《旋转》单元测试

合集下载

旋转单元测试题及答案

旋转单元测试题及答案

旋转单元测试题及答案一、选择题1. 旋转的定义是什么?A. 绕某一点转动B. 沿直线平移C. 缩放D. 反射2. 旋转变换不改变图形的哪些性质?A. 形状B. 大小C. 面积D. 所有选项3. 旋转对称图形在旋转多少度后能与自身重合?A. 90度B. 180度C. 360度D. 任意角度二、填空题4. 一个图形绕着某一点旋转____度后,与原图形重合,这个点称为图形的______。

5. 在平面直角坐标系中,若将点P(x, y)绕原点O(0, 0)逆时针旋转θ度,旋转后的坐标为______。

三、简答题6. 请简述旋转的性质,并给出一个生活中的例子。

7. 解释什么是旋转对称图形,并给出一个例子。

四、计算题8. 在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度,求旋转后点A的新坐标。

9. 若一个图形在旋转对称变换下,其旋转中心为点P(1, 2),旋转角度为120度,请画出旋转后的图形。

五、论述题10. 论述旋转在几何证明中的应用,并给出一个具体的几何证明例子。

答案:一、1. A2. D3. C二、4. 180,旋转中心5. (-y, x)三、6. 旋转的性质包括保持图形的形状和大小不变,旋转中心到图形上任意两点的距离相等。

生活中的例子包括门的开关,地球的自转等。

7. 旋转对称图形是指在旋转一定角度后能与自身重合的图形,例如等边三角形。

四、8. 点A的新坐标为(4, -3)。

9. 根据旋转对称图形的定义,旋转后的图形与原图形形状相同,位置不同,具体图形需根据题目要求绘制。

五、10. 旋转在几何证明中常用于证明图形的全等或相似,例如利用旋转证明两个三角形全等。

具体例子需根据题目要求给出。

人教版九年级上学期数学《旋转》单元测试题(附答案)

人教版九年级上学期数学《旋转》单元测试题(附答案)
轴对称图形的特性:关于某直线对称的两个图形是全等的;图形的对应点连线段被同一条直线垂直平分;对应线段或延长线与对称轴交于一点.
二、填空题(每小题3分,共24分)
11.请写出一个是中心对称图形的几何图形的名称:.
[答案]平行四边形(答案不唯一).
[解析]
解:平行四边形是中心对称图形.
故答案可为:平行四边形.
三、解答题(共66分)
19.如图,A C是正方形A B C D的对角线,△A B C经过旋转后到达△AEF的位置.
(1)指出它 旋转中心;
(2)说出它的旋转方向和旋转角是多少度;
(3)分别写出点A,B,C的对应点.
20.如图,已知四边形A B C D,画四边形A1B1C1D1,使它与四边形A B C D关于C点中心对称.
答案:D.
点睛:此类题目综合考查了旋转、平移及轴对称的特性:
旋转的特性:不改变图形的形状和大小;经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.对应角相等,对应线段也相等.
平移的特性:平移只改变图形的位置,不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.
14.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将△AOB绕点O逆时针旋转90°得到△COD,则旋转过程中形成的阴影部分的面积为________.
15.如图,将等边 绕顶点A顺时针方向旋转,使边A B与A C重合得 , 的中点E的对应点为F,则 的度数是_______.
16.如图所示,已知抛物线C1,抛物线C2关于原点中心对称.如果抛物线C1的解析式为y= (x+2)2-1,那么抛物线C2的解析式为:___________________________

旋转单元测试卷

旋转单元测试卷

《旋转》单元测试卷(满分:150分,时间:120分钟)一、选择题(本大题,有7小题,每小题3分,共21分)1、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形D. 等腰梯形2、下列图案中不是中心对称图形的是()A.B.C.D.3、如图1,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合则∠DAE的度数是()A、45°B、60°C、90°D、120°4、如图,四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°,若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )A.30°B.45°C.60°D.90°5、在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(-A1,则A1的坐标为()A.B.C.(1)-D.(1,-图2图16、如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离和∠APB的大小()A.6,120°B.6,150°C.8,150°D.8,120°P'第6题第7题7、如图,四边形ABCD中,AC,BD是对角线。

△ABC是等边三角形。

∠ADC=30°,AD=3,BD=5,则CD的长为()A.B.4C. D.4.5二、填空题(本大题有10小题,每小题4分,共40分)8、平面直角坐标系内一点P(-2,3)关于原点的对称点的坐标是。

9、如图是一个等腰直角三角形经过若干次旋转而生成的,则每次旋转的角度最小。

第9题第10题10、如图,△ABC是等边三角形,点P是△ABC内一点。

△APC按逆时针方向旋转后与△AP'B重合,则旋转中心是,最小旋转角等于°11、正方形OABC的边长为1,该正方形绕点O逆时针旋转45°后,点B的坐标为。

人教版九年级上册数学《旋转》单元检测含答案

人教版九年级上册数学《旋转》单元检测含答案
A B.
C. D.
4.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )
A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′
C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O
5.如图,Rt△ABC向右翻滚,下列说法正确的有( )
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少?点C的坐标又是什么?
24.感知:如图①,在△ABC中,∠C=90°,AC=BC,D是边BC上一点(点D不与点B,C重合).连接AD,将AD绕着点D逆时针旋转90°,得到DE,连接BE,过点D作DF∥AC交AB于点F,可知△ADF≌△EDB,则∠ABE的大小为________.
正确的有三种,
故选C.
点睛:在平移和旋转图形中,对应角相等,平移中对应线段相等且平行,旋转图形对应线段相等但不一定平行.
6.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)
21.如图,在平面直角坐标系中,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD;
(2)求OC的长.
22.如图,在网格中有一个四边形图案.
(1)请你分别画出△ABC绕点O顺时针旋转90°的图形,关于点O对称的图形以及逆时针旋转90°的图形,并将它们涂黑;
8.如图,E,F分别是正方形ABCD的边CD,AD上的点,CE=DF,AE,BF相交于点O.下列结论:①AE=BF;②AE⊥BF;③△ABF与△DAE成中心对称.其中,正确的结论有( )

2024-2025学年人教新版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2024-2025学年人教新版九年级上册数学《第23章 旋转》单元测试卷(有答案)

2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。

旋转知识点单元测试题及答案

旋转知识点单元测试题及答案

旋转知识点单元测试题及答案一、选择题1. 平面内,一个点绕着一个定点旋转多少度后,它的位置不变?A. 0度B. 180度C. 360度D. 90度2. 旋转变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置3. 在数学中,旋转对称图形至少有几个对称轴?A. 1个B. 2个C. 3个D. 4个二、填空题1. 旋转变换是一种保持图形______不变的几何变换。

2. 旋转中心是旋转变换中的______点。

3. 旋转角度是旋转变换中图形绕旋转中心旋转的______。

三、简答题1. 请简述旋转的性质有哪些?2. 如何确定一个图形是否是旋转对称图形?四、计算题1. 若点P(3,4)绕原点O(0,0)顺时针旋转90度,求旋转后点P的新坐标。

五、解答题1. 给定一个正方形,其四个顶点分别位于(1,1), (1,-1), (-1,-1), (-1,1),请说明如何通过旋转变换将该正方形绕原点O(0,0)旋转45度。

答案:一、选择题1. C2. A, B3. B二、填空题1. 形状和大小2. 固定不动3. 角度三、简答题1. 旋转的性质包括:保持图形的形状和大小不变,图形上任意两点与旋转中心连线的夹角等于旋转角度。

2. 确定一个图形是否是旋转对称图形,需要检查图形是否在绕某一点旋转一定角度后能与原图形重合。

四、计算题1. 点P(3,4)顺时针旋转90度后,新坐标为(4,-3)。

五、解答题1. 将正方形绕原点O(0,0)旋转45度,可以通过以下步骤实现:- 首先,将正方形的每个顶点分别与原点O(0,0)相连。

- 然后,计算每个顶点绕原点旋转45度后的新位置。

这可以通过计算旋转矩阵来实现。

- 最后,将旋转后的顶点坐标连接起来,形成新的正方形。

结束语:通过本次单元测试,我们复习了旋转的基本概念、性质和应用。

希望同学们能够熟练掌握旋转变换的相关知识,并在实际问题中灵活运用。

数学九年级上学期《旋转》单元测试(含答案)

数学九年级上学期《旋转》单元测试(含答案)

九年级上册数学《旋转》单元测试卷(满分120分,考试用时120分钟)一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是()2,1-,连接OG ,将线段OG 绕原点O 旋转180︒,得到对应线段OG ',则点G '的坐标为( )A .()2,1-B .()2,1C .()1,2-D .()2,1--4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°5.(2020·辽宁省初二期末)如图,Rt ABC 中,∠B =30°,∠C =90°,将Rt ABC 绕点A 按顺时针方向旋转到11AB C △的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)7.(2020·河北省中考真题)如图,将ABC ∆绕边AC 的中点O 顺时针旋转180°.嘉淇发现,旋转后的CDA ∆与ABC ∆构成平行四边形,并推理如下:点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处.∵CB AD =,∴四边形ABCD 是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵CB AD =,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且AB CD =,C .应补充:且//AB CD D .应补充:且OA OC =,8.(2020·海南省中考真题)如图,在Rt ABC 中, 90,30,1,C ABC AC cm ∠=︒∠=︒=将Rt ABC 绕点A 逆时针旋转得到Rt AB C ''△,使点C '落在AB 边上,连接BB ',则BB '的长度是( )A .1cmB .2cmCD .9.(2020·哈尔滨市萧红中学初三月考)如图,点D 是等边ABC ∆内一点,将BDC ∆以点C 为中心顺时针旋转60︒,得到ACE ∆,连接BE ,若45AEB ∠=︒,则DBE ∠的度数为( )A .25B .30C .20D .1510.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B=A C ,则图中阴影部分的面积等于( )A .2B .1CD ﹣l11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A (﹣6,0),C (0,.将矩形OA B C 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为( )A .(-B .(4)-C .(-D .(-12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为1的正方形OABC ,边OA ,OC 分别在 x 轴、y 轴上,如果以对角线OB 为边作第二个正方形11OBB C ,再以对角线1OB 为边作第三个正方形122OB B C ,照此规律作下去,则点2020B 的坐标为( )A .10101010(22)-,B .20202020(22)-,C .20202020(22)--,D .10101010(22)--,13.(2020·河南省初三学业考试)如图,在Rt ABC 中,90A ∠=,3AB =,4AC =,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转90得到'P ,连'CP ,线段'CP 最小值为( )A .1.6B .2.4C .2D .14.(2020·黑龙江省初三月考)如图,已知正方形ABCD ,4=AD ,E 是CD 中点,AF 平分BAE ∠交BC 于点F ,将ADE ∆绕点A 顺时针旋转90︒得ABG ∆,则下列结论中:①ΔΔABG AED ≅;②ΔΔAEF ABF ≅;③AF 平分GAD ∠;④1GF =;⑤6CF =- )A .①③B .①③⑤C .①②④⑤D .①③④二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B (0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.18.(2020·河北省初三二模)在锐角ABC 中,4AB =,5BC =,45ACB ∠=︒ ,将ABC 绕点B 按逆时针方向旋转,得到111A B C △.(1)如图1,当点1C 在线段CA 的延长线上时,则11CC A ∠的度数为______________度;(2)如图2,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,则线段1EP 长度最小值是_____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出ABC 关于直线OM 对称的111A B C △;(2)画出ABC 绕点O 按顺时针方向旋转90°后所得的222A B C △;(3) 计算:111A B C △的面积为 ;(4)2CC A S 22CC B S (填”>“,”=“或”<“)20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.21.(2020·湖北省中考真题)在58⨯的网格中建立如图的平面直角坐标系,四边形OABC 的顶点坐标分别为(0,0)O ,(3,4)A ,(8,4)B ,(5,0)C .仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB 绕点C 逆时针旋转90︒,画出对应线段CD ;(2)在线段AB 上画点E ,使45BCE ︒∠=(保留画图过程的痕迹);(3)连接AC ,画点E 关于直线AC 的对称点F ,并简要说明画法.22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:AEC ADB ∆≅∆;(2)若A B =2,45BAC ︒∠=,当四边形A D FC 是菱形时,求B F 的长.23.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E 是边B C 上的一点,把ABE △平移到DCF ,再把ABE △逆时针旋转到ADG 的位置.(1)把ABE △平移到DCF ,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把ABE △逆时针旋转到ADG 的位置,旋转中心是______点;(4)若连接EG ,求证:AEG △是等腰直角三角形.24.(2020·北京育英中学初三三模)已知40AOB ∠=︒,M 为射线OB 上一定点,1OM =,P 为射线OA 上一动点(不与点O 重合),1OP <,连接PM ,以点P 为中心,将线段PM 顺时针旋转40︒,得到线段PN ,连接MN .(1)依题意补全图1;(2)求证:APN OMP ∠=∠;(3)H 为射线OA 上一点,连接NH .写出一个OH 的值,使得对于任意的点P 总有OHN ∠为定值,并求出此定值.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形ABCD 的边长为2cm ,120BAD ∠=︒,对角线AC 、BD 相交于点O .试求这个菱形的两条对角线AC 与BD 的长.(结果保留根号)结合图①,写出求解过程.(应用)(1)如图②,过图①中的点A 分别作AE AD ⊥,AF AB ⊥,连结CE 、CF ,则四边形AECF 的面积为_________.(2)如图③,在菱形ABCD 中,120BAD ∠=︒,对角线AC 、BD 相交于点O .将其绕着点O 顺时针旋转90°得到菱形A B C D ''''.若1AB =,则旋转前后两个菱形重叠部分图形的周长为_________.参考答案一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·扬州市梅岭中学初二期末)下列图形是中心对称图形的是( )A .B .C .D .[答案]B[解析]解:A 、不是中心对称图形,不符合题意,故选项A 错误;B 、是中心对称图形,符合题意,故选项B 正确;C 、不是中心对称图形,不符合题意,故选项C 错误;D 、不是中心对称图形,符合题意,故选项D 错误;故选:B .2.(2020·江西省初三其他)小明有一个俯视图为等腰三角形的积木盒,现在积木盒中只剩下如图所示的九个空格,下面列有积木的四种搭配方式,其中恰好能放人盒中空格的有( )A .1种B .2种C .3种D .4种[答案]D [解析]解:∵将搭配①②③④组合在一起,正好能组合成九个空格的形状,∴恰好能放入的有①②③④.故选:D .3.(2020·湖北省中考真题)在平面直角坐标系中,点G 的坐标是,连接,将线段绕原点O 旋转,得到对应线段,则点的坐标为( )()2,1-OG OG 180︒OG 'G 'A .B .C .D .[答案]A [解析]根据题意可得,与G 关于原点对称,∵点G 的坐标是,∴点的坐标为.故选A .4.(2019·山东省初三期末)如图,B A =B C ,∠A B C =80°,将△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点,连接D E ,则∠B ED 为( )A .50°B .55°C .60°D .65°[答案]A [解析]∵△B D C 绕点B 逆时针旋转至△B EA 处,点E ,A 分别是点D ,C 旋转后的对应点, ∴∠C B D =∠A B E ,B D =B E ,∵∠A B C =∠C B D +∠A B D ,∠EB D =∠A B E +∠A B D ,∠A B C =80°,∴∠EB D =∠A B C =80°,∵B D =B E ,∴∠B ED =∠B D E=(180°-∠EB D )=(180°-80°)=50°, 故选:A .5.(2020·辽宁省初二期末)如图,中,∠B =30°,∠C =90°,将绕点A 按顺时针方向旋转到的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .60°B .90°C .120°D .150°()2,1-()2,1()1,2-()2,1--G '()2,1-G '()2,1-1212Rt ABC Rt ABC 11AB C△[答案]C[解析]在中,由旋转的性质得:为旋转角,点C 、A 、在同一条直线上即旋转角等于故选:C .6.(2020·山东省初二期中)如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),A C =2.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(2,2)B .(1,2)C .(﹣1,2)D .(2,﹣1)[答案]A [解析]∵点C 的坐标为(﹣1,0),A C =2,∴点A 的坐标为(﹣3,0),如图所示,将Rt △A B C 先绕点C 顺时针旋转90°,Rt ABC 30,90B C ∠=︒∠=︒9060BAC B ∴∠=︒-∠=︒1CAC ∠1160B AC BAC ∠=∠=︒1B 11118018060120CAC B AC ∠=︒-∠=︒-︒=∴︒120︒则点A ′的坐标为(﹣1,2),再向右平移3个单位长度,则变换后点A ′的对应点坐标为(2,2),故选:A .7.(2020·河北省中考真题)如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四边形,并推理如下:点,分别转到了点,处,而点转到了点处.∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中”∵,”和”∴四边形……”之间作补充.下列正确的是( )A .嘉淇推理严谨,不必补充B .应补充:且,C .应补充:且D .应补充:且, [答案]B[解析]根据旋转的性质得: C B =A D ,A B =C D ,∴四边形A B D C 是平行四边形;故应补充”A B =C D ”,故选:B .8.(2020·海南省中考真题)如图,在中,将绕点逆时针旋转得到,使点落在边上,连接,则的长度是( )ABC ∆AC O CDA ∆ABC ∆A C C A B D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =Rt ABC 90,30,1,C ABC AC cm ∠=︒∠=︒=Rt ABC A Rt AB C ''△C 'AB BB 'BB 'A .B . CD .[答案]B [解析]解:∵由直角三角形中,30°角所对的直角边等于斜边的一半可知,∴ C m ,又∠C A B =90°-∠A B C =90°-30°=60°,由旋转的性质可知:,且,∴为等边三角形,∴.故选:B .9.(2020·哈尔滨市萧红中学初三月考)如图,点是等边内一点,将以点为中心顺时针旋转,得到,连接,若,则的度数为( )A .B .C .D .[答案]D [解析]∵,且任意三角形内角和都为180°∴∵为等边三角形∴°∵°1cm 2cm 90,30,1,C ABC AC cm ∠=︒∠=︒==2=2AB AC '=60∠∠=CAB BAB '=AB AB '∆BAB '==2BB AB D ABC ∆BDC ∆C 60︒ACE ∆BE 45AEB ∠=︒DBE ∠25302015AFE BFC ∠=∠1AEB FBC ACB ∠+∠=∠+∠ABC 60ACB ∠=45AEB ∠=∴∴∵以点C 为中心顺时针旋转60°得到∴∴故选:D10.(2020·辽宁省初二期中)如图,△A B C 绕点A 顺时针旋转45°得到△A B ′C ′,若∠B A C =90°,A B =A C,则图中阴影部分的面积等于( )A .2B .1 CD ﹣l[答案]D [解析]∵△A B C 绕点A 顺时针旋转45°得到△A ′B′C ′,∠B A C =90°,,∴B C =2,∠C =∠B =∠C A C ′=∠C ′=45°,A C ′=,∴A D ⊥B C ,B ′C ′⊥A B ,∴A D = B C =1,A F=FC ′= A C ′=1, ∴D C ′=A C ′-1,14560FBC ︒︒∠+=∠+115FBC ︒∠-∠=BDC ACE △1DBC ∠=∠115DBE DBC FBC FBC ︒∠=∠-∠=∠-∠=122∴图中阴影部分的面积等于:S△A FC ′-S△D EC ′=×1×1-×-1)2-1,故选D .11.(2020·无锡市凤翔实验学校初三月考)如图,平面直角坐标系中,矩形OA B C 的顶点A(﹣6,0),C (0,.将矩形OA B C 绕点O顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为()A .B .C . D.[答案]D[解析]解:连接OB 1,作B 1H⊥OA 于H,由题意,得OA =6,则tA n∠B OA =,∴∠B OA =30°,∴∠OB A =60°,由旋转的性质可知∠B 1OB =∠B OA =30°,1212(-(4)-(-(-3ABAO=∴∠B 1OH=60°,在△A OB 和△HB 1O , ∴△A OB ≌△HB 1O ,∴B 1H=OA =6,∴点B 1的坐标为(6),故选:D .12.(2020·河南省初二期末)如图,在平面直角坐标系中有一边长为的正方形,边,分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形,照此规律作下去,则点的坐标为( )A .B .C .D . [答案]D [解析]解:∵正方形OA B C 边长为1,∴,∵正方形OB B1C 1是正方形OA B C 的对角线OB 为边,∴OB 1=2,∴B 1点坐标为(0,2),同理可知OB 2,∴B 2点坐标为(-2,2),同理可知OB 3=4,B 3点坐标为(-4,0),B 4点坐标为(-4,-4),B 5点坐标为(0,-8),111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩=,=,=,1OABC OA OC x y OB 11OBB C 1OB 122OB B C 2020B 10101010(22)-,20202020(22)-,20202020(22)--,10101010(22)--,B 6(8,-8),B 7(16,0),B 8(16,16),B 9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来倍,∵2020÷8=252…4,∴B 2020的横纵坐标符号与点B 4相同,横纵坐标互为相反数,且都在第三象限,∴ B 2020的坐标为(-21010,-21010).故选:D .13.(2020·河南省初三学业考试)如图,在中,,,,D 为A C 中点,P 为A B 上的动点,将P 绕点D 逆时针旋转得到,连,线段最小值为A .B .C .2D .[答案]C [解析]如图所示,过P'作P'E ⊥A C 于E ,则∠A =∠P'ED =90°,由旋转可得,D P=P'D ,∠PD P'=90°,∴∠A D P=∠EP'D ,在△D A P 和△P'ED 中,∴△D A P ≌△P'ED (A A S ),Rt ABC 90A ∠=3AB =4AC =90'P 'CP 'CP ()1.6 2.4ADP EP D A P EDDP P D ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴P'E=A D =2,∴当A P=D E=2时,D E=D C ,即点E 与点C 重合,此时C P'=EP'=2,∴线段C P′的最小值为2,故选C .14.(2020·黑龙江省初三月考)如图,已知正方形,,是中点,平分交于点,将绕点顺时针旋转得,则下列结论中:①;②;③平分;④;⑤()A .①③B .①③⑤C .①②④⑤D .①③④[答案]B[解析]过点F 作FM ⊥A D 于M ,FN ⊥A G 于N ,如图,∵四边形A B C D 是正方形,,是中点,∴∠D =∠C =∠A B C =90º,B C =A D =C D =A B =4,D E=C E=2,∴四边形C FMD 是矩形,且∴FM=C D =4,∵将绕点顺时针旋转得,∴,故①正确;且A G=A E= B G=D E=2,∠D A E=∠B A G ,∠D =∠B A G=90º,∴点G 在C B 的延长线上,∵平分交于点,∴∠EA F=∠B A F ,∴∠D A E+∠EA F=∠B A G+∠B A F 即∠D A F=∠GA F ,∴平分,故③正确;∴FN=FM=4, ABCD 4=AD E CD AF BAE ∠BC F ADE ∆A 90︒ABG ∆ΔΔABG AED ≅ΔΔAEF ABF ≅AF GAD ∠1GF =+6CF =-4=AD E CD AE =ADE ∆A 90︒ABG ∆ΔΔABG AED ≅AF BAE ∠BC F AF GAD ∠∵, ∴∴B F=,C F=B C +B G-B F=,故⑤正确;又A E≠A B ≠B F,,∴不成立,故②错误,∴正确的序号为①③⑤,故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·湖南省初一期末)如图,将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1=_________度;[答案]100[解析]解:∵将等边三角形OA B 绕O 点按顺时针方向旋转160°,得到三角形OA 'B ',∴,,∴,故答案为:100.16.(2019·湖南省初三学业考试)如图,P 是等边△A B C 内一点,△B MC 是由△B PA 绕点B 逆时针旋转所得,若MC //B P ,则∠B MC =_______°.1122AGF S GF AB AG FN ===16-ΔΔAEF ABF ≅'160BOB ∠=︒60AOB ∠=︒1'100BOB AOB ∠=∠-∠=︒[答案]120[解析]∵△B MC 是由△B PA 绕点B 逆时针旋转所得,∴,∴,又∵△A B C 是等边三角形,∴,又∵MC //B P ,∴,∴,∴.故答案为.17.(2020·江苏省初三三模)如图,在平面直角坐标系中,A (2,0),B(0,1),A C 由A B 绕点A 顺时针旋转90°而得,则A C 所在直线的解析式是____.[答案][解析]∵A (2,0),B (0,1),∴OA =2,OB =1,过点C 作C D ⊥x 轴于点D△△PBA MBC ≅PBA MBC ∠=∠60PBM MBC PBC ∠=∠+∠=︒MCB PBC ∠=∠+60MBC MCB ∠∠=︒18060120BMC ∠=︒-︒=︒120︒24y x =-则易知△A C D ≌△B A O (A A S ),∴A D =OB =1,C D =OA =2∴C (3,2),设直线A C 的解析式为,将点A 、点C 坐标代入得, ∴, ∴直线A C 的解析式为.故答案为:.18.(2020·河北省初三二模)在锐角中,,, ,将绕点按逆时针方向旋转,得到.(1)如图1,当点在线段的延长线上时,则的度数为______________度;(2)如图2,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转过程中,点的对应点是点,则线段长度最小值是_____________.[答案]90 [解析]解:(1)由旋转的性质可得:,,,y kx b =+0223k b k b =+⎧⎨=+⎩24k b =⎧⎨=-⎩24y x =-24y x =-ABC 4AB =5BC =45ACB ∠=︒ABC B 111A B C △1C CA 11CC A ∠E AB P AC ABC B P 1P 1EP 21145A C B ACB ∠=∠=︒1BC BC =1145CC B C CB;(2)如图1,过点作,为垂足,为锐角三角形,点在线段上,在中,, 当在上运动,与垂直的时候,绕点旋转,使点的对应点在线段上时,最小,最小值为:; 三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·湖南省初一期末)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△A B C 的顶点均在格点上,O 、M 也在格点上.(1)画出关于直线OM 对称的; (2)画出绕点O 按顺时针方向旋转90°后所得的; (3) 计算:的面积为;(4) (填”>“,”=“或”<“)[答案](1)答案见解析;(2)答案见解析;(3)1.5;(4)>.[解析](1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;11111454590CC A CC B AC B B BD AC ⊥D ABC ∆∴D AC Rt BCD ∆52sin 452BD BC P AC BP AC ABC ∆B P 1P AB 1EP 112EP BP BE BD BE =-=-=ABC 111A B C △ABC 222A B C △111A B C △2CC A S 22CC B S(3)△A 1B 1C 1的面积为:2×2-×1×2-×1×2-×1×1=; 故答案为:;(4)如图所示,, , ∴;故答案为:>.20.(2020·南通市八一中学初一月考)如图①, 已知△A B C 中, ∠B A C =90°, A B ="A C ," A E 是过A 的一条直线, 且B 、C 在A E 的异侧, B D ⊥A E 于D , C E ⊥A E 于E.(1)求证: B D =D E+C E.(2)若直线A E 绕A 点旋转到图②位置时(B D <C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请给予证明;1212121.51.5213232CC A S =⨯⨯=2211124241311111222CC B S =⨯-⨯⨯-⨯⨯-⨯⨯-⨯=222CC A CC B S S>(3)若直线A E 绕A 点旋转到图③位置时(B D >C E), 其余条件不变, 问B D 与D E 、C E 的数量关系如何? 请直接写出结果, 不需证明.(4)根据以上的讨论,请用简洁的语言表达B D 与D E,C E 的数量关系.[答案](1)、证明过程见解析;(2)、B D =D E –C E ;证明过程见解析;(3)、B D =D E –C E ;(4)、当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,B D =D E+C E.[解析](1)∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E+C E(2)、∵B D ⊥A E ,C E ⊥A E∴∠A D B =∠C EA =90°∴∠A B D +∠B A D =90°又∵∠B A C =90°∴∠EA C +∠B A D =90°∴∠A B D =∠C A E在△A B D 与△A C E∴△A B D ≌△A C E∴B D =A E,A D =EC∴B D =D E –C E(3)、同理:B D =D E –C EADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(4)、归纳:由(1)(2)(3)可知:当B ,C 在A E 的同侧时,B D =D E –C E ;当B ,C 在A E 的异侧时,∴B D =D E+C E21.(2020·湖北省中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点逆时针旋转,画出对应线段;(2)在线段上画点,使(保留画图过程的痕迹);(3)连接,画点关于直线的对称点,并简要说明画法.[答案](1)见解析;(2)见解析;(3)见解析[解析]解:(1)如图示,线段是将线段绕点逆时针旋转得到的;(2)∠B C E 为所求的角,点E 为所求的点.(3)连接(5,0)和(0,5)点,与A C 的交点为F,且F 为所求.58⨯OABC (0,0)O (3,4)A (8,4)B (5,0)C CB C 90︒CD ABE 45BCE ︒∠=AC E ACF CD CB C 90︒22.(2020·四川省内江市第六中学初三三模)如图,已知△A B C 中,A B =A C ,把△A B C 绕A 点沿顺时针方向旋转得到△A D E,连接B D ,C E 交于点F.(1)求证:;(2)若A B =2,,当四边形A D FC 是菱形时,求B F 的长.[答案](1)证明过程见解析;(2)-2[解析](1)∵△A B C ≌△A D E 且A B =A C∴A E=A D ,A B =A C∠B A C +∠B A E=∠D A E+∠B A E∴∠C A E=∠D A B∴△A EC ≌△A D B(3)∵四边形A D FC 是菱形且∠B A C =45°∴∠D B A =∠B A C =45°由(1)得A B =A D∴∠D B A =∠B D A =45°∴△A B D 是直角边长为2的等腰直角三角形∴又∵四边形A D FC 是菱形AEC ADB ∆≅∆45BAC ︒∠=∴A D =D F=FC =A C =A B =2∴-223.(2020·辽宁省初二期末)如图,正方形A B C D 的边长为4,E是边B C 上的一点,把平移到,再把逆时针旋转到的位置.(1)把平移到,则平移的距离为_______;(2)四边形A EFD 是_______四边形;(3)把逆时针旋转到的位置,旋转中心是______点;(4)若连接EG,求证:是等腰直角三角形.[答案](1)4;(2)平行;(3)A ;(4)证明见解析.[解析](1)四边形A B C D 是边长为4的正方形由平移的性质可知,平移的距离为故答案为:4;(2)由平移的性质可知,平移距离为,且点在一条直线上又四边形A EFD 是平行四边形故答案为:平行;(3)由旋转的定义得:把逆时针旋转到的位置,旋转中心是A 点故答案为:A ;(4)由旋转的性质得:是等腰三角形,即ABE △DCF ABE△ADGABE△DCFABE△ADGAEG△4,//,90BC AD AD BC BAD∴==∠=︒4BC=4EF BC==,,,B EC F4EF AD∴==//AD BC//AD EF∴∴ABE△ADG,AG AE DAG BAE=∠=∠∴AEG90BAD∠=︒90BAE DAE∠+∠=︒,即是等腰直角三角形.24.(2020·北京育英中学初三三模)已知,M 为射线上一定点,,P 为射线上一动点(不与点O 重合),,连接,以点P 为中心,将线段顺时针旋转,得到线段,连接.(1)依题意补全图1;(2)求证:;(3)H 为射线上一点,连接.写出一个的值,使得对于任意的点P 总有为定值,并求出此定值.[答案](1)见解析;(2)见解析;(3)的值为1,110°[解析](1)补全图形,如图所示.;(2)证明:根据题意可知,,∵,∴;(3)解:的值为1.在射线上取一点G ,使得,连接,根据题意可知,,在和中 90DAG DAE ∴∠+∠=︒90EAG ∠=︒∴AEG 40AOB ∠=︒OB 1OM =OA 1OP <PM PM 40︒PNMN APN OMP ∠=∠OA NH OH OHN ∠OH 40MPN AOB ∠=∠=︒MPA AOB OMP MPN APN ∠=∠+∠=∠+∠APN OMP ∠=∠OH PA PG OM =GN MP NP =OMP ∆GPN ∆∵,∴,∴,∵,∴,∴,∴,∴.25.(2020·山东省诸城市树一中学初三二模)如图1,点O 是正方形A B C D 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接A G ,D E .(1)求证:D E ⊥A G ;(2)正方形A B C D 固定,将正方形OEFG 绕点O 逆时针旋转α角(0°< α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)②若正方形A B C D 的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.OM PG OMP GPN MP NP =⎧⎪∠=∠⎨⎪=⎩OMP GPN ∆∆≌,40OP GN AOB NGP =∠=∠=︒PG OH =OP HG =NG HG =70NHG ∠=︒110OHN ∠=︒[答案](1)D E⊥A G (2)①当∠OAG′为直角时,α=30°或150°.②315°[解析]解:(1)如图1,延长ED 交A G于点H,∵点O是正方形A B C D 两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,{OA=OD∠AOG=∠DOE=90∘OG=OE,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90∘,∴∠GAO+∠DEO=90∘,∴∠AHE=90∘,即DE⊥AG;(2)①如图2,在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0∘增大到90∘过程中,当∠OAG′=90∘时,∵OA=OD=12OG=12OG′,∴在Rt△OAG′中,sin∠A GO=OAOG′=12,∴∠AG′O=30∘,∵OA ⊥OD ,OA ⊥AG′,∴OD//AG′,∴∠DOG′=∠AG′O =30∘,即α=30∘;(Ⅱ)α由90∘增大到180∘过程中,当∠OAG′=90∘时,同理可求∠BOG′=30∘,∴α=180∘−30∘=150∘.综上所述,当∠OAG′=90∘时,α=30∘或150∘.②如图3,当旋转到A 、O 、F′在一条直线上时,AF′的长最大,∵正方形A B C D 的边长为1,∴OA =OD =OC =OB =√22, ∵OG =2OD ,∴OG′=OG =√2,∴OF′=2,∴AF′=AO +OF′=√22+2,∵∠COE′=45∘,∴此时α=315∘.26.(2020·长春市新朝阳实验学校初三月考)(教材呈现)下图是华师版八年级下册数学教材第112页的部分内容.例2如图,已知菱形的边长为,,对角线、相交于点.试求这个菱形的两条对角线与的长.(结果保留根号)ABCD 2cm 120BAD ∠=︒AC BD O AC BD结合图①,写出求解过程.(应用)(1)如图②,过图①中的点分别作,,连结、,则四边形的面积为_________.(2)如图③,在菱形中,,对角线、相交于点.将其绕着点顺时针旋转90°得到菱形.若,则旋转前后两个菱形重叠部分图形的周长为_________.[答案][教材呈现],A C =2C m ;[应用](1) C m 2;(2).[解析]教材呈现:∵四边形是菱形, A AE AD ⊥AF AB ⊥CE CF AECF ABCD 120BAD ∠=︒AC BD O O A B C D ''''1AB =BD =34-ABCD∴,.∴.∴.∴是等边三角形.∴ C m .∵,∴是直角三角形.∴. ∴ C m .应用:(1)由[教材呈现]知:是等边三角形 ∵四边形是菱形∴° ∵∴,,° ∵A B =2C m∴同理可得: C m ,° ∴为等边三角形∴C m ∴S 四边形A EC F = A C ∙EF=×22. (2)设与交于点E//AD BC AB BC =180BAD ABC ∠+∠=︒18060ABC BAD ∠=︒-∠=︒ABC ∆2AC AB ==AC BD ⊥AOB BO =2BD BO ==ABC ABCD 1302ABO ABC ∠=∠=AF AB ⊥2BF AF =AB =60AFE ∠=AE =60AEF ∠=AEF 1212AB B C ''由菱形A B C D 性质可知:°∵∴∴∴∴∴∴ ∵菱形A B C D 与菱形的重叠部分是正八边形 ∴其周长为:=. 故答案为:.30EBC BEC AEB EB A ''''∠=∠=∠=∠=,OB OB OA OC ''==AB C B ''=C EB AEB ''≅△△AE EC BC ''==BE=1AB AE BE AE =+==12AE =A B C D ''''182⨯44。

九年级上学期数学《旋转》单元检测题附答案

九年级上学期数学《旋转》单元检测题附答案
[解析]
试题分析:根据中心对称图形与轴对称图形的概念依次分析即可.
①②③是只是中心对称图形,④只是轴对称图形,
故选C.
考点:本题考查的是中心对称图形与轴对称图形
点评:解答本题的关键是熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫对称轴;在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
九年级上册数学《旋转》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题4分,共40分)
1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )
A. B. C. D.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
3.下列图形中是轴对称图形,但不是中心对称图形的是()
A. B. C. D.
[答案]B
[解析]
[分析]
根据轴对称图形与中心对称图形的概念求解.
[详解]A、是中心对称图形,不是轴对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,符合题意;
C、是轴对称图形,也是中心对称图形,不符合题意;
D、是轴对称图形,也是中心对称图形,不符合题意.
2.下列图形中,为中心对称图形的是( )
A. B. C. D.
[答案]B
[解析]
[分析]
根据中心对称图形的定义,结合所给图形即可作出判断.
[详解] 、不是中心对称图形,故选项错误;
、是中心对称图形,故选项正确;
、不是中心对称图形,故选项错误;
、不是中心对称图形,故选项错误.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
F
D
C
E
B
A
F
D
E
C
《旋转》单元测试
姓名________得分______ 考试时间100分钟,满分120分
一选择题 (每题3分,共30分)
1.下列图形中,不是旋转图形的是
( )
2.观察下列图案,其中旋转角最大的是
( )
3.如图,将正方形图案绕中心O 旋转180°后,得到的图案是
( )
4.下列命题中的真命题是 ( ) (A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形. 5、下列说法不正确的是( ) A 、 中心对称图形一定是旋转对称图形 B 、轴对称图形一定是中心对称图形
C 、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
D 、在平移过程中,对应点所连的线段也可能在一条直线上 6、图1可以看作是一个等腰直角三角形旋转若干次而生成的则
每次旋转的度数可以是( )
A .900
B .600
C .450
D .300
7、下列图形中既是轴对称图形,又是中心对称图形的是( ) A 、平行四边形 B 、等边三角形 C 、正方形 D 、直角三角形
8、如图2,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积为( )
A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、无法确定
9.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示, 那么她所旋转的牌从左起是( )
A .第一张、第二张
B .第二张、第三张
C .第三张、第四张
D .第四张、第一张
(1) (2)
10、如图3,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转900得到△DCF ,连结EF ,若∠BEC=600,则∠EFD 的度数为( ) A 、100 B 、150 C 、200
D 、250
图2
图3
B
A
C
E
D
A
B
C B'A'
二填空题 (每题4分共24分)
11.如图11-1所示,P 是等边△ABC 内一点,△BMC 是由△BPA 旋转所得,则∠PBM =_____________.
12.P (5,2),则P 点关于x 轴对称点坐标为_________;关于y 轴对称点坐标为_________;关于
原点的对称点坐标为_______________.
13.如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“________________”交通标志(不画图案,只填含义).
14、如图4,把三角形△ABC 绕着点C 顺时针旋转350
,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠
A 'DC=900
,则∠A 的度数是__________。

15.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到的正方形EFCG ,EF 交AD 于点H ,那么DH 的长为______.
16、如图5,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠A=150, ∠C=100,E ,B ,C 在同一直线上,则∠ABC=________,旋转角度是__________。

三 解答题
17、(10分)
⑴点A (-2,1)关于x 轴的对称点为A ′( , ); ⑵点B (0,-3)关于x 轴的对称点为B ′( , ); ⑶点C (-4,-2)关于y 轴的对称点为C ′( , ); ⑷点D (5,0)关于y 轴的对称点为D ′( , )。

18、如图,在平面直角坐标系中,先把梯形ABCD 向上平移
6个单位长度得到梯形A 1B 1C 1D 1.
(1)请你在平面直角坐标系中画出梯形A 1B 1C 1D 1 ;
(2)以点D 1为旋转中心,把(1)中画出的梯形绕点D 1顺时针方向旋转90 得到梯形A 2B 2C 2D 2 ,请你画出梯形A 2B 2C 2D 2
.(12分)
图4 图5
A
B
C ...
11
22334
455-1-1-2-2-3-3-4-4-5-5
x
y o
19(12分)
认真观察图(23.1)的4个图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征.
特征1:_________________________________________________; 特征2:_________________________________________________.
(2)请在图(23.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征
21、如图,画出△ABC 绕点O 顺时针 22、如图,请画出ABCD 关于点O 成对称
旋转60°所得到的图形. 中心的图形。

23、按要求画出图形:
(1)把△ABC 先向右平移5格,再 向上平移3格得到△A 1B 1C 1 。

(2)作△ABC 关于原点对称的图形 得到△A 2B 2C 2 。

(3) 作△ABC 关于X 轴对称的图形 得到△A 3B 3C 3 。

B
A C O
B
A C
D
O
O
A
B
C
Y
X
图(23.1) 图(23.2)
20、(12分)四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE的长度(3)BE与DF的位置关系如何?
D C
E。

相关文档
最新文档