【精品合集】正弦波逆变电源设计

合集下载

恒压恒频正弦波逆变电源(110V,700W)设计

恒压恒频正弦波逆变电源(110V,700W)设计

课程设计任务书学生姓名:李铭初专业班级:电气1002班指导教师:许湘莲工作单位:武汉理工大学题目: 恒压恒频正弦波逆变电源(110V,1000W)设计初始条件:设计一个恒压恒频正弦波逆变电源,具体参数如下:单相交流输入220V/50Hz,输出单相交流电压110V/50Hz,THD<5%,负载为一般的阻感负载,功率700W。

(根据具体仿真或设计可修改红色参数)要求完成的主要任务:(1)主电路设计;(2)控制方案设计;(3)给出具体滤波参数的设计过程;(4)在MATLAB/Simulink搭建闭环系统仿真模型,进行系统仿真;(5)分析仿真结果,验证设计方案的可行性。

时间安排:2013年6月8日至2013年6月18日,历时一周半,具体进度安排见下表指导教师签名:年月日系主任(或责任教师)签名:年月日摘要随着现代科学技术的迅速发展,逆变电源的应用越来越广泛,各行各业对其性能的要求也越来越高。

单相正弦逆变电源是将直流电逆变成单相交流电的装置,它可将蓄电池逆变成交流电,为用电器提供交流电,也可作为计算机的UPS电源等。

本文首先介绍了逆变电源技术的应用与发展,分类与性能,及其控制技术。

并在此基础上进行了方案论证,选取了合理的方案,以实现将220V交流电源经过整流滤波将交流电整流为直流电,然后采用正弦波脉宽调制法,通过脉冲控制IGBT的导通时间及顺序生成PWM波形,最后经过LC工频滤波电路,输出稳定的110V/50Hz正弦波电压,以达到供负载使用的目的。

本文基于已选定方案为前提进行了各部分电路的设计与分析,完成了主电路及相应的输入输出保护电路的设计,并进行了参数计算,分别简要介绍了各部分的原理,阐述了产生SPWM波的实现办法。

同时利用MATLAB 建立了单相逆变器的仿真模型,对其进行了仿真和实验,从各种情况下的试验结果可以看出,通过该逆变电路而得到的单相正弦波稳定性高且失真度小,设计成功。

关键词:逆变电源,整流,滤波,正弦脉宽调制目录1 主电路 41.1 整流电路 41.2 逆变电路 52 SPWM控制电路设计 52.1 SPWM波的基本原理 52.2 基于DSP实现SPWM 72.2.1 SPWM波生成方法 72.3 PI调节器的设计 83 电路设计 83.1 全桥逆变电路设计 83.2 原件参数计算 93.3 LC滤波电路电路设计 103.3.1 滤波电路及原理 103.3.2 参数计算 113.4 辅助电源设计 123.5 区时间的设置 134 电路仿真与分析 144.1仿真软件的介绍 144.2 CVCF逆变电路的仿真 154.2.1 电路设计 154.2.2输出结果仿真并分析 16结束语 19参考文献 20恒压恒频正弦波逆变电源设计1 主电路单相CVCF逆变电源先将交流电整流为直流电,再通过输入逆变电路逆变成交流电,然后用变压器降压;再进行SPWM调节,使输出为110V正弦波电压。

TL494正弦波逆变电源设计

TL494正弦波逆变电源设计

TL494正弦波逆变电源设计————————————————————————————————作者:————————————————————————————————日期:21. TL494正弦波逆变电源设计1.1 概述:TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源.TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。

次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是:1)逆变就是将直流变为交流.由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM 波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。

2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。

控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET. 4)系统具有完善的保护这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。

~ - 1 - ~1。

2 系统总体方案的确定:通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。

第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。

SG3525正弦波逆变电源设计

SG3525正弦波逆变电源设计

湖南工程学院课程设计课程名称电力电子技术课题名称 SG3525正弦波逆变电源设计专业班级学号姓名指导教师2013年12 月16 日湖南工程学院课程设计任务书课程名称单片机原理及应用课题智能密码锁设计专业班级学生姓名学号指导老师审批任务书下达日期2013 年12 月16 日设计完成日期2013 年12 月27 日目录第1章概述 (1)1.1课题来源 (1)1.2解决方法 (1)1.3设计的优点 (2)第2章系统总体设计 (2)2.1 系统设计总体思路 (2)2.1 系统基本工作原理 (3)2.3 系统设计框图 (4)第3章系统主电路设计 (5)3.1 系统主电路结构设计 (5)3.2 系统保护电路设计 (5)第4章单元电路设计 (6)4.1 正弦信号发生电路设计 (6)4.2 宽度调制PWM电路设计 (7)4.3 电压电流检测电路设计 (11)4.4 光耦合驱动电路设计 (12)第6章总结与体会 (13)附录1总电路图 (14)附录2 参考文献 (15)附录3 课程设计成绩评分表 (16)第1章概述1.1课题来源电力逆变电源有着广泛的用途,它可用于各类交通工具,在太阳能及风能发电领域,逆变器有着不可替代的作用。

电力控制系统的可靠程度是电力系统和设备可靠、高效运行的保证,而电力控制系统必须具备安全可靠的控制电源。

电力系统中为保证变电所的诸如后台机、通讯设备等能在交流电源停电后不间断工作,工程做法一般采用UPS电源作为主要解决方案,但UPS电源存在容量小、价格贵、故障率高等不足,因此综合自动化变电所中可采用电力正弦波逆变电源来代替常规不间断UPS电源。

1.2解决方法逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。

利用逆变电源可以解决UPS电源存在的各种缺点,可以很好的运用在一些不能断电的场合。

本相正弦波SPWM逆变电源的设计以SG3252为核心,采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。

单片机的正弦波输出逆变电源的设计

单片机的正弦波输出逆变电源的设计

单片机的正弦波输出逆变电源的设计引言正弦波输出逆变电源是一种将直流电能转换为交流电能的电子设备。

它通常使用高频开关电路和滤波电路来实现,其中单片机作为控制核心,通过合理的算法实现正弦波输出。

本文将详细介绍单片机的正弦波输出逆变电源的设计。

一、逆变电源的基本原理逆变电源的基本原理是将直流电源转换成交流电源。

其过程主要分为两个步骤:第一步是将直流电源通过高频开关电路进行变换,得到一个方波电压;第二步是通过滤波电路,将方波电压转换为正弦波电压。

单片机的作用主要是控制高频开关电路的开关时间和频率,以及正弦波的频率、幅值和相位。

二、逆变电源的设计要求1.输出电压幅值和频率稳定,符合工作要求;2.高频开关电路的开关频率和占空比可以根据需要进行调整;3.对输出电流和电压进行保护,防止过流和过压等问题;4.控制算法简单实用,易于实现。

三、逆变电源的设计流程1.确定逆变电源的工作要求,包括输出电压、频率和功率等参数;2.根据要求选择合适的高频开关电路和滤波电路,确定开关元件和滤波元件的参数;3.设计单片机的控制电路,包括输入电路、输出电路和控制算法等;4.开发逆变电源的控制程序,编程实现正弦波的生成和输出;5.对逆变电源进行电路调试和性能测试,进行优化和改进;6.进行逆变电源的实际应用,检验其性能和可靠性。

四、逆变电源的主要设计问题1.高频开关电路的设计高频开关电路是逆变电源的核心部分,其性能会直接影响电源的输出质量。

在设计高频开关电路时,需要注意选择合适的开关元件和驱动电路,保证开关频率和占空比的稳定性。

同时,还需要考虑功率损耗、电磁干扰等问题。

2.单片机控制算法的设计单片机的控制算法决定了正弦波的生成和输出质量。

常用的控制算法有PWM控制、SPWM控制和SVPWM控制等。

在设计控制算法时,需要根据输出要求选择合适的算法,并进行模拟仿真和实际测试,以得到最佳的输出效果。

3.滤波电路的设计滤波电路是将高频开关电路输出的方波电压转换为正弦波电压的关键部分。

单相正弦波逆变电源-设计

单相正弦波逆变电源-设计

单相正弦波逆变电源-设计单相正弦波逆变电源摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。

该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。

该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz 正弦波。

关键词:单相正弦波逆变DC-DC DC-AC SPWMAbstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use ofpush-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power. In protection, with output overload, short circuit protection, over current protection, the protection of multiple no-load protection circuit,which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W, the efficiency reached 93%, 50Hz sine wave output standards.Key words: Single-phase sine wave inverter DC-DC DC-AC SPWM目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)4.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)1.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。

(整理)SG3525正弦波逆变电源设计.

(整理)SG3525正弦波逆变电源设计.

等级: 湖南工程学院课程设计课程名称电力电子技术课题名称 SG3525正弦波逆变电源设计专业班级学号姓名指导教师2013年12 月16 日湖南工程学院课程设计任务书课程名称单片机原理及应用课题智能密码锁设计专业班级学生姓名学号指导老师审批任务书下达日期2013 年12 月16 日设计完成日期2013 年12 月27 日设计内容与设计要求一.设计内容:1.电路功能:1)逆变就是将直流变为交流。

由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经过驱动电路驱动逆变电路进行逆变,再经过高频变压器与滤波电路输出-50Hz的正弦波。

2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。

控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET。

4)系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型3)主电路保护环节设计4. 控制电路设计与分析1)检测电路设计2)功能单元电路设计3)触发电路设计4)控制电路参数确定二.设计要求:1.要求输出正弦波的幅度可调。

2.用SG3525产生脉冲。

3.设计思路清晰,给出整体设计框图;4.单元电路设计,给出具体设计思路和电路;5.分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

6.绘制总电路图7.写出设计报告;主要设计条件1.设计依据主要参数1)输入输出电压:输入(DC)+15V、10V(AC)2)输出电流:1A3)电压调整率:≤1%4)负载调整率:≤1%5)效率:≥0.82. 可提供实验与仿真条件说明书格式1.课程设计封面;2.任务书;3.说明书目录;4.设计总体思路,基本原理和框图(总电路图);5.单元电路设计(各单元电路图);6.故障分析与电路改进、实验及仿真等。

正弦波输出逆变电源的设计

正弦波输出逆变电源的设计

正弦波输出逆变电源的设计引言低压小功率逆变电源已经被广泛应用于工业和民用领域。

特别是新能源的开发利用,例如太阳能电池的普遍使用,需要一个逆变系统将太阳能电池输出的直流电压变换为220V、50Hz 交流电压,以便于使用。

本文给出了一种用单片机控制的正弦波输出逆变电源的设计,它以12V直流电源作为输入,输出220V、50Hz、0~150W的正弦波交流电,以满足大部分常规小电器的供电需求。

该电源采用推挽升压和全桥逆变两级变换,前后级之间完全隔离。

在控制电路上,前级推挽升压电路采用SG3525芯片控制,采样变压器绕组电压做闭环反馈;逆变部分采用单片机数字化SPWM控制方式,采样直流母线电压做电压前馈控制,同时采样电流做反馈控制;在保护上,具有输入过、欠压保护,输出过载、短路保护,过热保护等多重保护功能电路,增强了该电源的可靠性和安全性。

该电源可以在输人电压从10.5V到15V变化范围内,输出220V±10V的正弦波交流电压,频率50Hz±O.5Hz,直流分量1、主电路逆变电源主电路采用推挽升压和全桥逆变两级变换。

输入电压一端接在变压器原边的中间抽头,另一端接在开关管S1及S2的中点。

控制S1及S2轮流导通,在变压器原边形成高频的交流电压,经过变压器升压、整流和滤波在电容C1上得到约370 V直流电压。

对S3~S6组成的逆变桥采用正弦脉宽调制,逆变输出电压经过电感L、电容C2滤波后,最终在负载上得到220 V、50 Hz的正弦波交流电。

采用高频变压器实现前后级之间的隔离,有利于提高系统的安全性。

输入电压10.5~15 V,输入最大电流15 A,考虑一倍的余量,推挽电路开关管S1及S2耐压不小于30 V,正向电流不小于30 A,选用IRFZ48N。

升压高频变压器的设计应满足在输入电压最低时,副边电压经整流后不小于逆变部分所需要的最低电压350 V,同时输入电压最高时,副边电压不能过高,以免损坏元器件。

正弦波逆变器设计方案

正弦波逆变器设计方案

正弦波逆变器设计方案一、引言正弦波逆变器是一种将直流电转换为交流电的电力转换设备,在各类电力应用领域广泛应用。

在许多应用中,需要高质量的交流电源,如电子设备、家用电器、医疗设备等。

本文将讨论正弦波逆变器的设计方案,以提供稳定、高质量的交流电。

二、基本原理正弦波逆变器的基本原理是将直流电通过逆变器电路转换为交流电。

其主要组成部分包括直流输入电源、逆变电路和输出滤波电路。

直流输入电源提供逆变器的输入电压,逆变电路将直流电转换为交流电,并通过输出滤波电路来滤波输出波形。

三、逆变电路设计1. 调制技术选择逆变电路的调制技术决定了输出波形的质量。

常见的调制技术有PWM(脉宽调制)和SPWM(正弦波调制)。

在正弦波逆变器中,选择SPWM调制技术可以获得更接近纯正弦波的输出。

2. 逆变器拓扑选择常见的逆变器拓扑有单相桥式逆变器、三相桥式逆变器等。

根据实际需求选择逆变器拓扑,单相桥式逆变器适用于单相负载,而三相桥式逆变器适用于三相负载。

3. 电路元件选择逆变电路中的元件选择直接影响到逆变器的性能。

选择合适的功率晶体管、电容器和电感器可以提高逆变器的功率输出和效率。

四、输出滤波电路设计输出滤波电路用于滤除逆变电路产生的谐波成分,生成纯正弦波的交流电。

常用的输出滤波电路包括LC滤波电路和LCL滤波电路。

LC滤波电路结构简单,但不能有效滤除高频成分;而LCL滤波电路在滤除谐波的同时,还能提供较好的带宽特性。

五、保护措施设计正弦波逆变器在实际应用中需要具备安全可靠的特性。

常见的保护措施包括过压保护、过流保护、温度保护等。

通过合理设计电路,设置过压、过流和温度保护装置,可以有效保护逆变器及其外部负载。

六、控制电路设计正弦波逆变器的控制电路主要包括运算放大器、比较器和PWM 控制电路等。

通过运算放大器进行误差放大和控制信号处理,再经过比较器和PWM控制电路产生PWM信号,并控制逆变电路,从而实现对逆变器输出波形的控制。

七、实验验证与结果分析在设计完成后,进行实验验证并对实验结果进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. TL494正弦波逆变电源设计 (1)1. TL494正弦波逆变电源设计 (10)一种基于单片机的正弦波输出逆变电源的设计 (25)1. TL494正弦波逆变电源设计1.1 概述:TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。

次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是:1)逆变就是将直流变为交流。

由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。

2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。

控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET。

4)系统具有完善的保护这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。

1.2 系统总体方案的确定:通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。

第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。

这样就完全确定了系统总体电路的方案。

如图1.2.1框图:如图1.3.1:总体电路图的设计主要还是依据任务书上的设计要求和设计内容,其中高频逆变电路的设计主要是采用电压型半桥式逆变电路,由于其只含有两个高频IGBT开关,输出电压波形是矩形波,输出电流波形近似为正弦波,本次TL494正弦波逆变电路的设计中最重要的两个部分是高频逆变电路和控制电路,高频逆变电路我是采用了电压型半桥式逆变电路,区中含有两个高频开关IGBT,可有效地实现高频转换,而控制电路则是采用TL494的集成芯片来完成的,由于七内部包含了开关电源控制所需的全部功能,因此便可以简单、高效地实现对高频逆变电路的控制同时还可以有效地保护电路,因为其自身带有电压、电流保护装置。

因此只要将测量的电压电流直接连接其输入端即可,最后再经过高频变压器的文雅和线路滤波,便可以实现对整体电路的最终要求。

1.4电路设计元件计算与选用:本次设计的TL494正弦波逆变电路中,最重要的就是高频开关IGBT的选用,根据电路设计的主要参数:输入输出电压:输入(DC)+50V、输出36V(AC)输出电流:1A电压调整率:≤1%负载调整率:≤1%效率:≥0.8因此,管子电压直流DC50V经过半桥式逆变电路,加至逆变桥的电压U约为100V,考虑余量通常选用600V等级的IGBT管,通常模块结构的IGBT,其电压等级为600V、1200V、1700V三种。

管子的电流:由于IGBT管较多工作于脉冲调制状态,计算有效电流值较困难,器件的高频开关损耗又与工作频率和电路缓冲等结构有关。

IGBT管标定的电流等级是集电极连续电流Ic,没有考虑重复开关的损耗,工程计算是以实际流过管子的最大峰值电流(瞬时过流电流不考虑)在考虑2杯左右裕量来选择。

以本装置为例,输出电流为100A,高频整流变压器电压比为5.3:1,变压器一次电流即IGBT管峰值电流约为1A/5.3=0.19A,考虑开关损耗和裕量选25A的管子。

1.5单元控制电路的设计主电路图主要指的就是高频逆变电路,我所采用的是电压型半桥式电路。

其中包含有逆变电路、高频变压器、滤波环节。

电压型逆变的特点是输出电压矩形波,输出电流近似正弦,如图1.31、如图1.32、如图1.33所示:当IGBT二管均不出发截止时,通过电容C1/C2分压,电容二端均为1/2U。

当IGBT1管出发导通时,U经IGBT1管VT1,高频变压器一次侧对C2充电,C1上电压通过VT1管对变压器放电;VT2管导通VT1关断时,U经VT2,变压器对C1充电,C2通过VT2管对变压器放电,如图1.31所示,由于C1/C2电容量大,器件交替触发通断频率高,电容两端电压可看成不变均为1/2U。

从理想状态分析,逆变器输出电压波形为交变矩形波,幅值均为1/2U,如图1.32所示。

感性负载时,由于电流滞后电压,IGBT管需接反并二极管(模块内部已有),提供无功功率与续流如图1.32所示。

实际工作时,由于IGBT管关断需要时间,在两管交替触发时刻会造成两管同时导通使直流电压电路,这是绝对不允许的。

为此通过触发脉冲的脉宽调制控制是IGBT管导通时间小于1/2T,即出现两管均不导通的死区,通常控制脉宽占空比范围为0.85-0.9,这种控制方式称死区控制,此时逆变桥输出电压、电流波形:U0O1/2U-1/2UT/2Twti0OVD1VI1VD2VI2VD3VI3I0U0OOr6/2rT w tw t如图1.33所示,ð为一周期内死区时间,则T -ð/T =0.85-0.9。

t1时刻以导通的VT1管触发关断,由于高频变压器漏感储能作用,使变压器一次侧应出1/2U 电压,极性为左正右负,因此VT1管C1E1端电压从零瞬时突跳至U ,随着漏感储能的释放Ucle1电压迅速降至1/2U ,在VT1管两端出现尖峰电压。

t1-t2为ð/2,t2时刻触发VT2管导通,Ucle1稳定升至U 值,t3时刻关断VT2,变压器一次侧感应左负右正电压,大小近似为1/2U ,致使Ucle1瞬时降为零,待漏感能量消失后回复至1/2U,t4时刻VT1DAOTONG ,t5时刻VT1重复关断,逆变管电压电流与驱动脉冲波形如图1.34所示。

1.5.2滤波环节电路图:高频装置必须考虑射频干扰(RFI )与电磁干扰(EMI)以及谐波影响,本装置在交流输入端采用线路滤波器,用于有效抑制和吸收电网出现的强脉冲对电源的干扰,同时线路滤波器具有良好的共模和公差插入损耗,有效地抑制电源产生的高频干扰信号影响电网,实现电源与电网的隔离和减少电源对周围环境的电磁干扰。

同理,输出端与负载之间亦加接滤波器。

1.5.3电流检测电路:电路检测单元的意义在于实现对电路的有效保护,它是稳压与过电压、过电流保护的一部分,并将直接检测到的电流信号街道TL494的芯片上,以此来对电路的电流、电压进行调节。

电流检测单元的构造很简单电阻和电容分别连接到分压电容的中间和分压电阻的中间,通过变压器CT1稳压和电容滤波后输出。

本次课程设计中的电压检测环节和电流检测环节其实都是有TL494集成芯片一次完成的,因此这也大大简化了电路,直接使用了TL494内部的两个放大器,通常放大器输入“负”端接基准电压,可有14脚分压供给,“正”端接开关电源的电压,电流采样信号。

1.5.4控制单元电路图:TL494集成芯片是控制电路的核心,也是本次课程设计的重点,TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源。

TL494有SO-16和PDIP-16两种封装形式,以适应不同L2场合的要求。

其主要特征:集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内置5V参考基准电压源。

可调整死区时间。

4)内置功率晶体管可提供500mV的驱动能力。

推或拉两种输出方式。

TL494的应用集成电路包含了几乎全部的控制电路,有正弦信号发生电路、脉宽调制电路PWM、电压电流检测单元、驱动电路。

TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,器振荡频率如下:f(osc)=1.1/Rt*Ct输出脉冲的宽度是通过电容CT 上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

功率输出管Q1 和Q2 受控于或非门。

当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。

当控制信号增大,输出脉冲的宽度将减小。

控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。

死区时间比较器具有120mV 的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。

当把死区时间控制输入端接上固定的电压(范围在0—3.3V 之间)即能在输出脉冲上产生附加的死区时间。

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V 变化到3.5 时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。

两个误差放大器具有从-0.3V 到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。

误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。

当比较器CT 放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1 和Q2 的工作。

若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。

如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1 或Q2 取得。

输出变压器一个反馈绕组及二极管提供反馈电压。

在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1 和Q2 并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。

这种状态下,输出的脉冲频率将等于振荡器的频率。

TL494 内置一个5.0V 的基准电压源,使用外置偏置电路时,可提供高达10mA 的负载电流,在典型的0—70℃温度范围50mV 温漂条件下,该基准电压源能提供±5%的精确度。

在TL494正弦波逆变电路的设计中,电压电流保护环节我采用了比较来进行输入也就是先将比较器的两个输入端和电压的输入输出向连接然后再将输出连接到TL494芯片上的差分放大器的输入端这样可以更好的实现对电路的电压保护,当然电流的保护也是同理的。

相关文档
最新文档