM 是三种常用的模式, 根据它们不同的特点有着不同的应用。
下面就这三种模式的场分布特点和应用情况作介绍。
1.11TE 模11TE 模是矩波导的主模, 其截止波长为c = 3 .41 R 。
图3 .1 是矩波导11TE 模的场结构图。
由图可见, 矩波导的11TE模与矩形波导的10TE 模很相似, 因此它们之间的波型转换是很方便的。
矩形波导10TE 模与矩波导11TE模的波型转换器如图3 .2 所示:图1 .1 矩波导11TE 模的场结构图))2.01TM模01TM模是矩波导中的最低型横磁模,01TM模有如下特点:(1 ) 磁场只有Hϕ分量, 磁力线是横截面上的同心矩。
(2 ) 电力线是平面曲线, 与ϕ无关, 电力线在矩波导中心最强。
(3 ) 01TM模不存在极化简并模式。
(4 ) 01TM模在波导管壁上电流只有纵向分量。
利用这一特点,01TM模可以用于天线馈线系统的旋转连接工作模式。
3.01TE模01TE模是矩波导中的高次模,01TE模有如下特点:(1 ) 电场只有Eϕ分量, 电力线是横截面上的同心矩。
(2 ) 磁力线是平面曲线, 与ϕ无关。
(3 ) 01TE模不存在极化简并模式。
(4 ) 01TE模的一个突出特点是在波导管壁上电流没有纵向分量, 管壁电流只沿矩周方向流动, 并且当传输功率一定时, 随着频率的升高, 波导管壁的热损耗下降。
01TE模的这个特点, 使它既适合作高Q谐振腔, 又适合用于毫米波远距离波导通信。
(5 ) 01TE模不是矩波导中的主模, 因此使用时需要抑制高次模。
1.4 本章小结本章首先介绍了课题选题的意义,波导导波技术的国内外现阶段发展现状及趋势,以及本课题主要研究内容基于HFSS的仿真平台设计和仿真矩形波导,并画出仿真结果中的电场图。
第二章矩形波导的基本原理2.1导波的一般分析2.1.1 规则金属管内的电磁波任意截面形状的金属波导如图2.1 所示, 电磁波沿纵向(z 轴方向)传输, 为求解简单, 作如下假设:(1)波导内壁的电导率为无穷大。
(2)波导内的介质是均匀无耗、线性、各向同性的。
(3)波导远离源。
(4)波导无限长。
图2.1 任意截面形状的金属波导由电磁场理论,对无源自由空间电场E 和磁场H 满足以下矢量赫姆霍茨方程:220E k E ∇+= (2-1-1) 220H k H ∇+= (2-1-2)式中,22k ωμε=。
现将电场和磁场分解为横向分量和纵向分量,即 t z z EE a E =+ (2-1-3)t z z H H a H =+ (2-1-4)式中,z a为z 向单位矢量,t 表示横坐标,由于分析的是矩形波导,以矩柱坐标为例讨论从以上分析可以得出以下结论:在规则波导中场得纵向分量满足标量其次波动方程,结合相应边界条件即可求得纵向分量z E 和z H,而场得横向分量即可由纵向分量求得。
既满足上述方程又满足边界条件的解很多,每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性。
ck 是为传输系统的特征值,它是一个与波导系统横截面形状、尺寸及传输模式有关的参量。
由于当相移常数β=0时,意味着波导系统不再传播,亦称为及位置,此时ck =k ,故称ck 为截止波数。
2.1.2 波导传输的一般特性1.波导中传输模的种类所谓模式(或称模、波型)是指能够单独在波导中存在的电磁场结构, 按其有无场的纵向分量z E 和z H, 可以分为三类:(1)z E =0且z H=0的传输模称为横电磁模, 也称横电磁波, 记作TEM 波。
这种模只能存在于双导体或多导体传输系统中。
对于TEM 波, 20c k =,k β==。
相速度1/p v =与频率无关, 是无色散波型。
(2) z E =0而z H ≠0 的传输模称为横电模或磁模, 记为TE 模或H 模; z E≠0 而zH =0的传输模称为横磁模或电模, 记为TM 模或E 模。
空心金属管波导只能传输这类模。
(3)z E ≠0且z H≠0的传输模称为混合模, 分为EH 模和HE 模。
这类模存在于开放式波导中, 波在波导表面附近的空间传输, 故又称表面波。
2.2 矩形波导的分析2.2.1 矩形波导电磁场解截面为矩形的金属波导称为矩波导, 如图2.2所示。
矩波导具有损耗较小和双极化的特性, 常用于双极化天线馈线中, 也用作远距离波导通信, 并广泛用作微波谐振腔。
00(iE图2.2 矩形波导矩形波导在矩柱坐标中进行讨论,其中可以独立存在TM 模和TE 模。
的周期,即()(2)Q Q ϕϕπ=+则()(2)Q m Q m m ϕϕπ=+所以m 应为整数,取m=0,1,2,…。
方程(2-2-5)称为贝塞尔(Bessel )方程,其解为12()()()m c m c R A J k A N k ρρρ=+ (2-2-8)式中mJ 称为m 阶第一类贝塞尔函数,mN 称为m 阶第二类贝塞尔函数。
图2.3(a )、(b)分别表示m J 和m N的函数曲线。
图2.3(a) m J 函数曲线图2.3(b) m N 函数曲线图2.4 mJ '的函数曲线将zH 代入(2-1-7)中,则可以得到矩柱形波导中TE 波得各场分量的表达式为2222200000sin ()()cos cos ()()sin cos ()()sin sin ()()cos cos ()()sin mnmn mn mn mn mn mn mn mnp j ma j z m ap p j aj z m p a p j aj z m a p p j ma j z m a p p z m a m E H J e m m E H J e m m H H J e m m H H J e m m H H J em ωμβρρωμβϕββρββϕρϕρϕϕρϕϕρϕϕρϕϕρϕ'-''-''--''-''=-'='==-=()2217j z β-⎫⎪⎪⎪⎪⎪⎪⎪--⎬⎪⎪⎪⎪⎪⎪⎪⎭2.2.2 矩形波导中的波型及截止波长(1)由场分量可以看出, 矩波导中有无数多个TE 模和TM 模, 以mn TE 或mnTM 表示。