人教版中考数学真题试卷I卷
人教版初三数学中考试卷

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…(无限循环)2. 若m,n是方程x²-3x+m=0的两个根,则m+n的值为()A. 3B. -3C. 1D. -13. 下列函数中,是反比例函数的是()A. y=x²B. y=2x+3C. y=3/xD. y=√x4. 已知等腰三角形ABC中,AB=AC,若∠BAC=70°,则∠ABC的度数为()A. 55°B. 70°C. 110°D. 135°5. 在平面直角坐标系中,点A(2,3),点B(-1,-2),则线段AB的中点坐标是()A. (1, 1)B. (1, 5)C. (3, 1)D. (3, 5)二、填空题(每题5分,共25分)6. 若x²-5x+6=0,则x的值为_________。
7. 若sin∠A=0.6,且∠A为锐角,则cos∠A的值为_________。
8. 在△ABC中,若a=5,b=7,c=8,则△ABC的面积是_________。
9. 已知函数y=kx+b,若k=2,b=3,则函数的图像是_________。
10. 若一个正方体的边长为a,则它的体积是_________。
三、解答题(每题10分,共40分)11. 解方程:2x²-5x+3=0。
12. 已知函数y=2x+1,求函数的图像与x轴、y轴的交点坐标。
13. 在平面直角坐标系中,点A(3,4),点B(-2,1),求线段AB的长度。
14. 已知等边三角形ABC的边长为a,求△ABC的面积。
四、应用题(每题10分,共20分)15. 某商品原价为200元,现打八折出售,求现价。
16. 一辆汽车从甲地出发,以60千米/小时的速度行驶,行驶了2小时后,到达乙地。
然后以80千米/小时的速度返回甲地,求汽车返回甲地的时间。
初三数学试题及答案人教版

初三数学试题及答案人教版初三数学试题及答案(人教版)一、选择题(每题2分,共10分)1. 若a,b,c为实数,且满足a+b+c=3,abc=1,则下列选项中正确的是:A. a^2+b^2+c^2=5B. a^2+b^2+c^2=7C. a^2+b^2+c^2=9D. a^2+b^2+c^2=112. 下列哪个不等式是正确的?A. |x-2| > |x+3|B. |x-2| < |x+3|C. |x-2| ≥ |x+3|D. |x-2| ≤ |x+3|3. 一个圆的半径为5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π4. 函数y=2x^2+3x+1的顶点坐标是:A. (-1,0)B. (-1,1)C. (1,0)D. (1,1)5. 如果一个三角形的三边长分别为a,b,c,且满足a^2+b^2=c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题(每题2分,共10分)6. 若一个数的平方根等于它本身,那么这个数是________。
7. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
8. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为________。
9. 函数y=x^3-6x^2+11x-6的零点是________。
10. 一个圆的面积为25π,那么它的半径是________。
三、解答题(每题10分,共30分)11. 解一元二次方程:x^2-5x+6=0。
12. 证明:若a,b,c是三角形的三边,且满足a^2+b^2=c^2,那么这个三角形是直角三角形。
13. 求函数y=x^2-2x+1在x=2时的值。
四、证明题(每题15分,共30分)14. 证明:勾股定理。
15. 证明:若a,b,c是三角形的三边,且满足a+b>c,那么这个三角形是存在的。
五、综合题(每题20分,共20分)16. 一个长方形的长为10cm,宽为5cm,求其对角线的长度。
人教版中考数学真题试卷(I)卷

人教版中考数学真题试卷(I)卷人教版中考数学真题试卷(I)卷一、选择题1. 下列四个数中,最小的数是()。
A. $\sqrt{3}$B. $\sqrt{3}+1$C. $\sqrt{3}+3$D. $\sqrt{3}+2$2. 在棋盘上,一个爬行的棋子每次可以向右或向上移动一格,从左下角的格子开始,移动到右上角的格子共有()条不同的路径。
A. 6B. 10C. 20D. 283. 在直角坐标系中,点P(4, 3)关于x轴的对称点是()。
A. (4, -3)B. (-4, 3)C. (-4, -3)D. (3, 4)二、填空题1. 如果 $\frac{a}{b}=\frac{1}{3}$,则 $\frac{a+b}{b-a}=$ \underline{\hspace{1cm}}。
2. 已知函数 $y=2x^2+3$,则函数 $y=-2x^2-3$ 的图像关于 $y$ 轴的对称图形是函数 \underline{\hspace{1cm}} 的图像。
3. 已知图中的 $PQ=8$,则 $PR=$ \underline{\hspace{1cm}}。
三、解答题1. 解方程组:$\begin{cases}x-y=2 \\2x+y=7\end{cases}$2. 某校初中毕业生人数占全校总人数的比例为 $\frac{1}{4}$,该校全校总人数为 1200,毕业生人数为多少?3. 计算:$(-2)^3+(-2)^2+(-2)^1+(-2)^0$四、应用题1. 某地连续4天的天气情况如下表所示。
若出现雷雨天气,则将“雷”字填入相应方格;否则,填入“晴”、“雨”或“多云”。
\begin{tabular}{|c|c|c|c|c|} \hline日期 & 星期 & 上午 & 下午 & 晚上 \\ \hline4月1日 & 星期二 & 多云 & 雨 & 晴 \\ \hline4月2日 & 星期三 & 雨 & 晴 & \\ \hline4月3日 & 星期四 & 雷 & & \\ \hline4月4日 & 星期五 & 晴 & & \\ \hline\end{tabular}2. 小明和小红一起种植花卉。
人教版2020年中考数学试卷I卷

人教版2020年中考数学试卷I卷一、单选题 (共10题;共20分)1. (2分)下列运算正确的是()A . =±3B . |﹣3|=﹣3C . ﹣=﹣3D . ﹣32=92. (2分)计算a2•a3的结果是()A . 5aB . a5C . a6D . a83. (2分)下列说法中,正确的是()A . 垂线最短B . 两点之间直线最短C . 如果两个角互补,那么这两个角中一个是锐角,一个是钝角D . 同角的补角相等4. (2分)已知=,则的值是()A .B .C .D .5. (2分)如果=0,则x等于()A . ±2B . -2C . 2D . 36. (2分)中南商场对上周女装的销售情况进行了统计,销售情况如表:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差7. (2分)若关于x的一元二次方程kx2﹣2x﹣1=0没有实数根,则k的取值范围是()A . k>﹣1B . k>﹣1且k≠0C . k>1D . k<﹣18. (2分)如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG= GC;③BE+DF=EF;④S△CEF=2S△ABE ,其中正确的个数为()A . 1B . 2C . 3D . 49. (2分)在Rt△ABC中,∠ACB=90°,BC=1,AC=2,则下列结论正确的是()A . sinA=B . tanA=C . cosB=D . tanB=10. (2分)抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x…﹣2﹣1012…y…04664…从上表可知,下列说法中,错误的是()A . 抛物线于x轴的一个交点坐标为(﹣2,0)B . 抛物线与y轴的交点坐标为(0,6)C . 抛物线的对称轴是直线x=0D . 抛物线在对称轴左侧部分是上升的二、填空题 (共8题;共8分)11. (1分)若a为锐角,比较大小:sinα________tanα.12. (1分)函数中自变量x的取值范围是________.13. (1分)一个n边形的内角和是540°,那么n=________.14. (1分)如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.15. (1分)已知,则 =________ .16. (1分)如图,在平面直角坐标系中,直线分别与轴、轴交于A、B两点,已知点A的坐标是( , ),则不等式的解集是________17. (1分)如图,在边长为4的菱形ABCD中,∠A=60°,点M、N是边AB、BC上的动点,若△DMN为等边三角形,点M、N不与点A、B、C重合,则△BMN面积的最大值是________.18. (1分)如图是三种化合物的结构式及分子式.请按其规律,写出后面第2013种化合物的分子式________.三、解答题 (共5题;共36分)19. (10分)计算或化简:(1).(2).20. (6分)如图,在Rt△ABC中,∠BAC=90°.(1)作∠ABC的平分线交AC边于点P,再以点P为圆心,PA长为半径作⊙P(要求:尺规作图,保留作图痕迹,不写作法.);(2)请你判断(1)中BC与⊙P的位置关系:________21. (5分)在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?22. (5分)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A=.(1)求线段CD的长;(2)求sin ∠DBE的值.23. (10分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.(1)搅匀后从中随机摸出一球,请直接写出摸出红球的概率;(2)如果第一次随机摸出一个球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)四、解答题(二) (共5题;共68分)24. (13分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.25. (10分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;(2)在图中找出格点D,使△ACD的面积与△ABC的面积相等。
人教七年级上数学中考试卷

一、选择题(每题3分,共30分)1. 下列数中,是负数的是()A. -5B. 0C. 3.14D. 2/32. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 长方形3. 已知直线l上有一点A,点B不在直线l上,下列说法正确的是()A. 点A和点B之间的距离是0B. 点A和点B之间的距离是直线l的长度C. 点A和点B之间的距离是直线l上任意两点之间的距离D. 点A和点B之间的距离无法确定4. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么这个长方体的对角线长是()A. 5cmB. 8cmC. 9cmD. 12cm5. 若一个数的平方是25,那么这个数可能是()A. 5B. -5C. 5或-5D. 无法确定6. 在等腰三角形ABC中,AB=AC,若∠BAC=60°,则∠ABC的度数是()A. 30°B. 45°C. 60°D. 90°7. 下列关于一次函数y=kx+b的图象,正确的是()A. 当k>0,b>0时,图象在第一、三象限B. 当k<0,b>0时,图象在第一、四象限C. 当k>0,b<0时,图象在第二、四象限D. 当k<0,b<0时,图象在第二、三象限8. 一个等边三角形的边长为a,那么它的周长是()A. 3aB. 2aC. a/3D. a/29. 下列数中,是质数的是()A. 15B. 16C. 17D. 1810. 一个正方形的面积是64平方厘米,那么它的边长是()A. 8厘米B. 16厘米C. 32厘米D. 64厘米二、填空题(每题4分,共40分)11. 5的平方根是__________,3的立方根是__________。
12. 如果一个数的相反数是-2,那么这个数是__________。
13. 下列图形中,是轴对称图形的是__________。
14. 下列函数中,是反比例函数的是__________。
初三人教版数学试卷加答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 2/3D. 3√32. 已知x²=9,那么x的值为()A. ±3B. ±4C. ±5D. ±63. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,6)4. 下列各式中,正确的是()A. a²+b²=(a+b)²B. a²-b²=(a+b)²C. a²-b²=(a-b)²D. a²+b²=(a-b)²5. 下列函数中,一次函数是()A. y=2x+3B. y=2x²+3C. y=2x³+3D. y=2x+5x6. 在等腰三角形ABC中,AB=AC,若∠BAC=50°,则∠ABC的度数为()A. 50°B. 60°C. 70°D. 80°7. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 1,3,5,7C. 2,4,6,8D. 3,6,9,128. 下列各式中,正确的是()A. a³+b³=(a+b)³B. a³+b³=(a+b)²C. a³+b³=(a-b)³D. a³+b³=(a-b)²9. 在直角坐标系中,点P(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)10. 下列各数中,无理数是()A. √4B. √-1C. πD. 3二、填空题(每题5分,共25分)11. 已知a²=16,那么a的值为______。
人教中考数学试题及答案

人教中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333…B. πC. √2D. 1答案:C2. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 45°B. 60°C. 75°D. 90°答案:A3. 一个数的平方根是它本身,这个数可能是?A. 0B. 1C. -1D. 4答案:A4. 以下哪个方程的解是x=2?A. x + 2 = 4B. x - 3 = 5C. 2x = 4D. x² = 4答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题2分,共10分)6. 一个三角形的三个内角之和等于______。
答案:180°7. 如果一个数的立方根等于它本身,那么这个数可能是______。
答案:1或-1或08. 一个正数的倒数是1/2,那么这个数是______。
答案:29. 如果一个数的绝对值是5,那么这个数可能是______。
答案:5或-510. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是______。
答案:24cm³三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + 4) × (5 - 2)答案:7 × 3 = 2112. 解下列方程:2x - 5 = 9答案:2x = 14x = 713. 化简下列分数:\(\frac{3}{4} + \frac{2}{5}\)答案:\(\frac{15}{20} + \frac{8}{20} = \frac{23}{20}\)四、解答题(每题10分,共20分)14. 一个直角三角形的两条直角边分别是6和8,求斜边的长度。
答案:根据勾股定理,斜边长度为 \(\sqrt{6^2 + 8^2} =\sqrt{36 + 64} = \sqrt{100} = 10\)15. 一个班级有50名学生,其中30名男生和20名女生。
人教版中考数学真题试卷(I)卷

人教版中考数学真题试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题(本大题共12小题,每小题3分,共36分,每小题只有一 (共12题;共24分)1. (2分) (2018八上·罗湖期末) 、、、(一1)3四个数中最大的数是()A .B .C .D . (一1)32. (2分)(2019·龙湖模拟) 2018年汕头市龙湖区的GDP总量约为389亿元,其中389亿用科学记数法表示为()A . 3.89×1011B . 0.389×1011C . 3.89×1010D . 38.9×10103. (2分) (2019·咸宁模拟) 下列计算正确的是()A . a3+a2=a5B . a3•a2=a5C . (2a2)3=6a6D . a6÷a2=a34. (2分)(2019·福田模拟) 在△ABC中,已知AB=AC,sinA=,则tanB的值是()A .B . 2C .D .5. (2分) (2019八下·嘉兴期中) 若一组数据x1+1,x2+1,…,xn+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为()A . 17,2B . 18,2C . 17,3D . 18,36. (2分)(2019·梧州) 不等式组的解集在数轴上表示为()A .B .C .D .7. (2分)(2019·自贡) 如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近()A .B .C .D .8. (2分)(2019·海口模拟) 如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A .B .C .D .9. (2分) (2018九上·防城港期中) △ABC是等边三角形,点P在△ABC内,PA=2,将△PAB绕点A逆时针旋转得到△P1AC,则P1P的长等于()A . 2B .C .D . 110. (2分)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入,则输出的结果为()A . 5B . 6C . 7D . 811. (2分) (2018八上·邢台月考) 下列命题的逆命题是真命题的是()A . 直角都相等B . 钝角都小于180°C . 如果x2+y2=0,那么x=y=0D . 对顶角相等12. (2分)设函数y=3ax2-2bx+c(a,b,c都为正整数且a-b+c=0),若当x=0与x=1时,都有y>0,则a+b+c的最小值为()A . 7B . 4C . 6D . 10二、填空题(本大题共8小题,每小题3分,共24分) (共8题;共8分)13. (1分)(2017·天津) 计算的结果等于________.14. (1分)(2019·天台模拟) 若m2-3m+1=0,则2-m- 的值为________ .15. (1分) (2017九上·宛城期中) 已知关于x的方程(b﹣c)x2+2(a﹣b)x+b﹣a=0有两个相等的实数根,则以a、b、c为三边长的三角形的形状一定是________.16. (1分)(2019·广西模拟) 从点A(-2,3),B(1,-6),C(-2,-4)中任取一个点,在y=- 的图象上的概率是________17. (1分)(2019·花都模拟) 如图,点A的坐标为(﹣1,0),AB⊥x轴,∠AOB=60°,点B在双曲线l上,将△AOB绕点B顺时针旋转90°得到△CDB,则点D________双曲线l上(填“在”或“不在”).18. (1分) (2019九上·沭阳期中) 如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=4,那么CD的长为________.19. (1分)(2019·中山模拟) 如图,在Rt△ABC中,∠C=90°,∠B=30°,BD=6,将∠C沿AD对折,使点C恰好落在AB边上的点E处,则CD的长度是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版中考数学真题试卷I卷姓名:________ 班级:________ 成绩:________一、单选题(本大题共12小题,每小题3分,共36分,每小题只有一 (共12题;共24分)1. (2分) (2017七下·蒙阴期末) 在实数-3、0、、3中,最小的实数是()A . -3B . 0C .D . 32. (2分) (2018七上·南昌期中) 太阳的直径约为1390000千米,这个数用科学记数法表示为()A . 0.139×107千米B . 1.39×106千米C . 13.9×105千米D . 139×104千米3. (2分) (2018七上·昌江月考) 下列运算正确的是()A .B .C .D .4. (2分)(2019·广州模拟) 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin = ,则该圆锥的侧面积是()A .B . 24πC . 16πD . 12π5. (2分)已知一组数据的方差为,数据为:﹣1,0,3,5,x,那么x等于()A . ﹣2或5.5B . 2或﹣5.5C . 4或11D . ﹣4或﹣116. (2分)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为()A . 0<x≤1B . 0≤x<1C . 1<x≤2D . 1≤x<27. (2分)(2019·光明模拟) 如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A . 2,B . 2 ,πC . ,D . 2 ,8. (2分)(2019·龙岗模拟) 在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A .B .C .D .9. (2分) (2019九上·汕头期末) 如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB'C'(点B的对应点是点B',点C的对应点是点C'),连接CC',若∠B=78°,则∠CC'B'的大小是()A . 23°B . 30°C . 33°D . 39°10. (2分) (2018七上·鄞州期中) 下列运算正确的是()A .B .C .D .11. (2分) (2019八上·吴兴期末) 能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A . a=﹣2B . a=C . a=1D . a=12. (2分)如图所示的是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是x=﹣1,有下列结论:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(﹣4,y2)是抛物线上两点,则y1>y2 ,其中结论正确的序号是()A . ①②③B . ①③④C . ①②④D . ②③④二、填空题(本大题共8小题,每小题3分,共24分) (共8题;共8分)13. (1分) (2017八下·庐江期末) 计算 =________ .14. (1分)(2019·包头) 化简: ________.15. (1分) (2019八下·瑞安期中) 如果关于的方程有两个实数根,则非负整数的值是________.16. (1分)(2019·玉林) 我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是________.17. (1分) (2019·孝感) 如图,双曲线经过矩形OABC的顶点,双曲线交,于点,,且与矩形的对角线交于点,连接 .若,则的面积为________.18. (1分) (2019九上·丰县期末) 如图,O是半圆的圆心,半径为4.C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.若∠COA=60°,则FG=________.19. (1分) (2018八上·武汉月考) 直角三角形纸片 ABC 中,∠ACB=90°,AC≤BC.如图,将纸片沿某条直线折叠,使点 A 落在直角边 BC 上,记落点为 D.设折痕与 AB、AC 边分别交于点 E、点 F,当折叠后的△CDF 与△BDE 均为等腰三角形,那么纸片中∠B 的度数是________20. (1分) (2015八下·扬州期中) 如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4 ,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 ,则S4=2S2;④若S1=S2 ,则P点在矩形的对角线上.其中正确的结论的序号是________(把所有正确结论的序号都填在横线上).三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过 (共6题;共64分)21. (15分)某校260名学生参加献爱心捐款活动,每人捐款4~7元,活动结束后随机抽查了20名学生每人的捐款数量,并按每人的捐款数量分为四种类型,A:捐款4元;B:捐款5元;C:捐款6元;D:捐款7元,并将其绘成如图所示的条形统计图。
(1)通过计算补全条形统计图;(2)直接写出这20名学生每人捐款数量的众数和中位数;(3)求这20名学生每人捐款数量的的平均数,并估计260名学生共捐款多少元.=22. (10分)(2019·桂林模拟) 如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2 米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E 在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).23. (10分) (2018八下·北海期末) 黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.24. (11分)(2018·河南) 如图(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:① 的值为________;②∠AMB的度数为________.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD 的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB= ,请直接写出当点C与点M重合时AC的长.25. (3分) (2016九上·仙游期末) 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,原题:如图1,在平行四边形ABCD 中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G. 若,求的值.(1)尝试探究:在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是________,CG和EH的数量关系是________,的值是________.(2)类比延伸:如图2,在原题条件下,若(m>0)则的值是________(用含有m的代数式表示),试写出解答过程________.(3)拓展迁移:如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F,若(a>0,b>0)则的值是________(用含a、b 的代数式表示).26. (15分)(2018·灌南模拟) 如图,抛物线与轴的负半轴交于点A,对称轴经过顶点B与轴交于点M.(1)求抛物线的顶点B的坐标 (用含m的代数式表示);(2)连结BO,若BO的中点C的坐标为( , ),求抛物线的解析式;(3)在(2)的条件下,D在抛物线上,E在直线 BM上,若以A、C、D、E为顶点的四边形是平行四边形,求点D的坐标.参考答案一、单选题(本大题共12小题,每小题3分,共36分,每小题只有一 (共12题;共24分)1、答案:略2、答案:略3、答案:略4、答案:略5、答案:略6、答案:略7、答案:略8、答案:略9、答案:略10、答案:略11、答案:略12、答案:略二、填空题(本大题共8小题,每小题3分,共24分) (共8题;共8分)13、答案:略14、答案:略15、答案:略16、答案:略17、答案:略18、答案:略19、答案:略20、答案:略三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过 (共6题;共64分)21、答案:略22、答案:略23、答案:略24、答案:略25、答案:略26、答案:略。