正弦波逆变器设计

合集下载

基于EG8010新型纯正弦波逆变器

基于EG8010新型纯正弦波逆变器

摘要该设计主要应用新型纯正弦波逆变器SPWM芯片完成逆变过程。

比较以前的一些方波逆变器、修正波逆变器负载能力更强,谐波干扰更小,可带感性负载,转化效率高等特点。

随着智能电网的发展纯正弦波逆变器是工业生产,家庭生活比不缺少的电器工具。

本设计涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用EG8010-SPWM芯片的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。

该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路。

在工作时的持续输出功率大于1000W,具有工作正常指示灯,输出电压、频率、温度显示,输出过压保护、输入过压保护以及过热保护等功能。

该电源的制造简单易行,实用性强,可作为多种高功率电器通用的电源。

关键词:纯正弦波逆变器;EG8010-SPWM;过压保护;脉宽调制1引言目前逆变器的波形主要分三类,一类是方波逆变器,一类是准正波逆变器,一是纯正弦波逆变器。

纯正弦波逆变器输出的是与日常使用的电网一样,甚至更好的纯正弦波交流电。

方波逆变器输出的波形则是质量较差的方形波交流电,其正向最大值到负向最大值几乎在同时产生,这样对负载和逆变器本身造成剧烈的不稳定影响。

同时,其负载能力差,仅为额定负载的50%左右,不能带电机等感性负载。

如果所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。

针对上述这些缺点,这几年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有很大改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。

总括来说,纯正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。

正弦波逆变器中的稳压设计

正弦波逆变器中的稳压设计

我们知道一般现在的离网正弦波逆变器都是两级的电压变换结构,即DC-DC和DC-AC。

我们先来看看DC-DC。

一般应用的逆变器的输入电压基本都是低压直流供电(比如车载环境,蓄电池供电的移动电源设备等),这种应用环境下逆变器中的一级升压电路(DC-DC)比较常见的都是推挽拓卜,属于正激类电压变换结构,而它的稳压环路在实际产品中我们也见到了很多的设计方法,如:前级开环设计、前级准闭环设计和前级闭环设计等。

我们就从以上几种方法中分析其特点。

前级开环设计:这种方法设计的逆变器常见于小功率的逆变器中,车载上的应用很多,我个人分析原因是,一般车载环境下输入电压较高(很多14.5V-15V的)这样的话如果准闭环带轻载时前级震荡,机器很不稳定。

开环的话能解决很多问题。

其特点为:1,结构简单,前级升压电路不需稳压。

2,省略了稳压环路,可以使产品做得更紧凑。

3,在低端市场中直接与成本挂钩。

4,由于前级开环,使机器在全电压输入的环境下变压器的开关都是处在最大的占空,变换效率也是高的,在空载时,前级的损耗也是明显的。

5,DC-DC级的输出电压不受控制,在高输入电压的环境下,直接威胁母线电容及H桥管安全。

6,这种结构不稳压,需要在变压器上下功夫,需要控制漏感,对变压器的一致性有一定的要求。

前级准闭环设计:这种方法设计的逆变常见于中小功率的逆变器中,其特点为:1,前级电路相对简单,且能在部分输入电压下,DC-DC级能做到稳压。

2,省略了续流电感,提高了效率,降低了结构成本,便于设计。

3,由于此电路的特殊性,输入电压在较高或轻载的情况下,电路处于闭环状态,控制了母线电压在一定的范围内。

4,在轻载(几十瓦)的负载环境下,如果此时输入电压仍然较高,由于线路闭环,没有续流电感的存在,前级出现震荡,造成母线电压不稳,偏磁造成的推挽单边发热现象轻则影响效率,重则导致线路的不稳定造成炸机。

5,也有的机器的设计是两级相对隔离的供电方法(驱动级的供电),在主变压器上做了一组辅助绕组,这种方法也是一种很好的设计,但缺点也是明显存在的,需要注意。

单片机正弦波逆变器

单片机正弦波逆变器

单片机正弦波逆变器1.引言概述部分的内容可以如下编写:1.1 概述单片机正弦波逆变器是一种通过单片机控制实现将直流电源转换为交流正弦波电源的设备。

正弦波逆变器广泛应用于许多领域,如电力电子、太阳能发电系统、电动车辆等,其主要作用是为交流设备提供稳定可靠的电源。

传统的逆变器通常采用模拟电路实现,但其成本较高、设计复杂且效率相对较低。

而单片机正弦波逆变器则利用了单片机的高度集成、可编程性和精确控制的特点,能够更加灵活、高效地实现电力转换功能。

本文将对单片机正弦波逆变器的原理和设计要点进行详细探讨。

首先,我们将介绍单片机正弦波逆变器的原理,包括PWM调制技术、H桥逆变电路等;然后,我们将重点介绍单片机正弦波逆变器的设计要点,包括电源选择、滤波电路设计、保护电路设计等。

通过本文的学习,读者将能够了解单片机正弦波逆变器的工作原理,并学会如何设计和实现一个高效稳定的单片机正弦波逆变器。

最后,我们将对该技术的发展前景进行展望,指出未来单片机正弦波逆变器在能源转换领域的潜力和应用前景。

接下来,我们将详细介绍单片机正弦波逆变器的原理。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍了整篇文章的组织和框架,以便读者更好地理解文章的内容和脉络。

本文分为引言、正文和结论三个部分。

具体的结构如下:1. 引言部分:该部分主要对文章的背景和重要性进行介绍,并提出文章的目的和意义。

同时,还简要概述了单片机正弦波逆变器的原理和设计要点。

2. 正文部分:该部分是文章的主体部分,包括了单片机正弦波逆变器的原理和设计要点两个篇章。

2.1 单片机正弦波逆变器的原理:该部分详细介绍了单片机正弦波逆变器的基本原理和工作原理。

包括了逆变器的基本概念、正弦波逆变器的特点,以及单片机在正弦波逆变器中的作用。

2.2 单片机正弦波逆变器的设计要点:该部分主要阐述了设计单片机正弦波逆变器时需要注意的关键要点。

包括了电路设计、信号处理和控制策略等方面的内容。

用BC5016BC6016 构成的纯正弦波逆变

用BC5016BC6016 构成的纯正弦波逆变

产品应用笔记:用BC5016/BC6016构成的纯正弦波逆变器Rev:5060A0601一.逆变器简述在很多场合,正弦波逆变器的作用是肯定的,如野外作业、车载电源、太阳能和风力发电、停电应急等。

虽然,相当部分的交流负载可改由方波逆变器供给电源,例如电阻性的白炽灯泡。

但是,对于电感性负载(如交流电机),方波逆变器就显得有点力不从心。

究其原因,由于方波的高次谐波成分非常丰富,使它的波形前沿和后沿比较陡峭,正向峰值到负向峰值几乎在同时产生,而电感性负载存在静止惯性而使磁化速度跟不上方波到达峰值的速度,这样,对负载和逆变器本身造成剧烈的不稳定影响。

由于方波逆变器与正弦波逆变器均输出真有效值相等的电压,但它们的峰值电压却相差甚远,对于某些电容性负载(如开关电源、电子节能灯),均是先将正弦交流电压有效值整流滤波后,得到1.414U的峰值电压,再供给后续电路使用,而方波交流电压的有效值在整流滤波后,得到的峰值仍为其有效值。

如220V的正弦交流电压值整流滤波后得到311.08V的峰值电压,而220V的方波交流电压整流滤波后仍为220V。

一支普通的节能灯在220V的方波交流电压下燃点其功率约等于在155.6V 的正弦交流电压下燃点的功率。

同时,方波逆变器的负载能力差,仅为额定负载的40-60%,如所带的负载过大,方波电流中包含的高次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。

针对上述缺点,近年来出现了准正弦波(或称改良方波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。

纯正弦波逆变器的兼容性是最好的,因为正弦波逆变器输出的是同我们日常使用的电网一样的正弦波交流电,多数的负载均按照其特性而设计的。

实现正弦波逆变可通过两种方法:一种是先调制后升压,另一种是先升压后调制。

图1和图2显示了这两种电路拓扑。

纯正弦波逆变器电路图大全(数字式-自举电容-光耦隔离反馈电路图详解)

纯正弦波逆变器电路图大全(数字式-自举电容-光耦隔离反馈电路图详解)

纯正弦波逆变器电路图大全(数字式/自举电容/光耦
隔离反馈电路图详解)
 纯正弦波逆变器电路图(一)
 基于高性能全数字式正弦波逆变电源的设计方案
 逆变电源硬件结构如图2所示。

主要包括直流推挽升压电路、正弦逆变电路、输出滤波电路、驱动电路、采样电路、主控制器和点阵液晶构成。

其中,直流升压部分将输入电压升高至输出正弦交流电的峰值以上的母线直流电压,正弦逆变部分将母线直流电压逆变后经输出滤波电路得到正弦式交流电,采样电路则对母线电压、母线电流、输出电压、输出电流、输入电压进行采样,以实现短路保护、过压欠压保护、过流保护、闭环稳压等功能。

驱动电路的功能是将驱动信号的逻辑电平进行匹配放大,以满足驱动功率管的要求。

控制电路的功能是产生驱动信号,并对采样信号进行处理,以实现复杂的系统功能。

点阵液晶的功能是显示系统工作信息,如果输出电压、电流以及保护信息等。

 图2
 1)主控制器。

如何制作一个2000W的正弦波逆变器

如何制作一个2000W的正弦波逆变器

如何制作一个2000W的正弦波逆变器要制作一个2000W的正弦波逆变器,你需要经过下面的步骤:1.设计规划:首先,你需要设计一个逆变器的电路图。

这个电路图应该包括逆变器的主要部件,例如转换器、滤波器以及控制电路。

你还需要决定所需的输入电压和输出电压,并确保这些参数与你的需求相匹配。

2.所需材料:准备所需的材料和元器件。

这些包括逆变器芯片、电容器、电感、二极管、电阻器和电容等。

3.搭建电路:根据你的电路图,使用电焊工具和电路板将元器件焊接连接。

确保注意正确的焊接顺序和焊点的质量。

4.程序控制:在逆变器中加入一个微控制器或其他控制电路,使其能够监测和调整输入电压和输出电压。

这将增加逆变器的稳定性和可靠性。

5.测试和调整:连接逆变器到适当的电源,并将负载连接到输出端口。

使用示波器或其他测试设备来测试逆变器的输出波形和频率。

如果有任何问题,你需要进一步调整电路或元器件。

6.优化和改进:一旦你的逆变器正常运行,你可以对其进行优化和改进。

这可能包括优化电路参数、增加保护电路以确保逆变器的安全运行,并增加效率等。

在整个制作过程中,请确保注意安全事项。

遵循正确的电气操作程序,确保使用正确的工具和设备。

总结:制作一个2000W的正弦波逆变器需要一些电子知识和技巧。

这个过程需要进行详细的设计和规划,选择和准备所需的材料,并将元器件焊接到电路板上。

然后,你需要进行测试、调整和优化以确保逆变器的稳定和可靠性。

通过遵循正确的步骤和注意事项,你可以成功地制作一个2000W的正弦波逆变器。

纯正弦波逆变器 研究内容

纯正弦波逆变器 研究内容

纯正弦波逆变器研究内容一、逆变器工作原理纯正弦波逆变器是一种将直流电源转换为交流电源的设备。

它通过将直流电转换为高频脉冲信号,然后经过变压器升压或降压,最终输出纯正弦波。

这种逆变器适用于需要高品质电源的设备,如电子设备、通讯设备、医疗器械等。

二、正弦波生成技术纯正弦波逆变器的核心是正弦波生成技术。

这种技术通过数字信号处理技术或模拟电路技术生成正弦波。

数字信号处理技术可以通过编程实现,而模拟电路技术则需要设计专门的电路。

正弦波生成技术的精度和稳定性直接影响到逆变器的性能。

三、逆变器电路设计纯正弦波逆变器的电路设计是关键。

它需要考虑到电路的稳定性、效率、体积、重量等因素。

在电路设计中,需要选择合适的功率器件、滤波器、变压器等,以满足逆变器的性能要求。

四、逆变器控制策略逆变器的控制策略对于其性能和稳定性至关重要。

常用的控制策略包括PID控制、模糊控制、神经网络控制等。

这些控制策略需要根据逆变器的实际情况进行选择和优化,以确保逆变器的稳定性和效率。

五、逆变器性能优化为了提高逆变器的性能,需要进行性能优化。

这包括提高输出电压和电流的稳定性和精度,降低噪声和失真,提高效率和可靠性等。

可以通过优化电路设计、改进控制策略、使用高性能元件等方法实现性能优化。

六、逆变器应用领域纯正弦波逆变器广泛应用于各个领域,如通信、电力、交通、航空航天等。

在通信领域,纯正弦波逆变器可以用于基站、交换机等设备的电源供应;在电力领域,可以用于风力发电、太阳能发电等可再生能源设备的电源转换;在交通领域,可以用于电动汽车、电动自行车等设备的电源供应;在航空航天领域,可以用于飞机、卫星等设备的电源供应。

七、逆变器与其它逆变器的区别纯正弦波逆变器与其它类型的逆变器相比,具有以下区别:输出波形:纯正弦波逆变器的输出波形为纯正弦波,具有更好的失真度和稳定性。

而其它类型的逆变器如方波逆变器或PWM逆变器的输出波形则存在失真或噪音。

频率和相位:纯正弦波逆变器的输出频率和相位可以通过控制策略进行精确调整,以满足不同应用的需求。

【DIY第二期】新做的3000W纯正弦波逆变器-已公布全部资料-步步解析原理

【DIY第二期】新做的3000W纯正弦波逆变器-已公布全部资料-步步解析原理

【DIY第二期】新做的3000W纯正弦波逆变器-已公布全部资料-步步解析原理【DIY第二期】新做的3000W纯正弦波逆变器,已公布全部资料,步步解析原理【DIY第二期】新做的3000W纯正弦波逆变器,已公布全部资料,步步解析原理前些时间做了几台了,朋友都拿去用了,说还不错,今天上图大家看一下标称功率3000W持续功率;2800W峰值功率6000W 2S;300次开机短路,200次短路开机过载保护3200W 3S短路立即保护,电池过压/欠压保护齐全!!!!前级16管MOS,后级四个50N50整机半成品重4KG看到贴子有这么长了,作为逆变器余业玩家的我甚是感到高兴,时到五一了,也有了点时间打打字了,刚好也马上到了本其DIY结束的时间了,为了方便大家学习和交流,我在这里浅要的说下此款逆变器的设计过程和原理图的局部浅析,小弟专业不精,有说不对的地方请各位高手前辈拍砖!进入正题。

一、此款逆变器的基本情况(架构,组成)总括的说,这是一款24V逆变器,这款逆变器由三个部分组成,1、前级驱动板;2、后级驱动板;3、功率主板。

1、前级驱动板上主要是由三个小部分组成,一个辅助电源部分,一个部分是PWM驱动,第三个部分是保护部分;2、后级驱动板主要由三个部分组成,一个是SPWM 信号的产生(单片机完成)部分,一个是硬件RC死区时间设置部分;再一个就是IR2110的驱动部分。

3、功率主板主要由四个部分组成,一个是前级升压及整流滤波,第二个是后级H全桥正弦变换部分,第三个是稳压反馈部分;第四个是LC滤波部分二、电路结构及原理分析1、前级驱动板A、辅助电源电路的功能就是将功24V的电池电压降到13-15V左右然后再经过LM7812稳成12V后供给整机电路的控制部分供电,先上图:在这个电路中,BT 输入电压范围可以达到15-36V,而输出稳定在12V.Q1也可以用P 型的MOS 管,适当的选取不同型号的P管可以将电压做到60V左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦波逆变器逆变主电路介绍主电路及其仿真波形图1主电路的仿真原理图图1.1是输出电压的波形和输出电感电流的波形。

上部分为输出电压波形,下面为电感电流波形。

图1.1输出电压和输出电感电流的波形图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。

图1.3放大的开关管波形图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。

从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。

图1.4工作模态仿真波形图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电感电流波形、S3驱动波形、S1驱动波形。

从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。

根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。

图1.5开关管的驱动电压波形和电感电流波形2 滤波环节参数设计与仿真分析2.1 输出滤波电感和电容的选取对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。

滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。

C f 越大,则THD小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。

逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。

要保证输出的谐波含量较低,滤波电感的感值不能太小。

增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。

不仅如此,滤波电感的大小还影响逆变器的动态特性。

滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。

而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。

综合以上的分析,在LC 滤波器的参数设计时应综合考虑。

本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。

电容的电抗为112C X C fC ωπ==,C X 随频率的升高而减小。

1L Cωω=所对应的频率为谐振频率c f,即1cf =。

设逆变器输出电压的基波频率为0f ,开关频率为s f ,则有0f cf s f 。

由于0f c f ,故001L Cωω,电感对基波信号的阻抗小,电容对基波分流信号很小,即基波器允许基波信号通过。

由于c f s f ,故1s s L Cωω,电感对开关频率分量阻抗很大,电容对开关频率分量分流很大,即滤波器不允许开关频率分量通过,更不允许它的高次谐波分量通过。

则该滤波器可以满足滤波要求。

由于采用了高频开关技术,输出正弦波的谐波分量主要集中在开关电源附近,因此谐振频率可以选得较高。

设1ρ=,而谐振频率c f =,则可得L 、C 的计算公式:2c L f ρπ=,12c C f πρ=(式1-1) 本文的逆变电源功率为输出电压为235V ,开关频率为15KHZ ,额定负载为56Ω。

ρ一般取额定负载L R 的0.4~0.8倍,而f c 一般取开关频率的0.04~0.1倍,本设计取0.08c s f f =,0.6L R ρ=,则由式(1-1)可计算出:33.6 4.4622 3.141200f C L mH f ρπ==≈⨯⨯(式1-2) 11 3.94922 3.14120033.6f C C F f μπρ==≈⨯⨯⨯(式1-3) 2.2输出滤波电感的设计本文f L 为4.46mH 。

滤波电容电流的有效值为:6002 3.14100 3.949102350.583cf f I C U A ω-==⨯⨯⨯⨯⨯≈ (式2-1) 110%负载时,负载的电流有效值为max max 1000110% 4.681235o o O P I A U ⨯==≈(式2-2)容性负载时电感电流最大,因此电感电流的有效值为:5.08Lf I A =≈(式2-3)其中,1cos 0.75L ϕ-=。

考虑到滤波电感电流的脉动量,滤波电感的电流峰值为:max (1 1.1 5.087.90Lf Lf I A=+=⨯⨯≈(式2-4) 电感选用MnZn - 2R KBD 型铁氧体材料铁心6249PM ⨯,其磁路截面积24.9()C S cm =,窗口面积23.26()Q cm =, 3500m B GS =,滤波电感的匝数为:3max444.46107.90205.44350010 4.910f Lf m C L I N B S ---⨯⨯==≈⨯⨯⨯(式2-5) 取N=206匝,气隙:200.40.58558C f N S L cm δπ==。

按滤波电感电流有效值 5.08LfI A =。

选取导线,取23j A mm =,导线的截面积为2623Lf I j mm ==,导线选用0.12cm ⨯的铜皮。

窗口利用系数0.1202060.120 1.26326K N Q u ⨯⨯=⨯⨯==,可以成功绕制。

2.3滤波环节仿真分析为了验证滤波环节的参数设计,根据主电路拓扑结构,对电容和电感值进行了仿真分析。

图2.1(a )的参数为: 4.46f L mH =, 3.949f C F μ=,可以明显看出输出电压的波形优于其他两个输出波形;图 2.1(b )为0.446f L mH =的输出电压波形,从图中可以看出,由于电感的值变小,输出电压的谐波含量变大;图2.1(c )为12f C F μ=,的输出电压波形,由于电容的过大,反而使输出电压的纹波加大。

(a )标准输出电压波形(b)L=0.446mH,输出电压波形(b)C=10µF,输出电压波形图2.1 滤波环节参数仿真分析3: 逆变数字控制系统硬件设计数字信号处理器(Digital Signal Processor, DSP )是针对数字信号处理的需求而设计的一种可编程的单片机,也称DSP 芯片,是现代电子技术、计算机技术和信号处理技术相结合的产物。

DSP 在20世纪70年代有了飞速的发展,到20世纪80年代,数字信号处理已应用到各个工程技术领域,不管在军用还是在民用系统中都发挥了积极的作用。

工作中常见的应用有传真机、调制解调器、磁盘驱动器和电机控制等。

而数码相机、MP3和手机等都是日常生活中DSP 的典型应用。

3.1 HPWM 调制方式下ZVS 的实现逆变电源越来越趋向高频化设计,传统的硬开关所固有的缺陷变得不可容忍:开关元件开通和关断损耗大;容性开通问题;二极管反向恢复问题;感性关断问题;硬开关电路的EMI问题。

因此,有必要寻求较好的解决方案尽量减少或消除硬开关带来的各种问题。

软开关技术是克服以上缺陷的有效办法。

最理想的软开通过程是:电压先下降到零后,电流再缓慢上升到通态值,开通损耗近零。

因功率管开通前电压已下降到零,其结电容上的电压即为零,故解决了容性开通问题,同时也意味着二极管已经截止,其反向恢复过程结束,因此二极管的反向恢复问题亦不复存在。

最理想的软关断过程为:电流先下降到零,电压再缓慢上升到断态值,所以关断损耗近似为零。

由于功率管关断前电流已下降到零,即线路电感中电流亦为零,所以感性关断问题得以解决。

基于此,本文采用了全桥逆变桥HPWM控制方式实现ZVS软开关技术,其设计思路是在尽量不改变硬开关拓扑结构的前提下即尽量不增加或少增加辅助元件的前提下,有效利用现有的电路元件及功率管的寄生参数,为逆变桥主功率管创造ZVS软开关条件,最大限度的实现ZVS。

从而达到减少电路损耗,降低EMI,提高可靠性的目的。

HPWM软开关方式在整个输出电压的一个周期共有12种开关状态,基于正负半周两个桥臂工作的对称性,以输出电压正半周为例,分析其一个开关周期工作模态。

如图2.2为输出电压正半周的一个开关周期的电路的主要波形,此时S4工作在常通状态,S2处于关断状态,S1和S3处于互补调制状态。

由于载波的频率远大于输出电压基波频率,在一个开关周期Ts 近似认为输出电压U保持不变,电感电流的相邻开关周期的瞬时极值不变。

Uge1Uc1Uc3Uge3I 1i L-I 0t 0t 1t 6t 5t 4t 3t 2i ds1i ds3图2.2 ZVS 主要工作波形1、模式A ,从t 0和t 1时刻,对应的电路等效工作模式如图2.3。

图2.3模式A 电路等效工作模式图S1和S4导通,电路为正电压输出模式,滤波电感电流线性增加,直到t 1时刻S1关断为止。

电感电流:()dLfU Ui t tL-=(式3-1)2、模式B,从t1和t2时刻,对应的电路等效工作模式如图2.4。

图2.4模式B电路等效工作模式图在t1时刻,S1关断,电感电流从S1中转移到C1和C3支路,给C1充电,同时给C3放电。

由于C1、C3的存在,S1为零电压关断。

在此很短的时间,可以认为电感电流近似不变,为恒流源,则C1两端电压线性上升,C3两端电压线性下降。

到t2时刻,C3电压下降到零,S3的体二极管D3自然导通,电路模式B 结束。

11()LI i t=(式3-2)11()2CeffIU t tC=(式3-3)13()2C deffIU t U tC=-(式3-4)3、模式C,从t2和t3时刻, 对应的电路等效工作模式如图3.6。

图3.6模式C电路等效工作模式图D3导通后,开通S3,所以S3为零电压开通。

电流由D3向S3转移,此时S 3工作于同步整流状态,电流基本上由S3流过,电路处于零态续流状态,电感电流线性减小,直到t3时刻,减小到零。

此期间要保证S3实现ZVS,则S1关断和S3开通之间需要死区时间1deadt,并且满足以下要求:112eff ddeadC UtI>(式3-5)1()LfUi t I tL=-(式3-6)4、模式D,从t3和t4时刻, 对应的电路等效工作模式如图3.7。

图3.7模式D电路等效工作模式图在此模式加在滤波电感Lf上的电压为-U0,则电感电流开始由零向负向增加,电路处于零态储能状态,S3中的电流也相应由零正向增加,到t4时刻S3关断,结束D模式。

相关文档
最新文档