2009年四川省泸州市中考数学试题(WORD版含扫描答案)

合集下载

2009年四川省泸州市中考模拟试题

2009年四川省泸州市中考模拟试题

泸县九中2009年春期初09级半期考试数学试题全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间共120分钟.命题人:田文全;审题人:何明清、胡绍泉A 卷第Ⅰ卷 选择题(共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题3分,共30分. 在每小题给出的四个选项中,只有一个选项符合题意要求.1.-32的绝对值是 ( ) A 、32 B 、 -23 C 、23 D 、-322.下列计算正确的是 ( ) A 、 a 3 +a 4=a 7 B 、a 3•a 4=a 7 C 、 (a 3)4=a 7 D 、 a 6÷a 3=a 23.已知如图:在△ABC 中,点D 是AB 的中点, ( ) E是AC 的中点,若BC=4,则DE 的长A 、 4B 、 3C 、 2D 、 1 4.一组数据1,2,4,3,6的极差为 ( ) A 、4 B 、 3 C 、 5 D 、 1 5.函数y=3-x x中的自变量的取值范围是 ( ) A 、x<3 B 、x<3 C 、x ≠0 D 、x ≠36、图中几何体的主视图是 ( )7.在2008年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查100个成年人,结果其中有15个成年人吸烟,对于这个关于数据收集与处理的问题,下列说法正确的是 ( )A 、调查的方式是普查B 、本地区只有85个成年人不吸烟C 、样本是15个吸烟的成年人D 、本地区约有15%的成年人吸烟 8.直角三角形在正方形网格图中的位置如图所示,则cos α的值 ( )A 、43 B 、34 C 、54 D 、539.已知如图:△ABC 的外接圆⊙O 的半径为2cm, sinB=43,则弦AC 的长 ( ) A 、 4 B 、 3 C 、 2.5 D 、3.510.对于反比例函数y=x2,下列说法中不正确...的是 ( ) A 、点(-2,-1)在它的图像上 B 、它的图像在第一,三象限C 、当x>0时y 随着x 的增大而增大D 、当x<0时y 随着x 的增大而减小第Ⅱ卷 (非选择题共70分)二、填空题(本大题4个小题,共16分,每小题4分)11.25的算术平方根是12.分解因式:m 3-9m=13.已知圆锥的底面直径为4cm,其母线长为3cm,则它的侧面积14.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分 是正方形和正六边形,则第三个正多边形是 .三、(本大题2个小题共16分,每小题8分)15.8-2sin45°+(2-π)0+(31)-116.化简:122--x xx •(1+x 1)四、(本大题2个小题共18分,每小题9分)17.某乡镇企业生产部有技术工人10人,生产部为了合理制定产品的每月生产定额,统计这10人某月的加工零件数(1) 写出这10人该月加工零件数的平均数,中位数和众数 (2) 假如生产部责任人把每位工人的月加工零件数定为60件,你认为这个定额是否合理,为什么?18.如图:点E,F四边形ABCD的对角线AC上,AF=CE,DF=BE,DF∥BE,求证:四边形ABCD是平行四边形五、(本大题2个小题,共20分,每小题10分)19.某水库需要将一段护坡土坝进行填土改造,在施工质量相同的情况小,甲,乙两施工队给出的报价分别是:甲施工队先收启动资金1000元,以后每填土1立方米收费20元;乙施工队不收启动资金,但每填土1立方米收费25元。

2009年四川省达州市中考数学试题及答案(word版)

2009年四川省达州市中考数学试题及答案(word版)

达州市2009年高中阶段教育学校招生统一考试数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试时间100分钟,满分100分.第Ⅰ卷 (选择题 共24分)1.答第Ⅰ卷前,考生务必将姓名、准考证号、考试科目按要求填涂在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题号的答案标号涂黑,不能将答案答在试题卷上. 3.考试结束,将本试卷和答题卡一并交回.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本题8小题,每小题3分,共24分) 1.下列各数中,最小的数是A.-1B. -2C.0D.12.下列计算正确的是A.a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6D.6a 2÷2a 2=3a 23则该组学生成绩的中位数是 A .70B. 75C. 80D. 854. 如图1,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA=OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是A. ①②B.①④C.②③④D.①②④5. 函数b kx y +=的图象如图2所示,则当y <0时,x 的取值范围是 A. x <-2 B. x >-2 C. x <-1 D. x >-16. 在平面直角坐标系中,设点P 到原点O 的距离为ρ,OP 与x 轴正方向的夹角为α,则用][αρ,表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[]︒45,2.若点Q 的极坐标为[]︒60,4,则点Q 的坐标为 A.()32,2 B.()32,2- C.(23,2) D.(2,2)7.图3是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是A 、13B 、26C 、47D 、948. 跟我学剪五角星:如图4,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC 剪下△ABC ,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36︒),则在图③中应沿什么角度剪?即∠ABC 的度数为A 、126︒B 、108︒C 、90︒D 、72︒达州市2009年高中阶段教育学校招生统一考试数 学注意事项:1. 用蓝黑色钢笔或圆珠笔直接答在试题卷上.2. 答卷前将密封线内各项目填写清楚.第Ⅱ卷 (非选择题 共76分)二、填空题:把最后答案直接填在题中的横线上(本题7小题,每小题3分,共21分).9、分解因式:mn 2-m =_______________________.10、如图5,△ABC 中,AB =AC ,与∠BAC 相邻的外角为80°,则∠B =____________. 11、若a -b =1,ab=-2,则(a +1)(b -1)=___________________.12、将一种浓度为15℅的溶液30㎏,配制成浓度不低于20℅的同种溶液,则至少需要浓度为35℅的该种溶液____________㎏.13、长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是______________.14、达成铁路扩能改造工程将于今年6月底完工,届时达州至成都运营长度约为350千米,若一列火车以170千米/时的平均速度从达州开往成都,则火车距成都的路程y (千米)与行驶时间(时)之间的函数关系式为__________________. 15、如图6,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(55分)(一)(本题2小题,共13分)16.(8分)(1)(4分)计算:(-1)3+(2009-2)0-21-(2)(4分)解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.不等式组的解集在数轴上表示如下:17.(6分)在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有____________名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.(二)(本题2小题,共11分)18.(5分)如图7,在△ABC 中,AB =2BC ,点D 、点E 分别为AB 、AC 的中点,连结DE ,将△ADE 绕点E 旋转180︒得到△CFE.试判断四边形BCFD 的形状,并说明理由.19.(6分)如图8,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积.(三)(本题2小题,共13分)20.(6分)阳光明媚的一天,数学兴趣小组的同学去操场上测量旗杆的高度,他们带了以下测量工具:皮具、三角尺、标杆、小平面镜等.首先,小明说:“我们用皮尺和三角尺(含30︒角)来测量”.于是大家一起动手,测得小明与旗杆的距离AC 为15㎝,小明的眼睛与地面的距离为1.6㎝,如图9(甲)所示.然后,小红和小强提出了自己的想法. 小红说:“我用皮尺和标杆能测出旗杆的高度.” 小强说:“我用皮尺和小平面镜也能测出旗杆的高度!” 根据以上情景,解答下列问题:(1)利用图9(甲),请你帮助小明求出旗杆AB 的高度(结果保留整数.参考数据:5.030sin =︒,87.030cos ≈︒,58.030tan ≈︒,73.130cot ≈︒);(2)你认为小红和小强提出的方案可行吗?如果可行,请选择一中..方案在图9(乙)中画出测量示意图,并简述..测量步骤.21、(7分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).22.(8分)如图10,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.(1)求证:DF垂直平分AC;(2)求证:FC=CE;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.23、(9分)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式; (2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.达州市2009年高中阶段教育学校招生统一考试数学试题参考答案一、选择题(本题8小题. 每小题3分,共24分)1.B2.B3.C4.D5.B6.A7.C8.A二、填空题(本题7小题. 每小题3分,共21分)9. m(n+1)(n-1)10.40°11.-412.1013.3414.y=350-170x(可以不写自变量取值范围)15.(5+1)三、解答题(共55分)(一)(本题2小题,共14分)16.(1)计算:(-1)3+(2009-2)0--12=-1+1-123分=-124分(2)解:由①解得x>-31分由②解得x≤12分∴不等式组的解集为-3<x≤13分不等式组的解集在数轴上表示如下:4分17.(1)501分(2)环境小卫士的频数为162分文明劝导员的频率为023分补全频率分布直方图4分(3)180人6分数学答案第2页(共4页)(二)(本题2小题,共11分)18.解:四边形BCFD是菱形,理由如下:∵点D、点E分别是AB、AC的中点∴DE∥=12BC1分又∵△CFE是由△ADE旋转而得∴DE=EF∴DF∥=BC∴四边形BCFD是平行四边形3分又∵AB=2BC,且点D为AB的中点∴BD=BC∴BCFD是菱形5分(说明:只判断没写出理由给1分)19.解:(1)∵点A(-2,4)在反比例函数图象上∴4=k′-2∴k′=-81分∴反比例函数解析式为y=-8x2分(2)∵B点的横坐标为-4,∴y=-8-4∴y=2∴B(-4,2)3分∵点A(-2,4)、点B(-4,2)在直线y=kx+b上∴4=-2k+b2=-4k+b解得k=1b=6∴直线AB为y=x+64分与x轴的交点坐标C(-6,0)∴S△AOC=12CO·yA=12×6×4=126分数学答案第3页(共4页)(三)(本题2小题,共13分)20.解:(1)过点D作DE⊥AB于点E,1分在Rt△BDE中,DE=AC=15m,∠BDE=30°∴BE=DE·tan30°≈15×058=870(m)2分∴AB=BE+AE=870m+16m=103m≈10m3分(2)小红和小强提出的方案都是可行的小红的方案:利用皮尺和标杆:(1)测量旗杆的影长AG(2)测量标杆EF的长度(3)测量同一时刻标杆影长FH6分小强的方案:把小平面镜放在适当的位置(如图点P处),使得小强可以在镜中看到旗杆AB的顶端步骤:(1)测出AP的长度(2)测出NP的长度(3)测出小强眼睛离地面的高度MN6分21.解:(1)设改进设备后平均每天耗煤x吨,根据题意,得:452x+10=45-10xx+52分解得x=153分经检验,x=15符合题意且使分式方程有意义答:改进设备后平均每天耗煤15吨4分(2)略(只要所编应用题的方程与原题的方程相同或相似均可得分)7分(四)(本题2小题,共17分)22.证明:(1)∵DE是⊙O的切线,且DF过圆心O∴DF⊥DE又∵AC∥DE∴DF⊥AC∴DF垂直平分AC2分(2)由(1)知:AG=GC又∵AD∥BC∴∠DAG=∠FCG又∵∠AGD=∠CGF∴△AGD≌△CGF(ASA)4分∴AD=FC∵AD∥BC且AC∥DE∴四边形ACED是平行四边形∴AD=CE∴FC=CE5分(3)连结AO;∵AG=GC,AC=8cm,∴AG=4cm在Rt△AGD中,由勾股定理得GD=AD2-AG2=52-42=3cm6分设圆的半径为r,则AO=r,OG=r-3在Rt△AOG中,由勾股定理得AO2=OG2+AG2有:r2=(r-3)2+42解得r=2568分∴⊙O的半径为256cm.23.解:(1)由题意得6=a(-2+3)(-2-1)∴a=-21分∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)设直线AC为y=kx+b,则有0=k+b6=-2k+b解得k=-2b=2∴直线AC为y=-2x+23分(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)4分∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92=-2a+122+92∴当a=-12时,PM的最大值为926分②M1(0,6)7分M2-14,6789分。

泸州中考数学试题及参考答案

泸州中考数学试题及参考答案

泸州市2016年高中阶段学校招生考试数学试卷全卷满分120分,考试时间120分钟.制卷:泸州市江阳西路学校何平第Ⅰ卷 (选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上.的相反数为C.16- D.162.计算223a a-的结果是A.24a B.23a C.22a3.下列图形中不是轴对称图形的是A. B. C. D.4.将5570000用科学记数法表示正确的是A.55.5710⨯ B.65.5710⨯ C. 75.5710⨯ D.85.5710⨯5.下列立体图形中,主视图是三角形的是A. B. C. D.6.数据4,8,4,6,3的众数和平均数分别是A. 5,4 ,5 ,5 D. 4,57.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只、红球6只、黑球4只.将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是A.12B.14C.13D.168.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是9.若关于x的一元二次方程222(1)10x k x k+-+-=有实数根,则k的取值范围是A. 1k≥ B.1k> C.1k< D.1k≤10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是D.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M、N,则MN的长为C.4D.512.已知二次函数22y ax bx =--(0a ≠)的图象的顶点在第四象限,且过点(-1,0),当a b -为整数时,ab 的值为A.34或1B.14或1C. 34或12D. 14或34第Ⅱ卷 (非选择题 共84分)注意事项:用毫米黑色墨迹签字笔在答题卡上题目上对应题号位置作答,在试卷上作答无效.二、填空题(每小题3分,共12分) 13.分式方程4103x x-=-的根是 . 14. 分解因式:2242a a ++= .15. 若二次函数2241y x x =--的图象与x 轴交于A (1x ,0)、B (2x ,0)两点,则1211x x +的值为 .16. 如图,在平面直角坐标系中,已知点A (1,0),B (1a -,0),C (1a +,0)(0a >),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BP C=90°,则a 的最大值是 .三、(每小题6分,共18分)17.计算:21)sin 60(2)O O +-18. 如图,C 是线段AB 的中点,CD=BE , CD∥BE .19.化简:322(1)12a a a a -+-⋅-+四、(每小题7分,共14分)20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并将调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成).根据表、图提供的信息,解决以下问题:xDB(1)计算出表中a 、b 的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数; (3)若该地区七年级学生共有47500人,试估计该地区七年级学生 中喜爱“新闻”类电视节目的学生有多少人?21.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件品的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案? 五、(每小题8分,共16分)22.如图,为了测量出楼房AC 的高度,从距离楼底C处D (点D 与楼底C在同一水平面上)出发,沿斜面坡度为1:i =DB 前进30米到达点B ,在点B处测得楼顶A 的仰角为53°,求楼房AC 的高度(参考数据:sin530.8O≈,cos530.6O ≈,4tan 533O ≈,计算结果用根号表示,不取近似值).D23.如图,一次函数y kx b=+(0k<)与反比例函数myx=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1).(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.六、(每小题12分,共24分)24.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG⋅BA=48,FG=2,DF=2BF,求AH的值.AHOFGCD BE25.如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线2y mx nx =+相交于A(1,33),B(4,0)两点. (1)求出抛物线的解析式;(2)在坐标轴上是否存在点D ,使得△ABD 是以线段AB 为斜边的直角三角形.若存在,求出点P 的坐标;若不存在,说明理由;(3)点P 是线段AB 上一动点(点P 不与点A 、B 重合),过点P 作PM ∥OA 交第一象限内的抛物线于点M ,过点M 作MC ⊥x 轴于点C ,交AB 于点N ,若△BCN 、△PMN 的面积BCN S ∆、PMN S ∆满足2BCN PMN S S ∆∆=,求MNNC的值,并求出此时点M 的坐标.。

2023年四川省泸州市中考数学真题(含答案解析)

2023年四川省泸州市中考数学真题(含答案解析)

2023年四川省泸州市中考数学真题学校:___________姓名:___________班级:___________考号:___________A.125︒4.一个立体图形的三视图如图所示,则该立体图形是(A.圆柱B.圆锥5.下列运算正确的是(A.32m m m-=B.36.从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.137.如图,ABCDY的对角线P,E是PD中点,若4=ADA .1B .8.关于x 的一元二次方程A .没有实数根C .有两个不相等的实数根9.《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数公式:()2212a m n =-,b =列四组勾股数中,不能..由该勾股数计算公式直接得出的是(A .3,4,5B .10.若一个菱形的两条对角线长分别是关于A .4109B .810912.已知二次函数22y ax ax =-+为正数,则a 的取值范围为(A .01a <<C .30a -<<或0<<3a 二、填空题13.8的立方根为______.14.在平面直角坐标系中,若点()2,1P -与点()2,Q m -关于原点对称,则m 的值是___________.三、解答题17.计算:(1321-+-18.如图,点B在线段19.化简:4521m mmm++⎛⎫++⎝20.某校组织全校800现随机抽取40名学生进行安全知识测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:并制作了如图所示的不完整的频数分布直方图;②在8090x≤<这一组的成绩分别是:89.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________(3)如果测试成绩达到80分及以上为优秀,试估计该校度为优秀的学生约有多少人?21.端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A 粽子能够畅销.根据预测,每千克A 粽子节前的进价比节后多进A 粽子的数量比节后用相同金额购进的数量少(1)该商场节后每千克A 粽子的进价是多少元?(2)如果该商场在节前和节后共购进A 粽子400节前每千克20元,节后每千克16元全部售出,得利润最大?最大利润是多少?22.如图,某数学兴趣小组为了测量古树DE 底端D 在同一水平线上的点A 出发,沿斜面坡度为点B ,再沿水平方向继续前进一段距离后到达点俯角为37︒,底部D 的俯角为60︒,求古树DE 的高度3tan 374︒≈,计算结果用根号表示,不取近似值)23.如图,在平面直角坐标系xOy 与反比例函数()0my x x=>的图象相交于点(1)求k ,m 的值;(2)平行于y 轴的动直线与l 和反比例函数的图象分别交于点为顶点的四边形为平行四边形,求点24.如图,AB 是O 的直径,作O 的切线交AB 的延长线于点(1)求证:BC 平分DCF ∠;(2)G 为 AD 上一点,连接CG 交AB 于点H ,若CH 25.如图,在平面直角坐标系xOy 中,已知抛物线点A ,B ,()0,6C 三点,其对称轴为2x =.(1)求该抛物线的解析式;(2)点F 是该抛物线上位于第一象限的一个动点,直线E .①当CD CE =时,求CD 的长;②若CAD ,CDE ,CEF △的面积分别为1S ,2S ,3S ,且满足1322S S S +=,求点F 的坐标.参考答案:∴2180125D ∠=︒-∠=∴12125∠=∠=︒.故选:A .【点睛】本题主要考查了平行线的性质、是解答本题的关键.4.D∵90C ∠=︒,8AC =,BC ∴2210AB AC BC =+=∵以AD 为直径的半圆O 与∴OE BC ⊥,∵90C ∠=︒,∴90C OEB ︒∠=∠=,AC OE由题意得:此时F '落在值,设正方形ABCD 的边长为 四边形ABCD 是正方形,45F AK '∴∠=︒,P AE '∠F K AF ''⊥ ,45F AK F KA ''∴∠=∠=︒223AK a ∴=,F P K EP A '''∠=∠ ,E KP EAP '''∴△∽△,2F K KP AE AP ''∴==',12239AP AK a '∴==,729CP AC AP ''∴=-=27AP CP '∴=',∴当PE PF +取得最小值时,故答案为:27.(2)解:∵46818++=,∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是(181832+故答案为:82;(3)解:由题意可得:121080044040+⨯=(人)答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(1)节后每千克A 粽子的进价为10元(2)节前购进300千克A 粽子获得利润最大,最大利润为则90AFB BFD ∠=∠=︒,∵斜面AB 的坡度为2:3i =,∴设2BF x =,则3AF x =,在Rt ABF 中,根据勾股定理得:即()()()22223207x x +=,解得:20x =,负值舍去,即()22040m BF =⨯=,∵BC 为水平方向,DE 为竖直方向,∴90BGD ∠=︒,∵90BFD FDG BGD ∠=∠=∠=∴四边形BFDG 为矩形,∴40m DG BF ==,∵60DCG ∠=︒,∵CF 是O 的切线,∴390OCF OCB ∠=∠+∠=︒,∵AB 是O 的直径,∴190ACB OCB ∠=∠+∠=︒,∴13∠=∠,∵AB 是O 的直径,且CD AB ⊥,∴ BCBD =,∴2A ∠=∠,∵OA OC =,∴1A ∠=∠,∴123A ∠=∠=∠=∠,∴BC 平分DCF ∠;(2)解:连接OC ,OG ,过点G 作GM AB ⊥于点∵AB 是O 的直径,且CD AB ⊥,∴132CE CD ==,1102OC OG AB ===,∴221OE OC CE =-=,∵GM AB ⊥,CD AB ⊥,∴CE GM ∥,1322S S S += ,2AD EF DE ∴+=,13DE AF ∴=,设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG FH ∴∥,DEI AFB ∴∠=∠,DI EG ⊥ ,90DIE ∴∠=︒,DEI AFB ∴△∽△,112333DI AB h ∴==+,即点D 21122363EI FH h h ==-++,。

2009年中考数学答案及评分标准

2009年中考数学答案及评分标准

2009年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分.1.-237; 2.10; 3.(x +2)(x -2); 4.25; 5.⎩⎨⎧==11y x ; 6.x y 2-=;7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.二、选择题:本大题共8小题,每小题3分,共24分.三、解答题:本大题共8小题,满分66分. 19.解:原式=222919⨯+-+ …………4分(每对一个值给1分)=1+1=2……………………5分20.解:设该镇这两年中财政净收入的平均年增长率为x , ……………………1分依题意可得:5000(1+x )2=2×5000 ………………………………4分解得 21=+x ,或021<-=+x (舍去) ……………………5分∴%4.41414.012=≈-=x……………………………………6分答:该镇这两年中财政净收入的平均年增长率约为41.4﹪.…………7分21.解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)22.证明:∵四边形ABCD 是平行四边形∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2分 又∵△ADE 和△CBF 都是等边三角形 ∴DE =BF ,AE =CF∠DAE =∠BCF =60° ………………4分∵∠DCF =∠BCD -∠BCF ∠BAE =∠DAB -∠DAE ∴∠DCF =∠BAE……………………6分∴△DCF ≌△BAE (SAS ) ………………7分∴DF =BE∴四边形BEDF 是平行四边形. …………8分23.解:(1)见参考图 ……………………………3分(不用尺规作图,一律不给分。

对图(1)画出弧给1分, 画出交点G 给1分,连AG 给1分;对图(2),画出弧AMG给1分,画出弧ANG 给1分,连AG 给1分) (2)设AD =x ,在Rt △ABD 中,∠ABD =45°∴BD =AD =x …………………………………4分 ∴CD =20-x …………………………………5分∵DC AD ACD =∠tan ,即xx -=2030tan…6分 ∴()3.71310132030tan 130tan 20≈-=+=+=x (米) …7分 答:路灯A 离地面的高度AD 约是7.3米. …8分24.解:(1)∵DE 平分△ABC 的周长∴1221086=++=+AE AD ,即y +x =12 ……1分∴y 关于x 的函数关系式为:y =12-x (2≤x ≤6) ……3分(取值范围占1分)(2)过点D 作DF ⊥AC ,垂足为F ∵2221086=+,即222AB BC AC =+ ∴△ABC 是直角三角形,∠ACB =90° ………………4分∴AD DF AB BC A ==∠sin ,即x DF-=12108 ∴5448xDF -= ………………………………5分∴x x x x DF AE S 52452544821212+-=-⋅⋅=⋅⋅= …………6分 (第24题图)F E DC BA(第22题图)DEFABC(第23题图(1))(第23题图(2))NM GD CBA AB CDFGE()5726522+--=x 故当x =6时,S 取得最大值572………………………………7分此时,y =12-6=6,即AE =AD .因此,△ADE 是等腰三角形. ……8分25.解:(1)∵BC 是⊙O 的弦,半径OE ⊥BC∴BE =CE…………………2分(2)连结OC∵CD 与⊙O 相切于点C∴∠OCD =90°………………………3分∴∠OCB +∠DCF =90° ∵∠D +∠DCF =90° ∴∠OCB =∠D………………………4分∵OB =OC ∴∠OCB =∠B ∵∠B =∠AEC ∴∠D =∠AEC………………………5分(3)在Rt △OCF 中,OC =5,CF =4∴3452222=-=-=CF OC OF…………6分∵∠COF =∠DOC ,∠OFC =∠OCD∴Rt △OCF ∽Rt △ODC ………………………………8分∴OFOCOC OD =,即3253522===OF OC OD …………9分 ∴3105325=-=-=OE OD DE ∴32043102121=⨯⨯=⋅⋅=∆CF DE S CDE…………10分 注:本小题也可利用Rt △OCD ∽Rt △ACB 等,以及S △CDE =S △OCD -S △OCE 求解.26.解:(1)由题意可设抛物线的关系式为y =a (x -2)2-1…………1分因为点C (0,3)在抛物线上 所以3=a (0-2)2-1,即a =1…………………………2分所以,抛物线的关系式为y =(x -2)2-1=x 2-4 x +3……3分(2)∵点M (x ,y 1),N (x +1,y 2)都在该抛物线上∴y 1-y 2=(x 2-4 x +3)-[(x +1)2-4(x +1)+3]=3-2 x …………4分(第25题图)B当3-2 x >0,即23<x 时,y 1>y 2 ………………………………5分 当3-2 x =0,即23=x 时,y 1=y 2………………………………6分 当3-2 x <0,即23>x 时,y 1<y 2………………………………7分(3)令y =0,即x 2-4 x +3=0,得点A (3,0),B (1,0),线段AC 的中点为D (23,23) 直线AC 的函数关系式为y =-x +3………………………………8分因为△OAC 是等腰直角三角形,所以,要使△DEF 与△OAC 相似,△DEF 也必须是等腰直角三角形.由于EF ∥OC ,因此∠DEF =45°,所以,在△DEF 中只可能以点D 、F 为直角顶点.①当F 为直角顶点时,DF ⊥EF ,此时△DEF ∽△ACO ,DF 所在直线为23=y 由23342=+-x x ,解得2104-=x ,32104>+=x (舍去) ……9分将2104-=x 代入y =-x +3,得点E (2104-,2102+) …………10分 ②当D 为直角顶点时,DF ⊥AC ,此时△DEF ∽△OAC ,由于点D 为线段AC 的中点,因此,DF 所在直线过原点O ,其关系式为y =x .解x 2-4 x +3=x ,得2135-=x ,32135>+=x (舍去) …………11分将2135-=x 代入y =-x +3,得点E (2135-,2131+) …………12分(第26题图⑴)(第26题图⑵)。

2009年泸州中考题

2009年泸州中考题

2009年四川省泸州市中考数学试卷A 卷第Ⅰ卷 选择题(共39分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共13个小题,每小题3分,共39分. 在每小题给出的四个选项中,只有一个选项符合题意要求.1.34的的相反数是( )A .34- B .43-C .34D .432.保护水资源,人人有责任,我国是缺水的国家,目前可利用的淡水资源的总量仅仅为899000亿3米,用科学计数法表示这个数是( )A .630.89910⨯米 B .538.9910⨯米 C .438.9910⨯米 D .3389.910⨯米 3.下列图形中,是轴对称图形的是( )A .B .C .D .4.一组数据1,2,4,x ,6的众数是2,则x 的值是( )A .1B .4C .2D .65.在函数1y x =+中,自变量x 的取值范围是( ). A .1x > B .1x ≠ C .1x >- D .1x -≥6.如图1,正方形ABCD 是⊙O 的内接正方形,点P 在劣弧 CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A .45B .60C .75D .907.已知数据13、2-、0.618、125、34-,其中负数的概率为( )A .20%B .40%C .60%D .80%8.如图2,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( )A .6B .7C .8D .99.下列图形中,不是正方形的表面展开图的是( )OP D C BA 图1 图2F E D C B A 图3A PB OA .B .C .D .10.不等式组310x x >⎧⎨+>⎩的解集是( ) A .1x >-B .3x >C .1x <-D .13x -<<11.对于反比例函数2y x=,下列说法正确的是( )A .点()2,1-在它的图像上B .它的图像经过原点C .它的图像在第一、三象限D .当0x >时,y 随x 的增大而增大12.如图3,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA=6,PB=4,则⊙O 的半径是( )A .52B .56C .2D .513.两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( )A .2158cmB .2176cmC .2164cmD .2188cm泸州市2008年初中毕业考试暨高中阶段学校招生统一考试数学试卷卷第Ⅱ卷 (非选择题 共61分)注意事项:1.本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目写清楚题号 一 二 三 四 五 总分 总分人 复查人 得分 一选择题(答题卡)二(本大题3个小题,共19分,⑴小题7分,⑵、⑶每小题6分)14.⑴计算()116133-⎛⎫-+-- ⎪⎝⎭⑵分解因式2363a a -+ ⑶化简21211x xx++-三(本大题2个小题,共16分,每小题8分)15.如图4,E 是正方形ABCD 的边DC 上的一点,过点A 作FA ⊥AE 交CB 的延长线于点F , 求证:DE=BF16.学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次调查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图。

中考数学试题(word版含答案)

中考数学试题(word版含答案)

初中毕业生学业考试数 学 试 卷※考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)1.目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元2.计算23(2)a -的结果为( ) A .52a -B .68a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°, 则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左.视图是( )5.数据21,21,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21 C .23,21 D .21,256.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=7.如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )A .B .C .D . 俯视图第4题图 EA BCD第3题图45°125°8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )二、填空题(每小题3分,共24分) 9.分解因式:34a a -= . 10.函数33y x =+自变量x 的取值范围是 . 11.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计,则扇形纸片的面积是 cm 2.(结果用π表示)12.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 . 13.如图所示,AB 为O ⊙的直径,P 点为其半圆上一点,40POA C ∠=°,为另一半圆上任意一点(不含A B 、),则PCB ∠= 度.14.已知抛物线()经过点,且顶点在第一象限.有下列三个结论:①0a < ②0a b c ++> ③02ba->.把正确结论的序号填在横线上 .15.如图所示,在正方形网格中,图①经过 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”). 16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .A .B .C .D .y 1 2 2 1 1- (21)A , y 2 y 1 x O垂直 A . B . C . D . 第8题图 第12题图 CB A P O 40° 第13题图O y x 第14题图1- ①② ③ 第15题图A B C三、解答题(每题8分,共16分)17.计算:012|32|(2π)+-+-.18.解方程:2111x x x -=-+.四、解答题(每题10分,共20分)19.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法);(2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE . 求证:2EF DE =.20.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题: (1)甲区参加问卷调查的贫困群众有 人; (2)请将统计图补充完整; (3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?第1个图形 第2个图形 第3个图形 第4个图形第16题图A CB 第19题图 非常满意 人数 800 600 400 200 满意 比较满意 不满意 满意程度 甲 乙第20题图420 700 760500250 3040五、解答题(每题10分,共20分)21.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.22.如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.六、解答题(每题10分,共20分)23.某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)O AB ED C 第22题图A C DE F B 第23题图24.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元. (1)求w 与x 的函数关系式及自变量x 的取值范围; (2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?一等奖 二等奖 三等奖 单价(元) 12 10 5 E图(b ) 第25题图八、解答题(本题14分)26.如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(04t <<),OPQ △与直角梯形OABC 重叠部分的面积为S .(1)求经过O A B 、、三点的抛物线解析式; (2)求S 与t 的函数关系式;2009年铁岭市初中毕业生学业考试 数学试题参考答案及评分标准注:本参考答案只给出一种或几种解法(证法),若用其他方法解答并正确,可参考此评分标准相应步骤赋分.一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 C B B C A C D A∴3060EBA A AED BED ∠=∠=∠=∠=°,°,∴3060EBC EBA FEC ∠==∠∠=°,°. 又∵ED AB EC BC ⊥,⊥, ∴ED EC =. ······························································································· 8分 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°, ∴2EF EC =, ∴2EF ED =. ··························································································· 10分 第19题图(2)图形正确(甲区满意人数有500人) ··························································· 5分 (3)不正确. ······························································································· 6分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ·························································· 10分五、(每题10分,共20分) 21.解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 4∵,∴2.······························· 2分 ∵1025533OE OB BE =+=+=. ····························· 3分 ∴35325553DF OD OD OE ===,, ∴DF ODOD OE=. ····························································································· 6分 ∵CD AB ∥,∴CDO DOE ∠=∠. ································································ 7分3) A第22题图∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切. ············································································ 10分 法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G . ∵6CD =,∴132DF CD ==. 在Rt ODF △中,2222534OF OD DF =-=-= ·········································· 3分 ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, ························ 5分 在Rt DGE △中,22221620433DE DG GE ⎛⎫=+=+= ⎪⎝⎭.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ····················································································· 8分 ∴CD DE ⊥.∴直线DE 与半圆O 相切. ············································································ 10分 六、(每题10分,共20分) 23.(1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ····················································· 1分∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. ·················· 2分(2)过点D 作DG AB ⊥于点G . ······························ 3分 在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° ········································ 4分 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. ···························································· 6分 在Rt ADG △中,1056045GDA ∠=-=︒°° ······················································ 7分 ∴50GD GA ==, ························································································ 8分 ∴50503AB AG GB =+=+(米)································································ 9分A CDEF B 第23题图G答:索道长50+ ············································································· 10分 24.解:(1)1210(210)5[50(210)]x x x x ω=+-+--- ····································· 2分17200x =+.·········································································· 3分 由02100[50(210)]05[50(210)] 1.510(210)x x x x x x x >⎧⎪->⎪⎨--->⎪⎪---⨯-⎩≤ ························································ 5分(3)当CD CB =(2BD CD =或12CD BD =或30CAD ∠=°或90BAD ∠=°或30ADC ∠=°)时,四边形BCGE 是菱形. ················ 9分 理由:法一:由①得AEB ADC △≌△, ∴BE CD = ························································· 10分 又∵CD CB =, ∴BE CB =. ······················································ 11分 由②得四边形BCGE 是平行四边形, ∴四边形BCGE 是菱形. ······································· 12分ADCBFEG 图(b ) 第25题图法二:由①得AEB ADC △≌△, ∴BE CD =. ······························································································ 9分 又∵四边形BCGE 是菱形, ∴BE CB = ································································································ 11分 ∴CD CB =. ····························································································· 12分 法三:∵四边形BCGE 是平行四边形, ∴BE CG EG BC ∥,∥, ∴6060FBE BAC F ABC ∠=∠=∠=∠=°,° ··················································· 9分 ∴60F FBE ∠=∠=°, ∴BEF △是等边三角形. ············································································· 10分220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩································································· 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ···················································· 4分 (2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, (3)存在 11t = ······················································································ 12分 22t = ···················································································· 14分。

2024年四川省泸州市中考数学试卷(附答案)

2024年四川省泸州市中考数学试卷(附答案)

2024年四川省泸州市中考数学试卷(附答案)一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)下列各数中,无理数是()A.B.3.14C.0D.π2.(3分)第二十届中国国际酒业博览会于2024年3月21﹣24日在泸州市国际会展中心举办,各种活动带动消费2.6亿元,将数据260000000用科学记数法表示为()A.2.6×107B.2.6×108C.2.6×109D.2.6×10103.(3分)下列几何体中,其三视图的主视图和左视图都为矩形的是()A.B.C.D.4.(3分)把一块含30°角的直角三角板按如图方式放置于两条平行线间,若∠1=45°,则∠2=()A.10°B.15°C.20°D.30°5.(3分)下列运算正确的是()A.3a+2a3=5a4B.3a2•2a3=6a6C.(﹣2a3)2=4a6D.4a6÷a2=4a36.(3分)已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD7.(3分)分式方程﹣3=的解是()A.x=﹣B.x=﹣1C.x=D.x=38.(3分)已知关于x的一元二次方程x2+2x+1﹣k=0无实数根,则函数y=kx与函数y=的图象交点个数为()A.0B.1C.2D.39.(3分)如图,EA,ED是⊙O的切线,切点为A,D,点B,C在⊙O上,若∠BAE+∠BCD=236°,则∠E=()A.56°B.60°C.68°D.70°10.(3分)宽与长的比是的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD沿对角线AC翻折,点B落在点B′处,AB′交CD于点E,则sin∠DAE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+(2a﹣3)x+a﹣1(x是自变量)的图象经过第一、二、四象限,则实数a的取值范围为()A.1≤a<B.0<a<C.0<a<D.1≤a<12.(3分)如图,在边长为6的正方形ABCD中,点E,F分别是边AB,BC上的动点,且满足AE=BF,AF与DE交于点O,点M是DF的中点,G是边AB上的点,AG=2GB,则OM+FG的最小值是()A.4B.5C.8D.10二、填空题(本大题共4小题,每小题3分,共12分).13.(3分)函数y=的自变量x的取值范围是.14.(3分)在一个不透明的盒子中装有6个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为.15.(3分)已知x1,x2是一元二次方程x2﹣3x﹣5=0的两个实数根,则(x1﹣x2)2+3x1x2的值是.16.(3分)定义:在平面直角坐标系中,将一个图形先向上平移a(a>0)个单位,再绕原点按逆时针方向旋转θ角度,这样的图形运动叫做图形的ρ(a,θ)变换.如:点A(2,0)按照ρ(1,90°)变换后得到点A'的坐标为(﹣1,2),则点B(,﹣1)按照ρ(2,105°)变换后得到点B'的坐标为.三、本大题共3个小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泸州市二00九年初中毕业考试暨高中阶段学校招生统一考试
数学试卷
(考试时间:只完成A 卷90分钟,完成A 、B 卷120分钟)
说明:
1.本次考试试卷分为A 、B 卷,只参加毕业考试的考生只需完成A 卷,要参加升学考试的学生必须加试B 卷。

2.A 卷分为第I 卷和第Ⅱ卷两部分,第1卷(1至2页)为选择题,第Ⅱ卷(3至6页)为非选择题,满分100分;B 卷(7至l0页)为非选择题,满分50分。

A 、B 卷满分共150分。

3.本卷中非选择题部分的试题,除题中设计有横线的题目外,解答过程都必须有必要的文字说明、演算步骤或推理证明。

A 卷
第I 卷 选择题(共30分)
注意事项:
1.第1卷共2页,答第1卷前,考生务必将自己的姓名、准考证号、考试科目填写在答题卡上。

考试结束后,监考人员将试卷和答题卡一并收回。

分)在每小题给出的四个选项中,只有
D .56x
B 旋转到
9.5, 9.4, 9.6, 9.9,
A .9.2
B .9.3
C .9.4
D .9.5
5.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为
A .外离
B .外切
C .相交
D .内切
6.不等式组2131
x x -<⎧⎨≥-⎩ 的解集是 A.2x < B.1-≥x C.12x -≤< D .无解
7.已知反比例函数x
k y =的图象经过点P(一l ,2),则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限
8.如图2,是一个物体的俯视图,它所对应的物体是
9.在平面直角坐标系中,将二次函数2
2x y =的图象向上平移2
个单位,所得图象的解析
式为
A

222-=x y B .222+=x y
C .2)2(2-=x y
D .2)2(2+=x y
10.将棱长是lcm 的小正方体组成如图3所示的几何体,
那么这个几何体的表面积是
A .36cm 2
B .33cm 2
C .30cm 2
D .27cm 2
泸州市二O O 九年初中毕业考试暨高中阶段学校招生统一考试
数学试卷
A 卷
第Ⅱ卷(非选择题 共70分)
注意事项:
1.第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试卷上。

2.答卷前将密封线内的项目填写清楚。

二、填空题(本大题4个小题,共16分,每小题4分)把答案填在题中
的横线上.
11.分解因式:=-ay ax
12.如图4,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,
AB=3,BC=4,则梯形ABCD 的面积是
13.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是
14.如图5,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,
若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为 cm .
三、(本大题2个小题,共16分,每小题8分)
15.计算:︒+--+-30sin 29)2009()2
1(01
图3
16.化简:x
x x x x 2)242(2-÷+-+I
四、(本大题2个小题,共18分,每小题9分)
17.某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下统计图(图6),其中测试成绩在90~100分为A 级,75~89分为B 级, 60~74分为C 级,60分以下为D 级。

甲同学计算出成绩为C 的频率是0.2,乙同学计算出成绩为A 、B 、C 的频率之和为0.96,丙同学计算出成绩为A 的频数与成绩为B 的频数之比为7:
12.结合统计图回答下列问题:
(1)这次抽查了多少人?
(2)所抽查学生体育测试成绩的中位数在哪个等级内?
(3)若该校九年级学生共有500人,请你估计这次体育
测试成绩为A 级和B 级的学生共有多少人?
18.如图7,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,
AD 与BE 相交于点F .
(1)求证:ABE ∆≌△CAD ;
(2)求∠BFD 的度数.
图7
五.(本题满分10分)
19.已知一次函数b ax y +=的图象经过点A (),
320-,B (),341-,C ()4,+c c .
(1)求c ;
(2)求bc ac ab c b a ---++222的值.
六、(本题满分10分)
20.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时
(即3
50米/秒),并在离该公路100米处设置了一个监测点A .在如图8所示的直角坐标系中,点A
位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北
秒,通过计算,判断该汽车在这段限速A 处向北2倍,求两车在匀速行驶过程中的最
B 卷
OA 长度A 1,再,垂足为,
=5554C A A C
图9 图10
0,1,2.小
B布袋中随机取出一
(m,n)的所有有实数根的概率.
7.(本题满分10分)
如图11,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作D F ⊥BC,
交AB的延长线于E,垂足为F.
(1)求证:直线DE是⊙O的切线;
(2)当AB=5,AC=8时,求cosE的值.
图11
0)< 的图象与x 轴的正半轴相交于点与y 轴相交于点C ,且OB OA OC ⋅=2.
(1)求c 的值;
(2)若△ABC 的面积为3,求该二次函数的解析式;
(3)设D 是(2)中所确定的二次函数图象的顶点,试问在直线AC 上是否存在一点P 使△PBD 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.。

相关文档
最新文档