500W正弦波逆变器制作过程

合集下载

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程修正方波逆变器的做法有很多,但各有各的特定。

针对我这款逆变器我主要想和大家分享两点,这也是逆变器制作过程中最重要的两点。

一、稳压看过大多数设计是采用反馈有效值稳压,这种稳压方式缺点是相应性不是太好,针对这种情况我设计一种线性比例稳压方式,整个电源就像一个线性电源,响应性很好。

基本原理如下:理论依据:为了输出稳定电压必须使调整占空比k=220/峰值电压(C列),图1为占空和峰值电压的曲线,反比例曲线(蓝色线),由于占空比变化很小,有效值电压就变化很大,可以近似看做一条直线,图1 AB绿色直线,有AB两点做直线方程得出峰值电压——占空比的线性方程:y(峰值电压)=-381.8x(占空比)+584.5计算出占空比(O列)从0.65到0.9的所有输出峰值电压值(P列),如图2Q列为 O列与P列的乘积即输出的有效值电压,N列为P列/变比(12)得到的蓄电池输入电压,R列为输出电压的变化范围【=abs(220-Q列)*100/220】,有R列可以看出,将反比例关系的曲线近似成线性后得到的输出有效值电压变化范围最大为1.6799%<5%,完全能够满足工程需求。

图3 为占空比输出有效值电压曲线。

如果用图一中红色直线做线性方程得出的数据效果会更好。

这里就不在赘述那。

至此用线性的方法进行稳压理论上已经通过,这样就可以用变压的采样线圈整理得到一个峰值反馈电压,在用这个峰值反馈电压通过反比例线性放大器得出一个占空比调制电压,生成对应线性的占空比,从而实现稳压,这里线性反相比例放大器的增益不能太大,具体调试的时候最好用可调电阻调试。

图4是工作电路,(Protel暂时不能用先将就一下那,后面在补上)图中C1和R3一定不能少,否则当电路功率输出加大时尖峰电压的影响,稳压就不准哦,还有R1的阻值不能太小否则就得不到平缓的峰值电压。

以上整个电路我是用3525里的运放实现的,实验板电路如下图。

逆变器的制作方法

逆变器的制作方法

逆变器的制作方法逆变器是一种将直流电转换为交流电的电子装置,广泛应用于电力系统、太阳能发电等领域。

下面将介绍一种常见的逆变器制作方法。

逆变器的制作方法主要分为以下几个步骤:1. 材料准备制作逆变器所需的材料有:MOS管、电容器、电感、二极管、电阻、PCB板、连接线等。

这些材料可以在电子元器件商店购买到。

2. 电路设计在制作逆变器之前,需要进行电路设计。

根据需求选择合适的拓扑结构,如半桥逆变器、全桥逆变器等。

根据电路设计原理,确定逆变器的参数和元器件的数值。

3. PCB板制作将电路设计图转化为实际制作的PCB板。

首先,使用PCB设计软件将电路图绘制出来,并进行布局。

然后,将电路图打印在铜板上,通过化学腐蚀或机械方法去除多余的铜,形成电路路径。

4. 元器件焊接将所需的元器件焊接到PCB板上。

根据电路图的要求,将MOS管、电容器、电感、二极管、电阻等元器件按照正确的位置焊接到PCB 板上。

焊接过程中要注意避免短路和虚焊等问题。

5. 连接线连接将各个元器件之间通过连接线连接起来,形成完整的电路。

连接线的选择和连接方式应根据电路图的要求进行。

6. 电源连接将逆变器连接到电源上。

根据逆变器的输入电压要求,选择合适的电源并将其与逆变器连接。

7. 测试与调试完成逆变器的制作后,需要进行测试与调试。

首先,检查逆变器的各个元器件是否焊接牢固,没有虚焊和短路现象。

然后,将逆变器连接到负载上,通过仪器进行输出电压和电流的测试,检查逆变器的输出是否符合预期。

8. 优化与改进根据测试结果,对逆变器进行优化与改进。

可以通过调整元器件参数、改变拓扑结构等方式来提高逆变器的性能和效率。

以上就是一种常见的逆变器制作方法。

通过合理的设计和选择合适的元器件,制作出符合要求的逆变器。

逆变器的制作过程需要仔细操作,确保焊接牢固和连接正确,同时要进行严格的测试与调试,确保逆变器的稳定性和可靠性。

逆变器的制作需要一定的电子知识和技术,但只要按照正确的步骤进行,就能成功制作出一台高质量的逆变器。

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程作者:科创论坛尤小翠注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案.一、高频前级(原理分析)在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。

一个好的前级是多么的重要,是确保足够功率输出的保证。

这就是前级电路图啦~电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出.注:本图根据老矿石的作品修改二、全硬件纯正弦后级(原理分析)老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。

我把它们融合了一下,得到了自己的电路。

这是后级的框图本电路优点:1.电路极简单,可能为世界上最简单的分立SPWM电路2.单电源宽电压供电(10V-30V)3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电.4.隔离输出,受外围电路干扰少本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了.看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器.再看驱动板电路图(红圈里的内容是修改过的部分):麻雀虽小,五脏俱全.如图,LM7809将电池电压降为稳定的9V,这使得电路可以在宽电源(10V-30V)情况下工作,左上角红圈里的2N5551和2N5401等元件组成了虚拟双电源,将正9V变成正负4.5V的双电源.NE555及周边元件组成频率约为20KHz的高线形度三角波振荡器,如图,在NE555的2和6脚可以得到在3V和6V之间运动的三角波.IC1为LM324,IC1A及周边元件组成50Hz工频正弦振荡器,产生幅度4.5V的正弦波(对于产生的虚地),圈一电位器将这个正弦波幅度分压到3.5V.IC1B和IC1C及周边元件组成精密整流电路,将正弦波变成3V幅值的馒头波.这个馒头波要去和NE555的三角波比较,三角波和馒头波的幅值虽然向同,都是3V,但是这个馒头波的最低电位比三角波的高1.5V.因此,IC1D 及周边元件组成减法电路,将馒头波整体下调 1.5V,这样三角波和馒头波就可以比较了.LM393B进行比较工作,产生同相位的SPWM波,此波与LM393A组成的正弦波-方波转换器输出的同步方波送入CD4081等组成的编码电路进行编码,产生最终驱动功率管的SPWM 信号.两个20K电阻和47P电容用于产生死区于高频臂.SPWM1和SPWM2用于驱动高频臂,50HZ1和50HZ2用于驱动工频臂。

逆变器制作方法

逆变器制作方法

逆变器制作方法逆变器是一种将直流电转换为交流电的电气设备,广泛应用于太阳能发电系统、风力发电系统、电动汽车和UPS电源等领域。

本文将介绍逆变器的制作方法,帮助您了解逆变器的工作原理和制作流程。

首先,我们需要准备以下材料和工具:1. 电子元件,MOS管、电容、电感、二极管等;2. 电路板,单层或双层电路板;3. 焊接工具,焊锡、焊台、焊接笔等;4. 测试工具,示波器、万用表等。

接下来,我们将按照以下步骤制作逆变器:1. 设计电路图,根据逆变器的功率和输出电压,设计逆变器的电路图。

电路图包括输入端的整流电路和输出端的逆变电路,通过合理的电路设计可以提高逆变器的效率和稳定性。

2. 制作电路板,根据设计的电路图,将电子元件焊接到电路板上。

注意保持焊接点的良好连接,避免出现焊接虚焊和短路现象。

3. 调试电路,将制作好的逆变器连接到电源和负载上,使用测试工具对逆变器进行调试。

通过调试可以检验逆变器的工作状态和输出波形,发现并解决电路中的问题。

4. 优化逆变器,根据调试结果对逆变器进行优化,可以调整电路参数和更换电子元件,以提高逆变器的性能和可靠性。

在制作逆变器的过程中,需要特别注意电路的安全性和稳定性,避免出现短路、过载和过压等问题。

另外,还需要对逆变器进行严格的测试和验收,确保逆变器符合相关的电气安全标准和技术要求。

总之,逆变器是一种重要的电气设备,制作逆变器需要一定的电路设计和焊接技术。

通过本文的介绍,相信您已经对逆变器的制作方法有了初步的了解,希望能够帮助您更好地掌握逆变器的制作技术,为相关领域的应用提供更多的可能性。

独家揭秘500W正弦波逆变器制作过程

独家揭秘500W正弦波逆变器制作过程

独家揭秘500W正弦波逆变器制作过程独家揭秘500W正弦波逆变器制作过程今天带给大家的是一款500W的正弦波逆变器的制作。

趁着这段时间有空,就制作了这个小功率500W的机器,和大家一起分享。

<电源网原创转载请注明出处>之前做上千W的机器,在制作过程当中会碰到许多问题,稍不留神,就是响声震天。

不太适合初学者,或者是没有相关仪器仪表的兄弟去DIY,这次我重新做了一版,力争做到最简单,最实用,体积最小,带负载能力突出等特点。

下面是整个机器的照片,为了能够简单省事,我采用了主板和控制板分开的办法来做,这样的好处就是所有的控制功能集中在小板子上处理,大板子负载功率变换和传输,大大降低干扰的发生,提高稳定性。

高清多图H桥MOSFET局部。

AC滤波电感局部前级升压MOSFET高压整流二极管侧面侧面这款控制板如下图所示,板上的元件非常多,所以用了双面PCB来做前级升压也包含在这个板上,采用的是TL494加图腾柱升压;后级SPWM芯片还是采用TDS2285芯片,附带CD4069+CD4081输出给TLP250光耦,驱动H桥。

供电采用自举供电驱动。

整个板上只要提供+12V电源即可完成所有功能。

为了提高稳定性和可靠性,加入了各种保护功能:过压保护、欠压保护、过热保护、短路保护、过流保护等。

该机器的PCB文件及SCH电路文件如下:500W帖子.SCH500W主板--PCB文件,protel DXP格式。

下面对机器上关键的元器件的说明:1变压器:众所周知,变压器是一切开关电源里最复杂的东西,我到目前为止,对磁性元件的理解还是半桶水,不过没有关系,这次采用的变压器并不复杂,用的是经典的推挽电路,我用的是EE4220变压器,用的铜带绕的,初级是2+2T,次级是64T,分了3次绕。

第一次:用一根0.75的线绕上32T,均匀的分布在骨架里。

第二次:我用2条0.3*25mm的紫铜带2条叠加绕了2+2。

第三次:就是将初级剩下的32T绕完。

逆变器制作方法

逆变器制作方法

逆变器制作方法步骤如下:一、主要部件的制作和采购1.S PWM主芯片2.主变压器主变压器是制作逆变器成功与否的关健,本机主变用的磁芯为EE55,材质PC40,我在杭州电子市场买到了一种质量很好的骨架,立式的,脚位11加11,脚粗1.2MM。

绕制数据:初级2T加2T,用10根0.93的线。

初级导线总面积为6.8平方MM,次级为0.93线一根,绕60T。

二、绕前准备先准备骨架,把骨架上22个引脚,剪去4个,下面红圈处就是表示已经剪去的脚。

上面二个独立的脚是高压绕组用的,远离下面的脚有利于绝缘,中间及下面的脚是低压绕组用的,左边是一个绕组2圈,右边是另一个绕组2圈。

三、绕制步骤A),先绕二分之一的高压绕组(次级),先在骨架上用高温胶带粘一层,这样做是为了防止导线打滑,用一根0.93线绕一层,约30圈(注意的是,高压绕组的线头要做好绝缘,我是套进一小段热缩套管,用打火机烤一下,就紧紧包在线头上了),再用胶带固定住线头,不要让它散出来,并在高压绕组的外面用高温胶带包三层。

B),下面就可以绕低压绕组了(初级),低压绕组分成二层绕,也就是每一层是2加2,用5根线并绕。

C),再继续绕高压绕组,绕完另外的30圈,要注意的是,这30圈要和里面的30圈绕向相同,这点很关健。

如果一层绕不下,就把剩下几圈再绕一层。

D),绕完高压绕组后,在外面用高温胶带包三层,就把低压绕组原先留在上面的线头折下来,准备焊在骨架的脚上。

去漆可以用脱漆剂,用棉签沾一点脱漆剂,抹在线头上,过一会儿,漆就掉下来了,就可以焊了。

D),再后在整个绕组的外面包几层高温胶带,尧好的线包外观要饱满平整。

E),现在可以插磁芯了,插磁芯之前要对磁芯的对接面做清洁处理,我是用胶带粘几下,把磁芯对接面的粉末全清洁干净,插入磁芯,用胶带扎紧,有条件的话对磁芯对接处用胶水做固定。

四、AC输出滤波磁环磁环是采用直径40MM的铁硅铝磁环,用1.18的线,在上面穿绕90圈,线长约4.5米,如果用导磁率为125的磁环,电感量大约在1.5mH,用导磁度为90的磁环,电感量大约在1mH左右。

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程

500W正弦波逆变器制作过程正弦波逆变器将直流电能转换为交流电能,适用于一些需要交流电能供应的场合,比如太阳能发电系统、风能发电系统等。

下面是一个制作500W正弦波逆变器的过程。

1.设计逆变器电路:首先,需要设计逆变器的电路图。

500W正弦波逆变器通常由多级逆变电路组成,其中每个级别包含一个开关和一个滤波电路。

可以选择采用全桥逆变电路,它是最为常见的一种逆变器电路。

2.准备器件和材料:根据设计的电路图,准备逆变器所需的各种器件和材料。

典型的逆变器器件包括开关管、滤波电容、滤波电感、电阻、电感等。

此外,还需要一块适当的电路板作为逆变器的基板。

3.制作逆变器电路板:根据逆变器的电路图将所有元器件逐一焊接到电路板上。

注意保持良好的焊接质量,避免电路短路或焊点松脱等问题。

同时,还需要在电路板上进行必要的布线工作,确保信号和功率传输的良好连接。

4.安装和连接逆变器元件:将电路板安装到逆变器的外壳内,并连接各个元件。

确保所有元件连接正确,且牢固可靠。

定位开关、指示灯等功能件的位置并固定。

5.连接直流电源:将待逆变的直流电源连接到逆变器的输入端。

通常需要使用适当的直流保险丝来保护逆变器免受电源电压过高或电流过大的损害。

6.输出端接负载:将逆变器的输出端连接到需要供电的负载上。

确保逆变器的输出线路与负载之间无短路或接触不良。

7.进行调试和测试:将逆变器通电,进行初步的调试和测试。

通过调整控制参数和观察波形,判断逆变器的工作状态是否正常。

8.优化和改进:根据测试结果,对逆变器进行进一步的优化和改进,以获得更好的性能和可靠性。

例如,可以调整滤波电路的参数,改进波形质量。

9.完善逆变器功能:根据实际需求,可以添加额外的功能和控制电路。

例如,可以加入过载保护、温度保护、过压保护等功能电路,提高逆变器的可靠性和安全性。

10.进行批量生产:在验证逆变器的可靠性和性能后,可以进行批量生产,以满足市场的需求。

以上就是制作500W正弦波逆变器的大致过程,当然,具体的实施过程中还需要根据实际情况进行调整和改进。

超级简单的逆变器制作

超级简单的逆变器制作

超级简单的逆变器制作超级简单的逆变器制作(一)自制低成本高效率的家用逆变器本文介绍的逆变器,电路简洁、成本低、易维护、效率高,稍有动手能力的人都能制作。

它虽然不具备市售优质家用逆变器高档复杂的开关电源集成线路,场效应功率放大,但功效并不逊色。

此机为准正弦波输出,空载电流小于450mA,负载能力300W以上,效率达85%以上。

平时.给电风扇、照明灯泡,电烙铁供电,或串上100W的灯泡带29英寸以下的电视都绰绰有余(由于消磁线圈的原因,启动电流太大,所以要串灯泡启动,如果拔掉消磁线圈,串接的灯泡可不用),给生活和维修带来极大的方便,出现故障也不会造成电压升高、烧坏用电器。

笔者使用一年多,没见出现过任何问题,电路如图所示。

工作原理:接通12V电源后,由V1,V2、R1-R4、C1、C2构成的多谐振荡器得电起振,V1、V2的集电极轮流输出接近50Hz的正极性方波.经过C3和R5、C4和R6组成的积分电路积分整形为准正弦波,再经V3、V4倒相放大后分别激励V5、V6,使末级功率管V7、V8轮流导通和截止,它们的集电极电流流经变压器初级绕组L1、L2在变压器的高压侧感应出约50Hz的准正弦波高压输出。

元件选择:本机的大多数元件都能从废旧电路板中拆下来。

V5、V6用D880或C2073。

V7、V8分别用三只3DD207并联而成,其参数为200V/5A/50W,也可用3DDl5D替代。

可调电阻RP可从旧彩电尾板上拆用。

其余电阻电容无特殊要求。

线圈Ll、L2为中1.62mm 的漆包线,各绕50匝。

L3、L4、L5都用0.53mm的漆包线,匝数分别为12、12,945。

功率管配上尽可能大的散热片就行了,本机配的是宽150cm的散热片。

变压器铁芯选用有效横截面积20cm2以上的,可以用足够大的废旧电瓶充电器的铁芯或功放机上的环形电源变压器铁芯,选用的是环形变压器铁芯。

制作与调试:将功率管全部装上散热片后,将其余元件全部用搭棚焊的方法焊接在功率管上,无需制作电路板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

500W正弦波逆变器制作过程(多图)
2011年04月15日 11:02 电源网作者:秩名用户评论(10)
关键字:正弦波逆变器(7)500W(2)
下面是整个机器的照片,为了能够简单省事,我采用了主板和控制板分开的办法来做,这样的好处就是所有的控制功能集中在小板子上处理,大板子负载功率变换和传输,大大降低干扰的发生,提高稳定性。

高清多图
H桥MOSFET局部。

AC滤波电感局部
高压整流二极管
侧面
侧面
这款控制板如下图所示,板上的元件非常多,所以用了双面PCB来做。

前级升压也包含在这个板上,采用的是TL494加图腾柱升压;后级SPWM芯片还是采用TDS2285芯片,附带CD4069+CD4081输出给TLP250光耦,驱动H桥。

供电采用自举供电驱动。

整个板上只要提供+12V电源即可完成所有功能。

为了提高稳定性和可靠性,加入了各种保护功能:过压保护、欠压保护、过热保护、短路保护、过流保护等。

该机器的PCB文件及SCH电路文件如下:
下面对机器上关键的元器件的说明:
1变压器:众所周知,变压器是一切开关电源里最复杂的东西,我到目前为止,对磁性元件的理解还是半桶水,不过没有关系,这次采用的变压器并不复杂,用的是经典的推挽电路,我用的是EE4220变压器,用的铜带绕的,初级是2+2T,次级是64T,分了3次绕。

第一次:用一根0.75的线绕上32T,均匀的分布在骨架里。

第二次:我用2条0.3*25mm的紫铜带2条叠加绕了2+2。

第三次:就是将初级剩下的32T绕完。

1,变压器只要绕紧了,初级对称了,不会有什么问题的,因为在这里,我们用的基本上是在开环工作下,所以问题并不大。

可惜绕变压器的时候没有拍照片。

2,高压整流二极管:这个机器设计是在最高500W范围内工作,功率并不大,所以用了HER508来做,实际发现,全功率运行下,二极管还是有点热的,不过通过连续几个小时工作,风扇开启的情况下,工况并不是很差的。

所以用上去没有问题。

3,前级升压MOSFET,这里我是采用的80V/110A的MOSFET,是无锡NCE公司的NCE80H11,本来是准备用锐俊半导体的RU6099,RU6099之前我也测试过,性能非常好,但是我手头没有这个MOS的物料了,所以就用了NCE80H11.
4,H桥MOSFET,我用的是IRFB11N50APBF,这个MOS性能非常好,在经常短路的情况下,寿命大大超过了同类的IRFP460,电流也比IRFP460小,可是用在500W上刚好合适。

5,AC滤波电感,我用了比较小的磁环,外径为27.5mm,高度为14mm的铁硅铝环,磁导率为125u。

我在上面用2根0.55的线绕了大概70圈,电感量大约为0.75MH。

由于采用了2个这样的电感,所以电感量不需要非常大,并且能获得非常好的滤波效果。

绕后后的样子:
装配说明:
1首先要将主板上的跳线逐一焊好,注意变压器下方靠近C2电容位置有2条槽,这个是用来焊接跳线的,我用了一小段铜带焊上去了,也可以用几根跳线焊接起来。

跳线大部分都在散热器下面,因为板上并没有标出跳线标号,所以需要仔细找到并且焊接好,不然等散热器装好后,发现跳线少装就麻烦了。

焊接铜带的位置:
部分焊接跳线:
2,将所有元件都安装下去之后,接着就可以安装散热器了。

安装散热器不能将跳线短路,可以在下面垫一点东西,我是在底下垫了绝缘垫的。

3,最后安装控制板,控制板上有一条给H桥驱动供电的电源脚,由于在主板上没有提供这个接口,所以预先要在控制板背面将这个脚和+12V连接起来。

这些工作都完成之后,只要没有弄错元件,位置没有焊接错误,开机就能正常工作了。

相关文档
最新文档