基于SG3525设计单相正弦波SPWM逆变电源
基于SG3525控制的车载逆变电源设计与实现

基于SG3525控制的车载逆变电源设计与实现
引言
随着电子信息产业高速发展,逆变电源被广泛应用于很多领域,一个可靠、优质的逆变电源可以保证系统可靠安全运行,所以,逆变电源是一个重要的
研究领域。
方波逆变是一种较简单的变换方式,它适用于各种整流负载,不
仅技术要求低,而且设计电路比较简单。
本文依据方波逆变电源的基本原理,模块化设计了逆变电源的实现电路,包括基于SG3525控制的高频PWM主
电路、全桥逆变电路、必要的保护电路和相关驱动电路,并给出实验结果及
分析。
1、原理与设计
1.1、逆变电源基本原理
逆变电源采用典型的两级变换:第1级是DC/DC升压变换器,第2级是DC/AC逆变器。
DC/DC升压变换由SG3525芯片产生的PWM波将12V直流逆变为高频方波,经高频变压器升压后,变压器副边可获得峰值为155V的
高频方波,再经过全波整流获得一个稳定的310V直流电压;DC/AC变换以
方波逆变方式,将稳定的直流电压逆变成310V的工频方波电压,该电压有
效值约为220V,频率为50Hz,可驱动负载[1]。
为保证系统正常运行,需。
SG3525正弦波逆变电源设计

湖南工程学院课程设计课程名称电力电子技术课题名称 SG3525正弦波逆变电源设计专业班级学号姓名指导教师2013年12 月16 日湖南工程学院课程设计任务书课程名称单片机原理及应用课题智能密码锁设计专业班级学生姓名学号指导老师审批任务书下达日期2013 年12 月16 日设计完成日期2013 年12 月27 日目录第1章概述 (1)1.1课题来源 (1)1.2解决方法 (1)1.3设计的优点 (2)第2章系统总体设计 (2)2.1 系统设计总体思路 (2)2.1 系统基本工作原理 (3)2.3 系统设计框图 (4)第3章系统主电路设计 (5)3.1 系统主电路结构设计 (5)3.2 系统保护电路设计 (5)第4章单元电路设计 (6)4.1 正弦信号发生电路设计 (6)4.2 宽度调制PWM电路设计 (7)4.3 电压电流检测电路设计 (11)4.4 光耦合驱动电路设计 (12)第6章总结与体会 (13)附录1总电路图 (14)附录2 参考文献 (15)附录3 课程设计成绩评分表 (16)第1章概述1.1课题来源电力逆变电源有着广泛的用途,它可用于各类交通工具,在太阳能及风能发电领域,逆变器有着不可替代的作用。
电力控制系统的可靠程度是电力系统和设备可靠、高效运行的保证,而电力控制系统必须具备安全可靠的控制电源。
电力系统中为保证变电所的诸如后台机、通讯设备等能在交流电源停电后不间断工作,工程做法一般采用UPS电源作为主要解决方案,但UPS电源存在容量小、价格贵、故障率高等不足,因此综合自动化变电所中可采用电力正弦波逆变电源来代替常规不间断UPS电源。
1.2解决方法逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。
利用逆变电源可以解决UPS电源存在的各种缺点,可以很好的运用在一些不能断电的场合。
本相正弦波SPWM逆变电源的设计以SG3252为核心,采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。
基于SG3525的全桥逆变SWPM控制波形电路

2019.08科学技术创新-7-基于SG3525的全桥逆变SWPM控制波形电路周勤玲(中山职业技术学院,广东中山528400)摘要:本文介绍了基于SG3525的全桥逆变SWPM控制波形电路,包括正弦波发生电路、整流电路、SWPM脉冲产生电路、延时死区调整电路。
该电路简单、易于实现,为正弦波逆变器SWPM电路设计提供一种借鉴'关键词:逆变;正弦波;全桥;SPWM中图分类号:TP274.2文献标识码:A文章编号:2096-4390(2019)08-0007-02随着电力电子技术的发展,正弦波逆变器得到了广泛的应用。
正弦波(SWPM)技术是正弦波逆变的关键技术问题。
逆变电源SWPM脉冲产生的方法有很多,如模拟电路、数字电路、数模结合电路等等。
目前,市场上主要是模拟控制和单片机控制。
用运算放大器组成的模拟SPWM电路复杂。
用单片机编程实现的方法,CPU被占用了大量资源,运行效率低。
模数混合控制的电路,可靠性和稳定性差叫本文基于SG3525集成芯片设计了一种简单、稳定的SWPM脉冲产生电路。
1主电路结构全桥逆变器主电路拓扑如图1所示。
其基本原理为:当两只对角功率管Q1、Q4或Q2、Q3同时导通时,功率从直流电源侧通过变压器向负载传输。
同一桥上、下功率管的驱动信号互补,并有一定的死区时间。
逆变桥的功率管QI、Q3由SPWM信号驱动,Q2、Q4由方波驱动。
逆变桥图4全桥逆变器主电路拓扑2开关管驱动控制信号的调制策略目前,电压型单相全桥逆变器有三种基本的SPWM技术,即双极性SPWM、单极性SPWM、倍频式SPWMo双极性SPWM的总开关频率比单极性高几乎一倍,所以开关损耗、总的谐波畸变率也大一倍。
单极性SPWM与倍频式SPWM谐波畸变率相近。
本文采用单极性SPWM调制技术,如图2所示,桥臂Q1和Q3在高频互补SPWM信号驱动下导通,桥臂Q2和Q4由方波(与基准正弦波同频同步)驱动导通,在全桥输出端AB形成了SPWM波形。
无工频变压器的逆变电源设计

无工频变压器的逆变电源设计【摘要】:本文介绍以SG3525芯片为逆变电源控制系统,设计无工频变压器SPWM调制方式正弦波输出电源,以期实现逆变电源稳定输出。
【关键词】:无工频变压器;电路;电源一、正弦波逆变器的设计要求和主电路形式及参数1.1逆变电源的设计要求和目标1)输出电压:输出为单相220V AC(有效值),频率为50Hz±1Hz。
2)输出功率:4KW,允许过载20%,既Pomax=4800W。
3)输出电流:允许失真度为3倍,既在电压峰值时的电流峰值允许最大为有效值的3倍。
最大有效值为Pomax/V oe=4800W/220V≈16.5A。
4)整机效率:设计目标η≥78%。
5)输入电压:输入:110/220V直流电压波动±15%1.2主电路形式选择1.2.1无工频变压器的逆变电源工作原理逆变电路以PWM方式首先将220VDC电压逆变成高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的直流电压,比如350VDC。
这部分电路实际上是一套直流/直流变换器,既DC/DC或DC-DC。
然后,由另一套逆变器以SPWM方式工作,将稳定的直流电压逆变成有效值稍大于220V的SPWM电压波形,经LC滤波后,就可以得到有效值为220V的50Hz交流电压。
1.2.2主电路形式无工频变压器的逆变电源实际上包含两部分:一套DC/DC和一套SPWM逆变器。
DC/DC的设计这里我们不讨论。
所以,这里只讨论SPWM逆变主电路,其电路形式如下图所示,电源350V。
单相SPWM逆变主电路1.3 参数设计1.3.1开关管逆变器允许输出峰值电流为Im=3Iom=3*5.5A=16.5A所以开关管选择额定电压为600V,额定电流30A。
1.3.2 LC滤波L为工频电感,电感量可选为1~3mH。
为减小噪声,选闭合铁芯,如OD 型硅钢铁芯(400Hz)或铁粉芯铁芯。
C为工频电容,可以选CBB61-10µF-250V AC。
基于SG3525的单相正弦波并网逆变电源设计

-
-
DC- AC
io1
io
T
滤
n1 n2
波 器
uo1
uo RL
n3
uREF 控制电路
uF
返回
主电路原理图
SPWM信 号产生 电路
DC-AC 驱动电
路
滤波 电路
DC-AC 逆变返电回
路
欠压、 过流保 护电路
控制电路原理图
基准信 号产生 电路
频率跟 踪电路
取样 电路
返回
输出电压 波形
类似一 个正弦
基于SG3525的单相正弦波并网逆变 电源设计
班
级:
作
者:
指导老师:
电子信息工程 2006级01班
肖宏忠 邵建设
目录
• 研究的目的、意义 • 研究内容 • 研究具体方法路线 • 研究结论
研究目的意义
• 随着全球工业化进程的逐步展开,世界各国对能源的需求 急剧膨胀,而煤炭、石油和天然气三大化石能源日渐枯竭 ,人类迫不及待的探索新的能源,由于太阳能资源分布相 对广泛、蕴藏丰富,光伏发电系统具有清洁、安全、寿命 长以及维护量小等诸多优点,光伏发电被认为将是21世纪 最重要、最具活力的新能源 。
波
研究结论
输出电压波形和相位跟踪波形
50Hz 时
相位跟 踪波形
相位偏 差小于 ≤5°
45Hz 时
频率跟踪波形
55Hz 时
谢谢!
感谢下 载
• 太阳能的直接应用主要有光热转换、光电转换和光化学转 换三种形式,光电转换(即光伏技术)是最有发展前途的一 种。光伏逆变电源在现代技术及新器件的支持下,无论是 可靠性还是性能价格比,以及高效节能方面都有着广泛的 发展前景,所以,光伏并网逆变电源,将作为用电器的一 种新型供电电源 。
单相正弦波逆变电源设计论文1

Abstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use of push-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control, closed-loop feedback; inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed, level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power. In protection, with output overload, short circuit protection, over current protection, the protection of multiple no-load protection circuit, which enhancing the reliability of the power supply and safety. AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liuid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W, the efficiency reached 93%, 50Hz
用SG3525制作的正弦波逆变驱动电路

用SG3525制作的正弦波逆变驱动电路
1.正弦波振荡器、精密整流电路、50HZ同步波发生电路,加法电路等和前次贴子中的基本一样,没有大的变动;供稳压用的误差放大器U3A的接法稍做了一些改动,主要是为了提高抗干扰性能及控制灵敏度等.
2.主芯片SG3525的接法和一般常规接法有点不同,因为3525的11,14脚是图腾柱输出,我把11,14脚接地,屏蔽了图腾柱的下管,并在13脚接一个上拉是阻做负载,这样做的目的是把原11,14脚的信号合并在一起输出,以大幅度地提高最大比空比.母线电压的利用率也大幅度提高了,可以在94%以上.但从13脚出来的脉冲,是反向的SPWM波,所以,要用一个4069把它反回来.
3.对死区时间生产部分进行了重新设计,U7和R31R32R33R34及
C20C21C22C23就是死区时间调整电路.当R=47K,C=47P 时,高频波的死区时间大约为2uS,这4个电容要用高频瓷片电容.
特别说明:该电路可以直接推动H桥,但我的H桥输入端是光藕,其方式是低电平有效.如果用的电路是其它推动方式,其要求为高电平有效的话,则时序电路和死区电路要做一点修改,有图片供参考.
电路的调试比较简单(从原来5个电位器减少到三个电位器),只要元件没有问题,接线没有错误,一般通电就可以工作.先断开跳线JP1,让电路开环,调VR1使输出正弦波不削顶;调VR2使正弦波上下半波衔接自然光滑;再合上JP1,调VR3,把输出电压调到预定值就可以了.。
SG3525在电力电子技术中的应用研究(开放实验)

SG3525在电力电子技术中的应用研究实验一、SG3525A 脉宽调制器控制电路一.简介:SG3525A 系列脉宽调制器控制电路可以改进为各种类型的开关电源的控制性能和使用较少的外部零件。
在芯片上的5.1V 基准电压调定在±1%,误差放大器有一个输入共模电压范围。
它包括基准电压,这样就不需要外接的分压电阻器了。
一个到振荡器的同步输入可以使多个单元成为从电路或一个单元和外部系统时钟同步。
在C T 和放电脚之间用单个电阻器连接即可对死区时间进行大范围的编程。
在这些器件内部还有软起动电路,它只需要一个外部的定时电容器。
一只断路脚同时控制软起动电路和输出级。
只要用脉冲关断,通过PWM (脉宽调制)锁存器瞬时切断和具有较长关断命令的软起动再循环。
当V CC 低于标称值时欠电压锁定禁止输出和改变软起动电容器。
输出级是推挽式的可以提供超过200mA 的源和漏电流。
SG3525A 系列的NOR (或非)逻辑在断开状态时输出为低。
·工作范围为8.0V 到35V ;·5.1V ±1.0%调定的基准电压;·100Hz 到400KHz 振荡器频率;·分立的振荡器同步脚;二.SG3525A 内部结构和工作特性:(1)基准电压调整器基准电压调整器是输出为5.1V ,50mA ,有短路电流保护的电压调整器。
它供电给所有内部电路,同时又可作为外部基准参考电压。
若输入电压低于6V 时,可把15、16脚短接,这时5V 电压调整器不起作用。
(2)振荡器3525A 的振荡器,除C T 、R T 端外,增加了放电7、同步端3。
R T 阻值决定了内部恒流值对C T 充电,C T 的放电则由5、7端之间外接的电阻值R D 决定。
把充电和放电回路分开,有利于通过R D 来调节死区的时间,因此是重大改进。
这时3525A 的振荡频率可表为:)R 3R 7.0(C 1f D T T S +=(3.1)在3525A 中增加了同步端3专为外同步用,为多个3525A 的联用提供了方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本论文所需单相正弦波SPWM逆变电源的设计采用了运算放大器、二极管、功率场效应管、电容和电阻等器件来组成电路。
逆变电源是一种采用电力电子技术进行电能变换的装置,它从交流或直流输入获得稳压恒频的交流输出。
通过对电路的分析,参数的确定选择出一种最适合的方案。
输出频率由电压控制,波形幅值由电阻确定。
本论文以SG3525驱动芯片为核心,完成了单相正弦波SPWM逆变电源的参数设计,并利用所得结果,完成了实际电路的连接,通过调试与分析,验证了设计的正确性。
关键词: SPWM,SG3525IIITitle: Design of Sine Wave Inverter Power Supply By SG3525Applicant: Cao LeiSpeciality: Electrical Engineering And AutomationABSTRACTDesign of sine wave inverter power supply by SG3525 was designed using operational amplifier,diodes,transistors,zener diodes,the capacitor and resistor voltage devices such as to constitute circuit.Inverter power supply is one kind of power electronics process transformation of electrical energy device.It alternating voltage or volts d.c input to acquire voltage stabilization constant amplitude the alternating voltage output.Get through the circuit analytical.To ensure the parameter to chose one kind of best fit program.The output frequence is confirmed by voltage and resistance ect.The thesis use SG3525 as a core to achieve design of sine wave inverter power supply.Take the advantage of the result to achieve circuit ligature.Get through the debug to check the validity.KEY WORDS:SPWM,SG3525IIIIV目录1绪论 (1)1.1逆变电源的发展背景 (1)1.2逆变电源的研究现状 (1)1.3设计的主要工作和难点 (3)1.3.1 设计的主要工作 (3)1.3.2 论文的主要难点 (5)2 SPWM逆变电源原理与应用 (7)2.1SPWM控制原理 (7)2.2SPWM控制的发展前景 (8)2.3本章小结 (8)3 硬件电路的设计 (9)3.1SG3525介绍 (9)3.2 文氏电桥振荡电路 (11)3.3移位电路分析 (13)3.4 逆变电路的工作原理分析 (13)3.5 本章小结 (14)4 系统的检测与分析 (15)4.1正弦发生器部分的调试 (15)4.2逆变部分及整体运行结果 (16)5结论与展望 (19)致谢 (21)参考文献 (23)III1绪论1.1逆变电源的发展背景逆变电源是一种采用电力电子技术进行电能变幻的装置,它从交流或直流输入获得稳压恒频的交流输出。
逆变电源技术是一门综合性的专业技术,它横跨电力、电子、微处理器及自动控制等多学科领域,是目前电力电子产业和科研的热点之一。
逆变电源广泛应用于航空、航海、、电力、铁路交通、邮电通信等诸多领域。
逆变电源的发展是和电力电子器件的发展联系在一起的,器件的发展带动着逆变电源的发展。
逆变电源出现于电力电子技术飞速发展的20世界60年代,到目前为止,它经历了三个发展阶段。
第一代逆变电源是采用晶闸管(SCR)作为逆变器的开关器件称为可控硅逆变电源。
可控硅逆变电源的出现虽然可以取代旋转型变流机组,但由于SCR是一种没有自关断能力的器件,因此必须增加换流电路来强迫关断SCR,但换流电路复杂。
噪声大、体积大、效率低等原因却限制了逆变电源的进一步发展。
第二代逆变电源是采用自关断器件作为逆变器的开关器件。
自20世纪70年代后期,各种自关断器件想运而生,它们包括可关断晶闸管(GTO)、电力晶闸管(GTR)、功率场效应管(MOSFET)、绝缘栅双极性晶体管(IGBT)等。
自关断器件在逆变器中的应用大大提高了逆变电源的性能第三代逆变电源实时反馈控制技术,使逆变电源性能得到提高。
实时反馈控制技术是针对第二代逆变电源非线性负载适应性不强及动态特性不好的的缺点提出来的,它是最近十年发展起来的的新型电源控制技术,目前仍在不断完善和发展之中,实时反馈控制技术的采用使逆变电源的性能有了质的飞跃。
1.2逆变电源的研究现状最初的逆变电源采用晶闸管(SCR)作为逆变器的开关器件,称为可控制逆变电源。
由于SCR是一种有关断能力的器件,因此必须通过增加换流电路来强迫关断SCR,SCR的换流电路限制的逆变电源的进一步发展。
随着半导体技术和交流技术的发展,有关断能力的电力电子器件脱颖而出,相继出现了电力晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极性晶体管(IGBT)等等,可关断器件在逆变器中的应用大大提高了逆变电源的性能,由于可关断器件的使用,使得开关频率得以提高,从而逆变桥输出电压中次谐波的频率比较高,使输出滤波器的尺寸得以减小,而且非线性负载的适应性得以提高。
最初,对于采用全控型器件的逆变电源在控制上普遍采用带输出电压有效值或平均值反馈的PWM控制技术,其输出电压的稳定是通过输出电压的有效值或平均值反馈控制的方法实现的。
采用输出电压有效值或平均值反馈控制的方法是有1结构简单、容易实现的优点,但存在以下缺点:(1)对线性负载的适应性不强(2)死区时间存在将使PWM波中含有不易滤掉的低次谐波,使输出电压出现波形畸变(3) 动态性能不好,负载突变时输出电压调整时间长为了克服单一电压有效值或平均值反馈控制方法的不足,实现反馈控制技术得以应用,它是10年来发展起来的新型电源控制技术,目前仍在不断的完善和发展之中,实时反馈控制技术的采用使逆变电源的性能有了质的飞跃,实时反馈控制技术多种多样,主要有以下几种:1. 谐波控制原理当逆变电源的负载为整流负载时,由于负载电流中含有大量谐波,谐波电流在逆变电源内阻上压的降致使逆变电源输出电压波形畸变,谐波补偿控制可以较好的解决这一问题,尤其是在逆变桥输出PWM波中加入特定谐波,可抵消负载电流中的谐波对输出电压波形的影响,减小输出电压的波形是畸变,而且这种方法只能由数字信号处理器来实现。
2.无差拍控制1959年,Kalman首次提出了状态变量的无差拍控制理论。
1985年,GokhalePESC年会上提出将无差拍控制应用于逆变控制,逆变器的无差拍控制才引起了广泛的重视无差拍控制是一种基于微机实现的控制原理,这种控制方法根据逆变电源系统的状态方程和输出反馈信号来推算下一个采样周期的开关时间,使输出电压在每个采样点上与给定信号相等,无差拍控制的缺点是算法比较复杂,实现起来不太容易,它对系统模型的准确性要求比较高。
对负载大小的变化及负载性质变化比较敏感,当负载大小变化及负载性质变化时不是获得理想的正弦波输出。
3.重复控制为了消除非线性负载对逆变器输出的影响,在UPS逆变器控制中导入重复控制技术。
重复控制是一种基于内模原理的控制方法,它将一个基波周期的的偏差存储起来,用于下一个基波周期的控制,经过几个周期基波周期的重复可达到很高的控制频度。
在这种控制方法中,加到控制对象的输入信号除偏差信号外,还叠加了一个过去的控制偏差,这个过去的控制偏差实际上是一个基波周期忠的控制偏差,把上一个基波周期的偏差反映到现在,和现在的偏差一起加到控制对象进行控制,这种控制方式偏差好像在被重复使用,所以称为重复控制。
它的突出特点是稳定性好、控制能力强但动态响应速度慢,因此,重复控制一般都不单独用于逆变器的控制,而是与其他控制方式结合共同实现整个系统性能。
4.单一的电压瞬时值反馈控制这种控制方式的基本思想是把输出电压的瞬时反馈与给定正弦波进行比较,2用瞬时偏差作为控制量,对逆变桥输出PWM波进行动态调节,和传统PWM控制方法相比,该方法能对PWM波进行动态调整,故系统快速性、抗扰性、对非线性负载的适应性、输出电压的波形品质等都比传统PWM控制方法有所提高。
这种方法的缺点就是稳定性不好,特别是空载时。
5.带电流内环的电压瞬时值反馈控制带电流内环的电压瞬时值反馈控制方法是在单一的电压瞬时值反馈控制方法的基础上发展起来的在这种方法中,不但引入输出电压的瞬时值反馈,还引入滤波电容电流的瞬时值反馈,电压环是外环,内流环具有将滤波电容电流或滤波电感电流改造为可控的电流源的作用,这一,控制输入和输出电压之间就形成了具有单极点的传递函数,因而系统的稳定性大大提高,克服了单一电压瞬时值反馈控制系统空载容易震荡的缺点。
由于稳定性的提高使得电压调节器增益可以取比较大的值,所以突加负载或突卸负载时输出电压的动态性能大大提高,抗扰性能大大提高,对非线性负载的适应能力也大大提高。
1.3 设计的主要工作和难点1.3.1设计的主要工作本课题的研究设计,把它分成4个阶段来进行完成:思路分析、体系结构设计、硬件连接、系统调试。
首先设计正弦波信号发生器,正弦波信号发生器由文氏电桥振荡电路和移位电路两个部分组成如图1-1所示3-12V图1-1 正弦波信号发生器如图所示把正弦波信号发生器产生的50HZ的正弦波送入SG3525芯片的9号管脚与SG3525芯片的5号管脚的锯齿波进行比较,从而获得SPWM信号,改变正弦波幅值,即改变M,就可以改变输出电压幅值,正常M≤1。
再次设计SPWM驱动电路如图1-2所示,由正弦波发生器产生一50Hz、幅度可变的正弦波,送人SG3525的第9端,和SG3525的第5脚(锯齿波)比较后,输出经调制(调制频率约为10kHz)的SPWM波形,经过到相器反相后,得到两路互为反相的PWM驱动信号,分别驱动功率场效应管VT1、VT2,使VT1、VT2交替导通,从而在高频变压器的副边得到一SPWM波形,经过LC滤波后,得到一50Hz的正弦波,幅度可通过电位器RP进行改变。