动力学中的哈密顿原理

合集下载

哈密顿力学

哈密顿力学

哈密顿力学《哈密顿力学》是现代力学的基础,回顾整个物理学发展史,其地位可谓不可替代。

它的发现者哈密顿用其独特的思维方法,对动能定律、动量定律等物理定律进行整体性概括,从而构建了物理学的新学科力学,为后来研究研究阿基米德力学等提供了坚实的基础。

哈密顿力学,又称“哈密顿原理”,指的是哈密顿研究运动学规律的结果,是现代物理学中对运动学定律进行系统综合的理论,属于力学的范畴。

它是由英国物理学家哈密顿在18世纪末发现的,是古典力学的基础理论。

它将动能定律和动量定律统一起来,将运动学的定律完整地表达出来,从而构建了力学的完整的理论体系。

哈密顿力学的基本原理是:某物体总把其完全内在的能量(总能量)保持恒定,即总能量守恒原理。

它能够比较准确地描述系统中每一粒粒子的运动轨迹,从而使物理定律具有了更高的普遍性、深刻性和准确性,可以精确地描述出在各种环境、各种物理条件下,物体形成的一系列运动模式。

在哈密顿力学的体系中,系统的总动量和总动能均保持不变,满足动量守恒定律和能量守恒定律。

哈密顿力学对物体运动的描述进一步概括,构成了动量定律、能量定律等力学定律。

这一理论,无论是从力学定律上还是从动量定律上,均有着极其重要的影响,这与哈密顿在力学史上的地位是一致的。

哈密顿力学的研究,为现代科学的发展做出了重要的贡献,它的发现为现代物理学的发展奠定了坚实的基础,为物理学家研究经典力学和量子力学奠定了基础。

它也为新物理学的发展提供了指导性的理论,这种理论指导可以帮助物理学家更好地理解复杂的物理现象,深入探究它们背后的奥秘,从而为新兴物理学的发展提供新的借鉴和灵感。

哈密顿力学是力学研究的基础,其发现使物理学从蒙古病变解脱出来,使力学取得了显著的发展,开启了物体运动规律和物性研究的新纪元。

哈密顿力学的研究在现代物理学发展史上具有重要的地位,它具有极大的价值,为促进现代物理学的发展做出了不可磨灭的贡献。

哈密顿原理

哈密顿原理

关于哈密顿原理
哈密顿原理
Hamilton principle
适用于受理想约束的完整保守系统的重要积分变分原理。

W.R.哈密顿于1834年发表。

其数学表达式为:
式中L=T-V为拉格朗日函数,T 为系统的动能,V为它的势函数。

哈密顿原理可叙述为:拉格朗日函数从时刻t1到t2的时间积分的变分等于零。

它指出,受理想约束的保守力学系统从时刻t1 的某一位形转移到时刻t2的另一位形的一切可能的运动中,实际发生的运动使系统的拉格朗日函数在该时间区间上的定积分取驻值,大多取极小值。

由哈密顿原理可以导出拉格朗日方程。

哈密顿原理不但数学形式紧凑,且适用范围广泛。

如替换L的内容,就可扩充用于电动力学和相对论力学。

此外,也可通过变分的近似算法,用哈密顿原理直接求解力学问题。

经典力学的哈密顿理论课件

经典力学的哈密顿理论课件
牛顿理论是等价的。哈密顿理论的优点在于便于将力学推广到物理学其他领域。
7.1 哈密顿函数和正则方程
(1)哈密顿函数
拉格朗日函数是 q , q 和t的函数:
L L(q , q,, t它) 的全微分为
dL
s
1
L q
dq
s 1
L q
dq
L dt t
将广义动量和拉格朗日方程:
第2页,共30页。
p
L q
设曲线AB方程为y=y(x),质点沿曲 线运动速度为
2gy ds
(dx)2 (dy)2
1 y'2 dx
dt
dt
dt
质点自A沿曲线y(x)自由滑至B点所需的时间
J
xBdt
xB
1 y'2 dx
xA
xA 2gy
(7.6)
第8页,共30页。
显然J的值与函数y(x)有关,最速落径问题就是求J的极值问题,即y(x)取什么 函数时,函数J[y(x)]取极小值。J[y(x)]称为函数y(x)的泛函数。J[y(x)]取极值
(3)哈密顿原理
一个具有s自由度的体系,它的运动由s个广义坐标 q (t ) 来描述。 在体系的s维位形空间中,这s个广义坐标的值确定体系的一个位形点, 随着时间的变动,位形点在位形)空,间描绘出体系的运动轨道。设在时刻
t1 和 t 2 体系位于位形空间的 P1 点和 P2 点,相应的广义坐标为
q (t1 ) 和 q (t 2 )(或缩写为 q(t1 ) 和 q(t2 ) 由 P1 点通向和 P2 点有多种可能的轨道(路径),但体系运动的真实 轨道只能是其中的一条。如何从众多的可能轨道中挑选出体系运动的 真实轨道?即在 t1 ~ t2 时间内,为何确定体系的s个广义坐标 q(t )?

7第5章哈密顿原理

7第5章哈密顿原理
拉格朗日函数为
根据哈密顿原理,
整理后,
又,
代入前式中,得到
在瞬时t0,t1,有r== 0,于是上式中的后四项为零,由于t0,t1是任意的,所以被积函数应为零,且和是彼此独立的,于是我们得到
哈密顿原理可用来推导各种形式的弹性结构(杆及杆系、板、壳)的运动微分方程及求动力响应的近似解。
例5-6试建立二端固定而绷紧的均质弦的微幅振动动力学方程。
(1)
固定时间t,式(1)表示以a为变量(0al)的曲线参数方程,如图18-5中的曲线c,根据不可伸长的约束条件,得到
由此推出
(1)
用 分别表示横向位移及其对a和对t的偏导数,并且限于讨论偏离铅垂位置的微振动。若将横向运动量 看作一阶小量,则由公式(1)看出, 是二阶小量,在略去四阶小量 后,式(1)简化为
(2)
系统动能精确到二阶小量为
(3)
式中,是悬链线密度。若以O为零势能位置重力势能为
(4)
式中,xC是链子的质心坐标;xN是集中质量的坐标。根据质心公式,有

若以悬链静平衡为零势能状态,则系统的重力势能为
(5)

其中,是集中质量与链的质量比,则系统的拉格朗日函数由式(3)和(5)得
哈密顿作用量为
(6)
t
0.00
0.25
0.50
0.75
1.00
0.00
0.29313
0.56900
0.81038
1.00
0.00
0.29401
0.56975
0.81006
1.00
0.00
-0.299
-0.132
+0.0395
0.00

5-1如题5-1图所示,半径为r的均质圆球自半径为R的固定球顶端无初速、无滑动地滚下,试求动球的正则方程及球心下降的加速度。

哈密顿原理

哈密顿原理

§7-4 哈密顿原理人们为了追求自然规律的统一、 和谐, 按照科学的审美观点, 总是力图用尽可能少的原理(即公理)去概括尽可能多的规律.牛顿提出的三个定律, 是力学的基本原理. 由这些基本原理出发, 经过严格的逻辑推理和数学演绎, 可以获得经典力学的整个理论框架.哈密顿原理是分析力学的基本原理, 它潜藏着经典力学的全部内容并把这门学科的所有命题统一起来. 也就是说, 由它出发, 亦可得到经典力学的整个框架.哈密顿原理是力学中的积分变分原理. 变分原理提供了一个准则, 使我们能从约束许可条件下的一切可能运动中, 将力学系统的真实运动挑选出来. 变分原理的这一思想, 不仅在力学中, 而且在物理学科的其他领域中, 都具有重要意义.一、变分法简介1. 函数的变分.自变量为x 的函数表示为)(x y y =.函数的微分x y y d d ′=是由自变量x 的变化引起的函数的变化.函数的变分也是函数的微变量, 但它不是因为自变量x 的变化, 而是由于函数形式的变化引起的.这种由于函数形式变化造成的函数的变更称为函数的变分, 记作y δ.与函数y 邻近但形式与y 不同的函数有许多, 这些函数可以表示如下:)()0,(),(*x x y x y εηε+= 其中ε是任意小的参数, ()x η是任意给定的可微函数. 因0=ε时()()x y x y =0,, 所以函数形式的变化决定于上式的第二项. 因此, 函数的变分写成()()()x x y x y y εηε=−=0,,δ*在自由度为1的力学系统中讨论变分的概念. 设广义坐标为q , )(t q q =. 建立以t q ,为轴的二维时空坐标系(又称事件空间), 曲线I 是)(t q q =的函数曲线, 代表了系统的真实运动.q t d d →函数的微分.在曲线I 附近, 存在着许多相邻曲线, 这些曲线都满足力学系统的约束条件, 称为可能运动曲线,它们的方程表示为()()()t t q t q εηε+=0,,*在t 不变的情况下, 函数形式的改变也能引起函数的变化, 这种变化纯粹是由函数形式变化引起的, 它就是函数的变分q δ,()()()t t q t q q εηεδ=−=0,,*与q d 不同, q δ与时间变化无关, 称为等时变分. r δ和αq δ都是等时变分.变分的运算法则在形式上与微分运算法则相同. 下面列出几条变分法则.设1y 和2y 是自变量x 的两个函数, 则()2121δδδy y y y +=+()122121δδδy y y y y y +=22211221δδδy y y y y y y −= 现给出第3式的证明:()22222211122122211121*2121δηεηεηεηεηε+−=−++=− =y y y y y y y y y y y y y y22211221δδδy y y y y y y −= 等时变分还有两个重要性质:(1)变分与微分的运算可以交换, 即δ和d 的运算可交换;(2)变分和微商在运算上可以交换, 即δ和t d /d 的运算可交换.首先证明性质(1):设力学系统的1=s ,q . 曲线 I 表示系统的真实运动, 曲线 II 表示与曲线I 邻近的系统的可能运动.Q Q P ′→→, Q ′点的纵坐标为()q q q q d δd +++. Q P P ′→′→, Q ′点的纵坐标成为()q q q q δd δ+++. 于是 ()()q q q q q q q q δd δd δd +++=+++()()q q δd d δ=证明完毕.下面证明性质(2): 因为()()()()2d d δd d δd d d δt t q q t t q −=由于等时变分, ()()0δd d δ==t t . 所以上式可写成()()q t t q t q δd d d d δd d δ==证明完毕.在变分法中, 除等时变分外, 还有全变分. 全变分是由于函数自变量和函数形式的共同变化引起的, 用q ∆表示.()()0,,*x y x x y y −∆+=∆εx xy y y ∆+=∆d d δ 2. 泛函的变分与泛函取极值的条件---欧拉方程.若变量J 由一组函数()x y y i i =, n i ,,2,1 =的选取而确定, 则变量J 称为函数()t y y i i =的泛函, 记作()()()],,,[21x y x y x y J n .泛函J 由n 个函数的形式确定, 是函数形式的函数.泛函与函数的概念不同, 函数中的自变量是数; 而对于泛函, 处于自变量地位的是可以变化的函数的形式.举例说明:Oxy 平面中有B A ,两个固定点, 连接两固定点间的曲线的长度L 由下式确定, ()x x y L AB x x d d /d 12∫+= 显然, L 依赖于函数()x y y =的选取, 若函数()x y 的形式发生变化, 则曲线的形状随之变化, 曲线的长度也跟着改变. 长度L 就是函数()x y的泛函.研究形式最简单的泛函及其变分, 该泛函只依赖一个函数()()[]x x x y x y F J x x d ,,10∫′= 或 ()()()()()[]x x x x y x x y F J x x d ,0,,0,10∫′+′+=ηεεηε 其中()()x x y x y d d =′被积函数()()[]x x y x y F ,,′的形式是已知的, 积分的上下限是固定的. 当函数()x y 在形式上发生变化时, 泛函就会发生变化, 这种由于函数形式的变化引起泛函的变化(线性部分)称为泛函的变分,记作J δ.现将被积函数()()()()[]x x x y x x y F F ,0,,0,ηεεη′+′+=在0=ε处展开(只保留线性部分)()()()()[]x x x y x x y F ,0,,0,ηεεη′+′+()()[]()()x y F x y F x x y x y F ηεεηεε′ ′∂∂+ ∂∂+′===00,, 可见函数的变分为()()()()[]()()[]x x y x y F x x x y x x y F F ,,,0,,0,δ′−′+′+=ηεεη()()x y F x y F ηεεηεε′ ′∂∂+ ∂∂===00 y y F y y F ′ ′∂∂+ ∂∂===δδ00εεF 的变分是在0δ=x 的情况下进行的. 在力学中, x 为时间t , 这种变分是等时变分.现将J δ写成()()()()[]()()[]∫∫′−′+′+=1010d ,,d ,0,,0,δx x x x x x x y x y F x x x x y x x y F J ηεεη ()()()()[]()()[]{}∫′−′+′+=10d ,,,0,,0,x x x x x y x y F x x x y x x y F ηεεη∫=10d δx x x F 上式表明当积分变量与变分无关时, 变分算符和积分算符可以交换.在数学中, 变分法的基本问题是通过求泛函的极值(极大值, 或极小值, 或稳定值)去寻找函数)(x y . 泛函中的函数)(x y 的形式需不断改变, 直到J 达到极值. 当J 为极值时, )(x y 就是我们所要寻找的函数.泛函取极值的必要条件是满足欧拉方程. 推出欧拉方程:与函数极值条件类似, 处于极值的泛函, 其变分一定为零, 即()()[]x x x y x y F J x x d ,,δδ10∫′= ()()[]x x x y x y F x x d ,,δ10∫′= 0d δδ10= ′′∂∂+∂∂=∫x y y F y y F x x 考虑到()y x y δd d δ=′, 并对上式中的第二项采用分部积分法()x y y F x y y F x x y x y F x y y F x x x x x x d δd d δd d d δd d d δ101010∫∫∫ ′∂∂− ′∂∂=′∂∂=′′∂∂ 积分上下限是固定的, 即要求各函数曲线有相同的端点, 0δδ10==x x y y , 所以上式第一项 0δd δd d 1010=′∂∂= ′∂∂∫x x x x y y F x y y F x 故0d δ)d d (10=′∂∂−∂∂∫x y y F x y F x xεη=y δ, 由于η是任意函数, 所以y δ也是任意的. 可见, 要使上式成立, 必须0d d =′∂∂−∂∂y F x y F 这就是欧拉方程.可推广到多个函数为变量的泛函中去, 该泛函取极值的欧拉方程为0d d =′∂∂−∂∂ββy F x y F l ,,2,1 =β l 代表函数的个数.3. 变分问题.凡是与求泛函极值有关的问题都称做变分问题. 下面列举3个曾在变分法的发展中起过重要影响的变分问题.(1) 最速落径问题. 通过求泛函极值, 得知竖直平面内不在同一铅垂线上的两个固定点之间的多条曲线中, 能使质点以最短时间从高位置点到低位置点自由滑下的曲线是旋轮线(又称摆线).(2) 短程线问题. 已知曲面方程, 用求泛函极值的方法, 可得出曲面上两固定点之间长度最短的线.(3) 等周问题. 将泛函求极值, 可得知一平面内, 长度一定的封闭曲线, 所围面积最大的曲线是圆.例题6 最速落径问题.(有兴趣者自学)二、哈密顿原理1. 位形空间、 真实运动曲线和可能运动曲线.在分析力学中, 由s 个广义坐标s q q q ,,,21 组成的s 维空间称为位形空间.系统某一时刻的位形(即由广义坐标确定的系统的位置)与该空间中的一点相对应. 当位形随时间变化时(时间t 为参数), 位形点就会发生变化而形成一条曲线.用位形空间研究完整系的运动, 不用顾及约束对系统运动的影响. 因为空间由s 个广义坐标轴组成, 每一个广义坐标都可以自由变化. 位形空间中的任何一条曲线, 都表示系统在完整约束下的一种可能的运动过程.设s t q q ,,2,1),( ==ααα代表系统的真实运动, 则由它们决定的曲线称为真实运动曲线.由于函数)(t q q αα=形式发生变化而在真实曲线邻近出现的曲线称为可能运动曲线.2. 完整有势系统的哈密顿原理.哈密顿原理是分析力学中的积分变分原理, 它巧妙地运用泛函求极值的方法, 将真实运动从约束允许的一切可能运动中挑选出来.哈密顿原理是一条力学公理.首先, 定义一个称为作用量的泛函:()∫=10d ,,t t t t q q L S αα 式中的L 称为拉格朗日函数, 定义为V T L −=T 是力学系统相对惯性系的动能),,(t qq T T αα =; 势能),(t q V V α=. 拉格朗日函数是ααqq ,和t 的函数, ),,(t qq L L αα =. 假定位形空间中有两个固定点A 和B , 与A 点相对应的时刻是0t , 与B 点相对应的时刻是1t .两个固定点之间, 存在着由s t q q ,,2,1),( ==ααα决定的真实运动曲线.两固定点B A ,间还存在许多与真实运动曲线邻近的可能运动曲线, 它们是由q q q δ*+=αα s ,,2,1 =α0δδ10====t t t t q q αα s ,,2,1 =α决定的.作用量是依赖于函数)(t q α的泛函. 在位形空间的两个固定点间有许多可能运动轨道, 其中有一条是真实的. 哈密顿原理就是通过变分法中求泛函(在此指作用量)极值的方法, 将真实运动从这许多的可能运动中挑选出来的.哈密顿原理的内容是: 受完整约束的有势系, 在位形空间中, 相同时间内通过两位形点间的一切可能运动曲线中, 真实运动曲线使作用量取极值. (极值为极小值, 故此原理又称为哈密顿最小作用量原理)在哈密顿原理中, 一切可能运动必须具有以下共同的特点:(1) 都是同一系统在相同的约束条件下的可能运动;(2) 都是在时刻0t 和时刻1t 之间相同时间间隔内完成的运动;(3) 在位形空间中有相同的起点和终点, 即 0δδ10====t t t t q q ααs ,,2,1 =α哈密顿原理的数学表述:在位形空间内, 当s q q t t t t ,,2,1,0δδ10 =====ααα时, 对于受完整约束的有势系, 其真实运动使 ()0,,δδ10==∫t t t q q L S αα 综上所述, 当作用量泛函取极值时, 与该作用量所对应的位形空间曲线就是真实运动的曲线, 描绘该曲线的s 个函数)(t q q αα=就是真实运动的运动学方程.拉格朗日函数V T L −=是力学系统的特征函数.如果确定了系统的拉格朗日函数, 则通过哈密顿原理, 就可导出力学系统的动力学方程.由欧拉方程可以得到分析力学中有势系的普遍方程---拉格朗日方程, 我们将在下一章讨论这个问题.[拉格朗日函数不是惟一确定的. 设f 是一个任意广义坐标和时间的函数, 即),(t q f f α=, 设),(d d t q f tL L α+=′, 则∫∫=′1010d d t t t t t L t L δδ. 证明了在原有拉格朗日函数上加上一项广义坐标和时间的任意函数对时间的全微商, 是不会改变系统的运动方程的. 这种不变性称做规范变换不变性, 它对于现代理论物理的研究有重要意义.]例题 7 质量为m 的质点, 在重力场中以与水平线成α角的初速率v 抛射, 根据哈密顿原理, 求质点的运动微分方程.解 在抛射体运动的平面内, 以铅垂方向为y 轴, 建立直角坐标系Oxyz , 以y x ,作为质点的广义坐标. 拉格朗日函数为()mgy y x m L −+=2221 作用量为()t mgy y x m t L S t t t t d 21d 101022∫∫ −+== 根据哈密顿原理, 真实运动使()[]0d δδδδ10=−+=∫t y mg y y m x x m S t t ()∫∫∫−==10101010d δδd δd d d δt t t t t t t t t x x m x x m t x tx m t x x m ()∫∫∫−==10101010d δδd δd d d δt t t t t t t t t y y m y y m t y ty m t y y m 由于在10,t t 时刻, 0δδ==y x , 因此 ()[]∫=+−−=100d δδδt t t y mg y m x x m S 又因x δ和y δ是相互独立的, 所以要使上式成立, 必须0=xm 0=+mg ym 3. 一般完整系的哈密顿原理.对一般完整系, 主动力常含有非有势力, 上述哈密顿原理不再适用, 但可以将有势系的哈密顿原理的表达式经修改后推广到一般完整系中:即在位形空间中, 一般完整系的真实运动使0d δδ101= +∫∑=t q Q T t t S ααα 式中T 是系统的动能, αQ 是与广义坐标αq 对应的广义力.[ααq r F Q i ni i ∂∂⋅=∑= 1] 在下一章里, 我们将会根据一般完整系的哈密顿原理, 推导出一般完整系普遍适用的动力学方程, 即一般形式的拉格朗日方程.在物理学的研究中, 对于我们重要的是有势系的哈密顿原理.哈密顿原理具有统一的、简洁完美的形式, 即具有坐标变换的不变性, 从而使哈密顿原理具有很大的普适性.哈密顿原理——有限自由度——无限自由度.哈密顿原理——物理学其他领域.哈密顿原理还可用于创建新的理论, 根据实验结果和假设构造出拉格朗日函数, 便可用哈密顿原理导出运动方程, 其正确性由实践检验.哈密顿原理是作为公理提出的, 并未推证. 它们的正确性由原理演绎出的推论在实践中的检验而得到证实. ——完全不依赖牛顿定律, 它的适用条件也完全不受牛顿定律适用条件的限制, 其普适性比牛顿的运动定律大得多.。

理论力学(第三版)第5章第7节哈密顿原理

理论力学(第三版)第5章第7节哈密顿原理
泛函j只依赖于单个自变量设想函数关系yx稍有变动从y变为yy这里y称所以一般来说两端点总是不变的变分等于零这就是泛函取极值的必要条件叫做这个变分问题的欧拉方程
第五章 分析力学
拉格朗日
哈密顿
§5.7 哈密顿原理
本节导读
• 泛函 变分的概念 • 欧拉方程 泛函导数 • 哈密顿原理
1 变分法初步
(1) 泛函 质点沿着光滑轨道y=y(x)从A自由下滑 到B所需时间
t1
s 1
q
H p
δp
p
H q
δq
dt
0
因端点是固定的, 所以
δq tt1 δq tt2 0
( 1,2,, s)
t2
t1
s 1
q
H p
δp
p
H q
δq
dt
0
因p, q在积分范 围内是任意的, 而且 相互独立, 故得
q
H p
p
H
q
变分运算法则
小结
注意:
δ
dq dt
t2 s
δ
p q H dt 0
t1 1
因为H是p, q, t 的函数, 并且t = 0 , 所以
t2
t1
s 1
p δq
δp q
H p
δp
H q
δq
dt
0

s
p δq
1
s 1
p
d dt
δq
d dt
s 1
p δq
s 1
p δq
s
1
p δq
t2 t1
t2
以s个广义坐标为直角坐标的空间叫作位形空间. 力学系统在任一时刻的位形可用位形空间中的一点 来表明.随着时间的运转,力学系统的位形发生改变, 位形空间中的代表点就描出相应曲线. 在一切可能 的曲线中,使作用量取极值的那一条曲线就代表真实 的运动.

哈密顿原理

哈密顿原理

哈密顿原理文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]牛顿质点动力学1 牛顿第二定律 dtd pf从三个方面来应用:全局性研究:对称性、守恒律、稳定性; 局部研究:平均值、动量定理、动能定理; 瞬时研究:极限求导、奇异性、突变性;2 重点研究非惯性、矢量性、连续性、相对性的问题;3 从动力学观点上升到能量的观点。

哈密顿原理、保守力及其势4 五大类典型模型 概括:一个原理:哈密顿原理(稳定性与对称性原理); 二种建模方法:动力学方法、能量法;三类研究方法:对称性方法(全局)、平均值方法(局部) 求极限、求导、突变及奇异性研究方法(瞬时);四大重点问题:矢量性(矢量空间法)、连续性(微元动力学法)、相对性(相对速度公式法)、非惯性(等效性法);五项典型模型:准粒子模型、碰撞模型、势模型、相空间模型、简谐振动与波模型。

(科学计算技术与研究式的学习模式)哈密顿原理、对称性和稳定性1.拉格朗日函数和哈密顿量 拉格朗日函数L对于一个物理系统,可用一个称为拉格朗日函数的量),,(t qq L i i 来描述,其中i q 是广义坐标,=i qdt dq i /是广义速度;广义坐标与通常所说的坐标区别在于,广义坐标是针对系统的自由度确定的,譬如一个质点限制在半径R 的球面上运动,其坐标显然有x 、y 、z 三个,但广义坐标只有φθ,两个,其中ϕθcos sin R x =,θϕθcos ,sin sin R z b R y ==;一般由于运动受到约束,坐标与广义坐标的数量是不相等的,仅在无约束条件下,坐标与广义坐标的数目才是一样的,与坐标一样广义坐标的选取也不是唯一的。

在保守力作用下,系统的拉格朗日量L 定义为动能与势能之差;U T L -=哈密顿量H物理系统还可以用一个称之为哈密顿量的函数描述,在保守力作用下,哈密顿量定义为系统的动能与势能之和),,(t p q H i i =U T +(i=1,2…s )其中)(/i i qL p ∂∂=是广义动量,哈密顿量是广义坐标和广义动量的函数,在直角坐标下对于质点运动的广义动量可写成v p m =。

hamilton原理

hamilton原理

hamilton原理《Hamilton原理》是一个既简单又重要的定理,它对某些类型的物理系统有着重要的意义。

它由英国物理学家William Rowan Hamilton在1834年提出,是牛顿力学系统中一个重要的定理。

它通过一种叫做“动量和能量”的统一张量来描述动力学系统中的总体结构。

Hamilton原理是一个精确的理论,它提供了一种解决问题的方法,而不是一种抽象的描述。

Hamilton原理是一种描述系统动力学的假设,指出物体在坐标系中的行为是满足某种动量守恒定律的。

一般来说,这种定律表明:在某一时刻,物体的动量(动量矢量)总是保持不变,自由系统中的力与动量总是成正比。

动量定律表明,物体在坐标系中运动时,它们的全部运动只能由力和动量所决定,并且不应该有任何其它力量的发挥作用。

Hamilton原理还提供了一种从物理系统的能量到力的理解的桥梁。

通过它,我们可以用物理系统的能量来解释系统中的力,而不用去考虑力的来源。

它使我们能够简单地从能量对物体行为和动力学系统的性质做出准确的推断。

Hamilton原理在物理学和数学领域都有着广泛的应用,它已经成为一种重要的定理。

它可以用来描述物理系统的绝对性质,以及描述它们的运动规律。

Hamilton原理进一步定义了力学原理中的概念,如动量和能量。

它还被用来解释许多物理现象,如电磁场、轨道动力学、量子力学等。

Hamilton原理的最重要的作用是它可以用来描述物体在一维力学系统中的行为,同时也可以用来模拟复杂的多体系统。

比如,它可以用来描述空气动力学中飞机滑翔时的运动,以及电磁学中电磁场的性质和电磁波传播的特性。

它还可以用来模拟弹性力学系统中的结构性与弹性的运动,以及量子力学中的原子的行为。

Hamilton原理的重要性无可置疑,它是物理学、力学和数学研究中的一个重要的定理。

它被广泛应用于许多物理实验中,并且作为连续力学系统研究的基础理论。

它可以提供准确的预测,从而为人类技术的发展提供可靠的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力学中的哈密顿原理
动力学是研究物体运动规律的学科,它揭示了物体运动背后的力学性质和动力
学原理。

其中,哈密顿原理是一项重要的原理,它被广泛应用于各个领域,从天体力学到量子物理。

本文将介绍哈密顿原理的基本概念和应用,并探讨其在动力学中的重要性。

哈密顿原理是由英国物理学家威廉·哈密顿于19世纪提出的,它是牛顿运动定
律的一个推导出来的原理。

它的核心思想是“作用量极值原理”,即对于一系统所受的所有可能的路径,其实际遵循的是使作用量取极值的路径。

这里的作用量是一个物理量,它可以看作是描述系统运动的一种综合性度量,它与物体的轨道、力学特性等密切相关。

据哈密顿原理,对于系统的运动,其真实路径是能使作用量取极小值的路径。

这意味着,在给定初始状态和边界条件下,系统的运动将在所有可能的路径中选择那些使作用量最小的路径。

这一原理为研究物体运动提供了一种新的观点和描述方式,并且通过它可以推导出牛顿运动定律,从而揭示了物体运动背后的深层次规律。

应用哈密顿原理可以得到所谓的哈密顿方程,它是描述一个系统运动的重要方程。

哈密顿方程由广义坐标和广义动量构成,它们可以通过系统的动能和势能导出。

哈密顿方程提供了一种全新的视角来理解系统的运动,通过对哈密顿方程的求解,可以得到系统的运动轨迹和动力学特性。

哈密顿原理在许多领域都具有重要应用。

首先,在经典力学中,哈密顿原理为
研究物体的运动提供了一种统一的方法和框架。

通过哈密顿方程,可以方便地描述和求解各种力学问题,从而揭示了物体运动的规律。

其次,在天体力学中,哈密顿原理被广泛应用于研究行星运动、天体轨迹等问题。

通过哈密顿原理,我们可以对行星轨道进行精确的计算和预测,揭示出太阳系中行星的运动规律。

此外,哈密顿原理还被应用于场论、量子力学和统计物理等领域,为研究微观粒子和宏观系统的行为提供了一种基本的方法和原则。

总的来说,哈密顿原理是动力学中的一个重要原理,它为研究物体的运动和力学性质提供了一种新的观点和方法。

通过哈密顿原理,我们可以建立系统的动力学方程,并通过求解这些方程来揭示物体运动的规律。

哈密顿原理的广泛应用不仅在经典力学中,还延伸到了天体力学、场论、量子力学等领域,为我们理解自然界的运动和力学行为提供了重要的工具和手段。

因此,深入理解和应用哈密顿原理对于研究物体运动和力学行为具有重要意义。

相关文档
最新文档