中考数学真题试卷G卷新版

合集下载

2024浙江省中考数学真题试卷及答案

2024浙江省中考数学真题试卷及答案

2024浙江省中考数学真题试卷一、选择题(每题3分)1.以下四个城市中某天中午12时气温最低的城市是( ).A.北京B.济南C.太原D.郑州2.5个相同正方体搭成的几何体主视图为()A. B.C. D.3.2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( ) A.920.13710⨯B.80.2013710⨯C.92.013710⨯D.82.013710⨯4.下列式子运算正确的是( ) A.325x x x +=B.326x x x ⋅=C.329()x x =D.624x x x ÷=5.有5位学生参加志愿者,服务次数为:7,7,8,10,13.则这5位学生志愿服务次数的中位数为( ) A.7B.8C.9D.106.如图,在平面直角坐标系中,△ABC 与'''A B C ∆是位似图形,位似中心为点O .若点(3,1)A -的对应点为'(6,2)A -,则点B (-2,4)的对应点'B 的坐标为( )A.(-4,8)B.(8,-4)C.(-8,4)D.(4,-8)7.不等式组2113(2)6x x -≥⎧⎨->-⎩的解集在数轴上表示为( )A.B.C. D.8.如图,正方形ABCD 由四个全等的直角三角形(△ABE ,△BCF ,△CDG ,△DAH )和中间一个小正方形EFGH 组成,连接DE .若AE=4,BE =3,则DE=( )A.5B.6 17 D.49.反比例函数4y x=的图象上有12(,),(4,)P t y Q t y +两点.下列正确的选项是( ) A.当4t <-时,210y y << B.当40t -<<时,210y y << C.当40t -<<时,120y y <<D.当0t >时,120y y <<10.如图,在▱ABCD 中,AC ,BD 相交于点,2,3O AC BD ==过点A 作AE BC ⊥的垂线交BC 于点E ,记BE 长为x ,BC 长为y .当x ,y 的值发生变化时,下列代数式的值不变的是( )A.x y +B.x y -C.xyD.22x y +二、填空题(每题3分)11.因式分解:27a a -=____________. 12.若211x =-,则x =____________. 13.如图,AB 是O 的直径,AC 与O 相切,A 为切点,连接BC .已知050ACB ∠=,则B ∠的度数为___________.14.有8张卡片,上面分别写着数1,2,3,4,5,6,7,8.从中随机抽取1张,该卡片上的数是4的整数倍的概率是_________.15.如图,D ,E 分别是△ABC 边AB ,AC 的中点,连接BE ,DE .若,2AED BED DE ∠=∠=,则BE 的长为_______________.16.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,53AC BD =.线段AB 与''A B 关于过点O 的直线l 对称,点B 的对应点'B 在线段OC 上,''A B 交CD 于点E ,则△'B CE 与四边形'OB ED 的面积比为___________.三、解答题(17-21每题8分,22,23每题10分,24题12分)17.计算:11()54--18.解方程组:254310x y x y -=⎧⎨+=-⎩.19.如图,在△ABC 中,AD ⊥BC ,AE 是BC 边上的中线,AB =10,AD =6,tan 1ACB ∠=. (1)求BC 的长 (2)求sin DAE ∠的值.20.某校开展科学活动.为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查.调查问卷和统计结果描述如下:根据以上信息.解答下列问题:(1)本次调查中最喜爱“AI应用”的学生中更关注“辅助学习”有多少人?(2)菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱“科普讲座”的学生人数. 21.尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2.以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦……我明白了!(1)证明AF∥CE(2)指出小丽作法中存在的问题.22.小明和小丽在跑步机上慢跑锻炼.小明先跑,10分钟后小丽才开始跑,小明跑步时中间休息了两次.跑步机上C档比B档快40米/分,B档比A档快40米/分.小明与小丽的跑步相关信息如表所示,跑步累计里程s(米)与小明跑步时间t(分)的函数关系如图所示.时间 里程分段 速度档 跑步里程 小明16:00~16:50不分段 A 档 4000米 小丽 16:10~16:50 第一段B 档 1800米第一次休息第二段 B 档 1200米第二次休息第三段C 档 1600米(1)求A ,B ,C 各档速度(单位:米/分) (2)求小丽两次休息时间的总和(单位:分)(3)小丽第二次休息后,在a 分钟时两人跑步累计里程相等,求a 的值.23.已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A -,对称轴为直线12x =-.(1)求二次函数的表达式(1)若点(1,7)B 向上平移2个单位长度,向左平移(0)m m >个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值(3)当2≤a ≤n 时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围. 24.如图,在圆内接四边形ABCD 中,AD<AC ,ADC BAD ∠<∠,延长AD 至点E ,使AE=AC ,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60O AFE ∠=,CD 为直径,求ABD ∠的度数.(2)求证:①EF ∥BC ②EF=BD .2024浙江省中考数学真题试卷答案一、选择题二、填空题 三、解答题. 17.【答案】718.【答案】124x y ⎧=⎪⎨⎪=-⎩19.【答案】(1)14 (2)3720.【答案】(1)32 (2)324 21.【答案】证明略22.【答案】(1)80米/分,120米/分,160米/分 (2)5分 (3)42.523.【答案】(1)23y x x =++ (2)4m = (3)112n -≤≤。

2024年吉林省中考数学真题试卷及答案

2024年吉林省中考数学真题试卷及答案

2024年吉林省中考数学真题试卷一、单项选择题(每小题2分,共12分)1. 若()3-⨯的运算结果为正数,则内的数字可以为( ) A. 2 B. 1 C. 0 D. 1-2. 长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A. 102.0410⨯B. 92.0410⨯C. 820.410⨯D. 100.20410⨯3. 葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 主视图、左视图与俯视图都相同 4. 下列方程中,有两个相等实数根的是( )A. ()221x -=-B. ()220x -= C. ()221x -= D. ()222x -= 5. 如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A. ()4,2--B. ()4,2-C. ()2,4D. ()4,26. 如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A. 50︒B. 100︒C. 130︒D. 150︒二、填空题:本题共4小题,每小题5分,共20分.7. 当分式11x +的值为正数时,写出一个满足条件的x 的值为______. 8. 因式分解:23a a -=_______.9. 不等式组2030x x ->⎧⎨-<⎩的解集为______. 10. 如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11. 正六边形的每个内角等于______________°.12. 如图,正方形ABCD 的对角线AC BD ,相交于点O,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13. 图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图①,其中AB AB '=,AB B C '⊥于点C,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14. 某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15. 先化简,再求值:()()2111a a a +-++,其中a =16. 吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17. 如图,在ABCD中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求证:=.AE BC18. 钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19. 图①,图①均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,O均在格点上.图①中已画出四边形ABCD,图①中已画出以OE为半径的O,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.(2)在图①中,画出经过点E的O的切线.20. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21. 中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少(1)20192023元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年①20192023中,2020年全国居民人均可支配收入最低.22. 图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图①,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin370.60︒=,cos370.80︒=,tan370.75︒=)五、解答题(每小题8分,共16分)23. 综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图①所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:【分析数据】如图①,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24. 小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S =______.(2)如图①,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图①,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a,b 的关系,并证明你的猜想.【理解运用】(4)如图①,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(①)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R,I.(①)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I '.(①)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧.(①)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25. 如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q,以PQ 为边作等边三角形PQE ,且点C,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26. 小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).①.当y 随x 的增大而增大时,求x 的取值范围.①.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围. ①.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.2024年吉林省中考数学真题试卷答案一、单项选择题.1. 【答案】D2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】C6. 【答案】C二、填空题.7. 【答案】0(答案不唯一)8. 【答案】(3)a a -9. 【答案】23x <<10. 【答案】两点之间,线段最短.11. 【答案】12012. 【答案】12【解析】解:①正方形ABCD 的对角线AC BD ,相交于点O①45OAD ∠=︒,AD BC =①点E 是OA 的中点 ①12OE OA = ①45FEO ∠=︒①EF AD ∥①OEF OAD △∽△ ①12EF OE AD OA ==,即12EF BC = 故答案为:12.13. 【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+①AB B C '⊥由勾股定理得:222AC B C AB ''+=①()22220.5x x +=+故答案为:()22220.5x x +=+.14. 【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影故答案为:11π.三、解答题.15. 22a ,616. 【答案】13 17. 【答案】证明见解析证明:①四边形ABCD 是平行四边形①AD BC ∥①OAE OBC OCB E ==∠∠,∠∠①点O 是AB 的中点①OA OB =①()AAS AOE BOC △≌△①AE BC =.18. 【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个由题意得:()1688x x ++=解得:36x =①黑色琴键由:361652+=(个)答:白色琴键52个,黑色琴键36个.四、解答题.19. 【答案】(1)见解析 (2)见解析【小问1详解】解:如图所示,取格点E,F,作直线EF ,则直线EF 即为所求.易证明四边形ABCD 是矩形,且E,F 分别为AB CD ,的中点.【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20. 【答案】(1)36I R=(2)12A【小问1详解】 解:设这个反比例函数的解析式为()0U I U R=≠ 把()94,代入()0U I U R=≠中得:()409U U =≠ 解得36U = ①这个反比例函数的解析式为36I R=. 【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I == ①此时的电流I 为12A .21. 【答案】(1)8485元(2)35128元(3)①【小问1详解】解:39218307338485-=元答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元①20192023-年全国居民人均可支配收入的中位数为35128元.【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确. 由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故①错误.故答案为:①.22. 【答案】218.3m【解析】解:延长DC 交AE 于点G,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒ ①873tan DG AG DG EAD===∠ 在Rt GAC △中,37EAC ∠=︒①tan 8730.75654.75CG AG EAC =⋅∠=⨯=①873654.75218.3m CD DG CG =-=-≈答:吉塔的高度CD 约为218.3m .五、解答题.23. 【答案】(1)在同一条直线上,函数解析式为:533y x =+ (2)36mm【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠①当16.5,115.5x y ==,23.1,148.5x y ==①16.5115.523.1148.5k b k b +=⎧⎨+=⎩解得:533k b =⎧⎨=⎩①函数解析式为:533y x =+经检验其余点均在直线533y x =+上①函数解析式为533y x =+,这些点在同一条直线上.【小问2详解】解:把213y =代入533y x =+得:533213x +=解得:36x =①当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm . 24. 【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10 【详解】(1)①在ABC 中,AB BC =,BD AC ⊥,2CD =①2AD CD ==①4AC = ①122ABC S AC BD =⨯⨯= 故答案为:2.(2)①在菱形A B C D ''''中,4''=A C ,2B D ''=①142A B C D S B D A C ''''''''=⨯⨯=菱形 故答案为:4.(3)①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①5EG =,3FH = ①11522EFGH S EG FH =⨯⨯=四边形 故答案为:152猜想:12EFGH ab S =四边形 证明:①EG FH ⊥ ①12EFG S EG FO =⨯⨯,12EHG S EG HO =⨯⨯ ①EFG EHG EFGH S S S =+四边形 ①()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形 ①()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形 ①EG a =,FH b = ①12EFGH ab S =四边形. (4)根据尺规作图可知:QPM MKN ∠=∠ ①在MNK △中,3MN =,4KN =,5MK = ①222MK KN MN =+①MNK △是直角三角形,且90MNK ∠=︒ ①90NMK MKN ∠+∠=︒①QPM MKN ∠=∠①90NMK QPM ∠+∠=︒①MK PQ ⊥①4PQ KN ==,5MK =①根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形. 六、解答题.25. 【答案】(1)等腰三角形,AQ t = (2)32t = (3))2223,0423221,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=+-<<⎨⎪⎪=-≤<⎪⎪⎩【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =①90C ∠=︒,30B ∠=︒①60BAC ∠=︒①AD 平分BAC ∠①30PAQ BAD ∠=∠=︒①PQ AB ∥①30APQ BAD ∠=∠=︒①PAQ APQ =∠∠①QA QP =①APQ △为等腰三角形①QH AP ⊥①122HA AP == ①在Rt AHQ △中,cos AH AQ t PAQ==∠. 【小问2详解】解:如图①PQE 为等边三角形①QE QP =由(1)得QA QP =①QE QA =即223AE AQ t === ①32t =.【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE ,过点P 作PG QE ⊥于点G①30PAQ ∠=︒①122PG AP == ①PQE 是等边三角形①QE PQ AQ t ===①2124S QE PG =⋅= 由(2)知当点E 与点C 重合时,32t =①23042S t ⎛⎫=<≤ ⎪⎝⎭. 当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F,此时重合部分为四边形FPQC ,如图①PQE 是等边三角形①60E ∠=︒而23CE AE AC t =-=-①)tan 23CF CE E t =⋅∠=-①()))21123232322FCE S CE CF t t t =⋅=--=-①)2223234PQE FCES S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠ ①2t =①2322S t ⎫=+<<⎪⎭. 当点P 在DB 上,重合部分为PQC △,如图①30DAC ∠=︒90DCA ∠=︒由上知DC =①AD =①此时PD =-①)1PC CD PD t =+==- ①PQE 是等边三角形①60PQE ∠=︒①1tan PC QC PC t PQC ===-∠①)2112S QC PC t =⋅=- ①30B BAD ∠=∠=︒①DA DB ==①当点P 与点B 重合时AD DB =+=解得:4t =①)()2124S t t =-≤< 综上所述:)2223,04232421,24S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩. 26. 【答案】(1)1,1,2k a b ===-(2)①:0x ≤或1x ≥;①:2t <或11t ≥;①:10m -≤≤或12m ≤≤【小问1详解】解:①20x =-<①将2x =-,1y =代入3y kx =+得:231k -+=解得:1k =①20,30x x =>=>①将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩解得:12a b =⎧⎨=-⎩. 【小问2详解】解:①,①1,1,2k a b ===-①一次函数解析式为:3y x ,二次函数解析式为:223y x x =-+ 当0x >时,223y x x =-+,对称为直线1x =,开口向上①1x ≥时,y 随着x 的增大而增大.当0x ≤时,3y x ,10k =>①0x ≤时,y 随着x 的增大而增大综上,x 的取值范围:0x ≤或1x ≥.①,①230ax bx t ++-=①23ax bx t ++=,在04x <<时无解①问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点 ①对于223y x x =-+,当1x =时,2y =①顶点为()1,2,如图:①当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点 ①当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点. 当4x =,168311y =-+=①当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点 ①当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点①当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点 即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解. ①:①,1P Q x m x m ==-+①()1122m m +-+= ①点P,Q 关于直线12x =对称 当1x =,1232y =-+=最小值,当0x =时,3y =最大值①当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =①①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩①12m ≤≤.①当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩①10m -≤≤综上:10m -≤≤或12m ≤≤.。

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

2024年河北省中考数学真题试卷及答案

2024年河北省中考数学真题试卷及答案

2024年河北省中考数学真题试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A. B.C.D. 2. 下列运算正确的是( )A. 734a a a -=B. 222326a a a ⋅=C. 33(2)8a a -=-D. 44a a a ÷=3. 如图,AD 与BC 交于点O,ABO 和CDO 关于直线PQ 对称,点A,B 的对称点分别是点C,D .下列不一定正确的是( )A. AD BC ⊥B. AC PQ ⊥C. ABO CDO △≌△D. AC BD ∥4. 下列数中,能使不等式516x -<成立的x 的值为( )A. 1B. 2C. 3D. 45. 观察图中尺规作图的痕迹,可得线段BD 一定是ABC ∆的( )A. 角平分线B. 高线C. 中位线D. 中线6. 如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A. B. C. D.7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A. 若5x =,则100y =B. 若125y =,则4x =C. 若x 减小,则y 也减小D. 若x 减小一半,则y 增大一倍 8. 若a,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( )A. 38a b +=B. 38a b =C. 83a b +=D. 38a b =+9. 淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A. 1B. 1C. 1D. 1110. 下面是嘉嘉作业本上的一道习题及解答过程: ABC 中,ABC 的外角,连接CD .四边形ABCD 是平行四边形.AC =,∵∠ABC =∠+2∠,1∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵______).∵MD MB =.∵四边形ABCD 是平行四边形.若以上解答过程正确,∵,∵应分别为( )A. 13∠=∠,AASB. 13∠=∠,ASAC. 23∠∠=,AASD. 23∠∠=,ASA11. 直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M,N,如图所示,则a β+=( )A. 115︒B. 120︒C. 135︒D. 144︒12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A. 点AB. 点BC. 点CD. 点D13. 已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =( )A. xB. yC. x y +D. x y -14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S ,该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )A. B. C. D.15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为41001025a +16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A. ()6,1或()7,1B. ()15,7-或()8,0C. ()6,0或()8,0D. ()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分) 17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18. 已知a,b,n 均为正整数.(1)若1n n <<+,则n =______.(2)若1,1n n n n -<<<<+,则满足条件的a 的个数总比b 的个数少______个.19. 如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______.(2)143B C D △的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 20. 如图,有甲、乙两条数轴.甲数轴上的三点A,B,C 所对应的数依次为4-,2,32,乙数轴上的三点D,E,F 所对应的数依次为0,x ,12.(1)计算A,B,C 三点所对应的数的和,并求AB AC的值.(2)当点A 与点D 上下对齐时,点B,C 恰好分别与点E,F 上下对齐,求x 的值.21. 甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率.(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率. 22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值.(2)求CP 的长及sin APC ∠的值.23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成∵,∵,∵三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长.(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24. 某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下: 当0x p ≤<时,80x y p =.当150p x ≤≤时,()2080150x p y p-=+-. (其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩.(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:∵直接写出这100名员工原始成绩的中位数.∵若∵中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25. 已知O的半径为3,弦MN=,ABC中,90,3,∠=︒==.在平面上,先将ABC AB BCABC和O按图1位置摆放(点B与点N重合,点A在O上,点C在O内),随后移动ABC,使点=.B在弦MN上移动,点A始终在O上随之移动,设BN x∥时,如图2,求点B到OA的距离,并求此时(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MNx的值.(3)设点O到BC的距离为d.∵当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.∵直接写出d的最小值.26. 如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标. (2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上. 淇淇说:无论t 为何值,2C 总经过一个定点. 请选择其中一人的说法进行说理. (3)当4t =时∵求直线PQ 的解析式.∵作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n.2024年河北省中考数学真题试卷答案一、选择题.1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】A5. 【答案】B6. 【答案】D7. 【答案】C8. 【答案】A【解析】解:由题意得:()8822a b⨯= ∵38222a b ⨯=∵38a b +=故选:A .9. 【答案】C【解析】解:由题意得:221a a +=解得:1x =1x =-故选:C .10. 【答案】D【解析】证明:∵AB AC =,∵3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠ ∵∵23∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵ASA ).∵MD MB =.∵四边形ABCD 是平行四边形.故选:D .11. 【答案】B【解析】解:正六边形每个内角为:()621801206-⨯︒=︒ 而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒∵720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒∵7204120240ENM NMB ∠+∠=︒-⨯︒=︒∵1802360ENM NMB βα+∠++∠=︒⨯=︒∵360240120αβ+=︒-︒=︒故选:B .12. 【答案】B【解析】解:设(),A a b ,AB m =,AD n =∵矩形ABCD∵AD BC n ==,AB CD m ==∵(),D a b n +,(),B a m b +,(),C a m b n ++ ∵b b b n a m a a +<<+,而b b n a m a m+<++ ∵该矩形四个顶点中“特征值”最小的是点B.故选:B .13. 【答案】A【解析】解:∵22A y xy y x xy -++的结果为x y xy- ∵22y x y A x xy xy xy y -+=++ ∵()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++ ∵A x =故选:A .14. 【答案】C【解析】解:设该扇面所在圆的半径为R221203603R R S ππ==∵23R S π=∵该折扇张开的角度为n ︒时,扇面面积为n S ∵223360360360120n R S R n n n nS S π=⨯⨯===π ∵1120120120n S m n S nSn S ==== ∵m 是n 的正比例函数∵0n ≥∵它的图像是过原点的一条射线.故选:C .15. 【答案】D【解析】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +则由题意得:20,5,2,mz nz ny nx a ==== ∵4mz nz=,即4=m n ∵当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍.当1,2n y ==时,则4,5,m z x a === ∵A.“20”左边的数是248⨯=,故本选项不符合题意.B.“20”右边的“□”表示4,故本选项不符合题意.∵a 上面的数应为4a∵运算结果可以表示为:()1000411002541001025a a a +++=+∵D 选项符合题意当2a =时,计算的结果大于6000,故C 选项不符合题意故选:D .16. 【答案】D【解析】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:∵16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立.∵16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.故选:D .二、填空题.17. 【答案】8918. 【答案】 ∵. 3 ∵. 2【解析】解:(1)∵34<<,而1n n <+∵3n =.故答案为:3.(2)∵a,b,n 均为正整数.∵n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+<<<<观察0,1,2,3,4,5,6,7,8,9,而200=,211=,224=,239=,2416=∵()21n -与2n 之间的整数有()22n -个 2n 与()21n +之间的整数有2n 个∵满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个)故答案为:2.19. 【答案】 ∵. 1 ∵. 7【解析】解:(1)连接11B D ,12B D ,12B C ,13B C ,33C D∵ABC 的面积为2,AD 为BC 边上的中线∵112122ABD ACD ABC S S S △△△∵点A ,1C ,2C ,3C 是线段4CC 的五等分点 ∵1122334415AC AC C C C C C C CC =====∵点A ,1D ,2D 是线段3DD 的四等分点 ∵11223314AD AD D D D D DD ====∵点A 是线段1BB 的中点 ∵1112AB AB BB == 在11AC D △和ACD 中1111AC AC C AD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AC D ACD ≌∵111AC D ACD S S ==△△,11C D A CDA ∠=∠∵11AC D △的面积为1故答案为:1.(2)在11AB D 和ABD △中1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AB D ABD ≌∵111AB D ABD S S ==△△,11B D A BDA ∠=∠∵180BDA CDA ∠+∠=︒∵1111180B D A C D A ∠+∠=︒∵1C ,1D ,1B 三点共线∵111111112AB C AB D AC D S S S △△△∵1122334AC C C C C C C ===∵14114428AB C AB C S S △△∵11223AD D D D D ==,111AB D S =△∵13113313AB D AB D S S ==⨯=△△在33AC D △和ACD 中 ∵333AC AD AC AD==,33C AD CAD ∠=∠ ∵33C AD CAD △∽△ ∵3322339C AD CAD SAC S AC ⎛⎫=== ⎪⎝⎭ ∵339919C AD CAD S S ==⨯=△△∵1122334AC C C C C C C ===∵43334491233AC D C AD S S ==⨯=△△ ∵41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△∵143B C D △的面积为7故答案为:7.三、解答题.20. 【答案】(1)30,16 (2)2x = 21. 【答案】(1)13 (2)填表见解析,49【小问1详解】解:当1,2a b ==-时1a b +=-,20a b+=,()123a b -=--= ∵取出的卡片上代数式的值为负数的概率为:13.【小问2详解】解:补全表格如下:∵所有等可能的结果数有9种,和为单项式的结果数有4种 ∵和为单项式的概率为49. 22. 【答案】(1)45︒,14(2m 【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m 4AE BQ ==()m ,3AC BD ==()m∵431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒ ∵CE PE =∵45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==.【小问2详解】 解:∵1CE PE ==m ,90CEP ∠=︒∵CP ==m如图,过C 作CH AP ⊥于H∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ∵()22249x x AC +==解得:17x =∵CH =m∵sin34CH APC CP ∠===.23. 【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =BP 或2【解析】解:如图,过G '作G K FH ''⊥于K 结合题意可得:四边形FOG K '为矩形∵FO KG '=由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=︒∵AHG ,H G D '',AFE △为等腰直角三角形 ∵G KH ''为等腰直角三角形设H K KG x ''==∵H G H D '''==∵AH HG ==,HF FO x ==∵正方形的边长为2∵= ∵OA =∵x x +=解得:1x =∵))1111EF AF x ====.(2)∵AFE △为等腰直角三角形,1EF AF ==.∵AE ==∵2BE =∵)12GE H G =='='=-2AH GH ===∵BE GE AH GH ===.如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线此时BP '=,2P Q ''==,符合要求 或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线此时CP CQ ==2PQ ==∵2BP =综上:BP 或2-24. 【答案】(1)甲、乙的报告成绩分别为76,92分 (2)125 (3)∵130;∵95%【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分乙的报告成绩为:()201301008092150100y ⨯-=+=-分.【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分 ∵10x p ≤<时,18092x y p ==丙①,()1804064x y p -==丁② 由∵-∵得320028p = ∵8007p = ∵1800929207131807x p⨯==≈>,故不成立,舍.∵140150p x ≤-≤时,()1209280150x p y p -==+-丙③,()120406480150x p y p --==+-丁④ 由∵-∵得:80028150p =- ∵8507p = ∵185020792808501507x ⎛⎫- ⎪⎝⎭=+- ∵19707x = ∵16908504077x p -=<=,故不成立,舍.∵11040,150x p p x ≤-<≤≤时,()1209280150x p y p -==+-丙⑤()1804064x y p -==丁⑥联立∵∵解得:1125,140p x ==,且符合题意综上所述125p =.【小问3详解】解:∵共计100名员工,且成绩已经排列好∵中位数是第50,51名员工成绩的平均数由表格得第50,51名员工成绩都是130分∵中位数为130.∵当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍.当130p ≤时,则()201309080150p p -=+-,解得110p =,符合题意∵ 由表格得到原始成绩为110及110以上的人数为()10012295-++= ∵合格率为:95100%95%100⨯=.25. 【答案】(1)π (2)点B 到OA 的距离为2;3 (3)∵3d =-23 【小问1详解】解:如图,连接OA ,OB∵O 的半径为3,3AB =∵3OA OB AB ===∵AOB 为等边三角形∵60AOB ∠=︒∵AN 的长为60π3π180.【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO∵OA MN ∥ ∵90IBH BHO HOI BIO ∠=∠=∠=∠=︒∵四边形BIOH 是矩形∵BH OI =,BI OH =∵MN =OH MN ⊥∵MH NH ==而3OM =∵2OH BI ==∵点B 到OA 的距离为2.∵3AB =,BI OA ⊥∵AI =∵3OI OA AI BH =-==∵33x BN BH NH ==+==.【小问3详解】解:∵如图,∵过点A 的切线与AC 垂直∵AC 过圆心过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒∵四边形KOJB 为矩形∵OJ KB =∵3AB =,BC =∵AC ==∵cosAB AK BAC AC AO∠==== ∵AK∵3OJ BK ==即3d =-如图,当B 为MN 中点时过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∵90OJL ∠>︒∵OL OJ >,此时OJ 最短如图,过A 作AQ OB ⊥于Q ,而3AB AO ==∵B 为MN 中点,则OB MN ⊥∵由(2)可得2OB =∵1BQ OQ ==∵AQ ==∵90ABC AQB ∠=︒=∠∵90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠∵OBJ BAQ ∠=∠∵tan tan OBJ BAQ ∠=∠∵OJ BQ BJ AQ ==设OJ m =,则BJ =∵()2222m += 解得:23m =(不符合题意的根舍去) ∵d 的最小值为23. 26. 【答案】(1)12a =,()2,2Q - (2)两人说法都正确,理由见解析(3)∵410=-y x ;∵112-或112+ (4)2n t m =+- 【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∵1680a -=解得:12a = ∵抛物线为:()221122222y x x x =-=-- ∵()2,2Q -.【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-当0x =时 ∵222221111:()2222222C y x t t t t =--+-=-+-=- ∵()0,2-在2C 上∵嘉嘉说法正确.∵22211:()222C y x t t =--+- 2122x xt =-+- 当0x =时,=2y - ∵22211:()222C y x t t =--+-过定点()0,2-.∵淇淇说法正确. 【小问3详解】解:∵当4t =时()2222111:()246222C y x t t x =--+-=--+ ∵顶点()4,6P ,而()2,2Q -设PQ 为y ex f =+∵4622e f e f +=⎧⎨+=-⎩解得:410e f =⎧⎨=-⎩ ∵PQ 为410=-y x .∵如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意)∵4x =±∵交点()46J --,交点()4K +由直线l PQ ∥,设直线l 为4y x b =+∵(446b -+=-解得:22b =∵直线l 为:422y x =+当4220y x =+=时,112x =-此时直线l 与x 轴交点的横坐标为112-同理当直线l 过点()4K +直线l 为:422y x =-当4220y x =-=时,112x =+此时直线l 与x 轴交点的横坐标为112+【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+- ∵2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP∵四边形APBQ 是平行四边形当点M 是到直线PQ 的距离最大的点,最大距离为d,点N 到直线PQ 的距离恰好也为d 此时M 与B 重合,N 与A 重合∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭ ∵L 的横坐标为2t 2+ ∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦∵L 的横坐标为2m n + ∵222m n t ++= 解得:2n t m =+-.。

2024年河南省中考数学试卷正式版含答案解析

2024年河南省中考数学试卷正式版含答案解析

绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

中考数学试卷真题2023全国

中考数学试卷真题2023全国

中考数学试卷真题2023全国Ⅰ. 选择题1.(必做题)分解质因数,化简计算√6 + √6×√10 - √102.已知 a∶b = 2∶3,b∶c = 3∶4,c∶d = 1∶5,求 a∶c∶d3.如图,矩形 ABCD 的长边 AB = 8cm,短边 AD = 6cm,将矩形沿着其中一条副对角线剪下两个全等三角形 EAD 和 FAE,如图所示,割去部分回形纸制成的圆柱体立体图形如右图所示。

若副对角线 EF = 2.4cm,截得的圆柱体的高为多少?精确到百分位。

Ⅱ. 解答题1.某地日照时间的调查表如下:(表格略)(1)求每个城市日出到日落的时段(小时和分钟)。

(2)根据上述调查表得出的数据,计算该地一年中的日照总时长。

2.如图,平行四边形 ABCD 的边长分别为 AB = 8cm,BC = 6cm,点 E、F、G、H 分别为 CD 的中点、BC 的中点、AB 的中点、AD 的中点。

连接 EF、FG、GH,求证:三角形 EFG 的面积是平行四边形ABCD 面积的 1/5。

3.实数 a、b 满足条件:a + b = 15,a^2 + b^2 = 113,求 a、b 的值。

Ⅲ. 应用题1.某班学生的身高(cm)如下所示:135, 142, 137,140, 139, 138,139, 144, 136,141, 137, 138,144, 136, 136(1)计算学生身高的最大值和最小值。

(2)计算学生身高的中位数。

(3)将数据从小到大排列,计算学生身高的四分位数。

注意:计算四分位数时,如果一个数和小数部分之和正好等于整数部分,保留这个数,其余向下取整。

2.一个凹透镜的焦距为20cm,已知一束平行光线照射到该透镜上,经过折射后放大了 2 倍,求左右的移位量。

3.如图,已知下图中两圆心之间的距离为 8cm,点 P、Q 分别在两圆上。

若 PQ 的长为 4cm,求弧 PAB 的长。

【题目来源】2023年全国卷·中考数学真题【答案解析】上述为2023全国中考数学试卷真题。

2024年广东省广州市中考数学真题卷含答案解析

2024年广东省广州市中考数学真题卷含答案解析

2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)-,1-,0,10中,最小的数是()1.四个数10A.10-B.1-C.0D.102.下列图案中,点O为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O对称的是()A. B. C. D.3.若0a ≠,则下列运算正确的是()A.235a a a += B.325a a a ⋅=C.235a a a ⋅= D.321a a ÷=4.若ab <,则()A.33a b +>+ B.22a b ->- C.a b -<- D.22a b<5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a 的值为20B.用地面积在812x <≤这一组的公园个数最多C.用地面积在48x <≤这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为()A.1.2110035060x += B.1.2110035060x -=C.1.2(1100)35060x +=D.110035060 1.2x -=⨯7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为()A.18B.C.9D.8.函数21y ax bx c =++与2k y x=的图象如图所示,当()时,1y ,2y 均随着x 的增大而减小.A.1x <-B.10x -<<C.02x <<D.1x >9.如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是()A.点P 在O 上B.点P 在O 内C.点P 在O 外D.无法确定10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A.311π8B.11π8C.26πD.26π3第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为______.12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.14.若2250a a --=,则2241a a -+=______.15.定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为______.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x =>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '的最小值是;④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:1325x x=-.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A ,B 两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A 组75788282848687889395B 组75778083858688889296(1)求A 组同学得分的中位数和众数;(2)现从A 、B 两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x …232425262728…身高(cm)y …156163170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+,O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.2024年广州市初中学业水平考试数学试卷共8页,25小题,满分120分.考试用时120分钟.注意事项:1.答题前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的圆珠笔或钢笔填写自己的考生号、姓名;将自己的条形码粘贴在答题卡的“条形码粘贴处”.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试卷上.3.非选择题答案必须用黑色字迹的圆珠笔或钢笔写在答题卡各题目指定区域内的相应位置上,涉及作图的题目,用2B铅笔画图;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔(作图除外)、涂改液和修正带.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)-,1-,0,10中,最小的数是()1.四个数10- B.1- C.0 D.10A.10【答案】A【解析】【分析】本题考查了有理数的大小比较,解题关键是掌握有理数大小比较法则:正数大于零,负数小于零,正数大于一切负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.【详解】解:101010,-<-<<∴最小的数是10-,故选:A.2.下列图案中,点O 为正方形的中心,阴影部分的两个三角形全等,则阴影部分的两个三角形关于点O 对称的是()A. B. C. D.【答案】C【解析】【分析】本题考查了图形关于某点对称,掌握中心对称图形的性质是解题关键.根据对应点连线是否过点O 判断即可.【详解】解:由图形可知,阴影部分的两个三角形关于点O 对称的是C ,故选:C .3.若0a ≠,则下列运算正确的是()A.235a a a += B.325a a a ⋅=C.235a a a ⋅= D.321a a ÷=【答案】B【解析】【分析】本题考查了分式的乘法,同底数幂乘法与除法,掌握相关运算法则是解题关键.通分后变为同分母分数相加,可判断A 选项;根据同底数幂相乘,底数不变,指数相加,可判断B 选项;根据分式乘法法则计算,可判断C 选项;根据同底数幂除法,底数不变,指数相减,可判断D 选项.【详解】解:A 、32523666a a a a a +=+=,原计算错误,不符合题意;B 、325a a a ⋅=,原计算正确,符合题意;C 、2236a a a ⋅=,原计算错误,不符合题意;D 、32a a a ÷=,原计算错误,不符合题意;故选:B .4.若a b <,则()A.33a b +>+ B.22a b ->- C.a b -<- D.22a b<【答案】D【解析】【分析】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.根据不等式的基本性质逐项判断即可得.【详解】解:A .∵a b <,∴33a b +<+,则此项错误,不符题意;B .∵a b <,∴22a b -<-,则此项错误,不符题意;C .∵a b <,∴a b ->-,则此项错误,不符合题意;D .∵a b <,∴22a b <,则此项正确,符合题意;故选:D .5.为了解公园用地面积x (单位:公顷)的基本情况,某地随机调查了本地50个公园的用地面积,按照04x <≤,48x <≤,812x <≤,1216x <≤,1620x <≤的分组绘制了如图所示的频数分布直方图,下列说法正确的是()A.a 的值为20B.用地面积在812x <≤这一组的公园个数最多C.用地面积在48x <≤这一组的公园个数最少D.这50个公园中有一半以上的公园用地面积超过12公顷【答案】B【解析】【分析】本题考查的是从频数分布直方图获取信息,根基图形信息直接可得答案.【详解】解:由题意可得:5041612810a =----=,故A 不符合题意;用地面积在812x <≤这一组的公园个数有16个,数量最多,故B 符合题意;用地面积在04x <≤这一组的公园个数最少,故C 不符合题意;这50个公园中有20个公园用地面积超过12公顷,不到一半,故D 不符合题意;故选B6.某新能源车企今年5月交付新车35060辆,且今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆.设该车企去年5月交付新车x 辆,根据题意,可列方程为()A.1.2110035060x +=B.1.2110035060x -=C.1.2(1100)35060x += D.110035060 1.2x -=⨯【答案】A【解析】【分析】本题考查了一元一次方程的应用,找出题目中的数量关系是解题关键.设该车企去年5月交付新车x 辆,根据“今年5月交付新车的数量比去年5月交付的新车数量的1.2倍还多1100辆”列出方程即可.【详解】解:设该车企去年5月交付新车x 辆,根据题意得:1.2110035060x +=,故选:A .7.如图,在ABC 中,90A ∠=︒,6AB AC ==,D 为边BC 的中点,点E ,F 分别在边AB ,AC 上,AE CF =,则四边形AEDF 的面积为()A.18B.92C.9D.2【答案】C【解析】【分析】本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.连接AD ,根据等腰直角三角形的性质以及AE CF =得出ADE CDF V V ≌,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.【详解】解:连接AD ,如图:∵90BAC ∠=︒,6AB AC ==,点D 是BC 中点,AE CF=∴45,BAD B C AD BD DC∠=∠=∠=︒==∴ADE CDF V V ≌,∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S =+=+==四边形△△△△△△又∵166182ABC S =⨯⨯= ∴1=92ABC AEDF S S =四边形故选:C8.函数21y ax bx c =++与2k y x =的图象如图所示,当()时,1y ,2y 均随着x 的增大而减小.A.1x <- B.10x -<< C.02x << D.1x >【答案】D【解析】【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .9.如图,O 中,弦AB 的长为43点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是()A.点P 在O 上B.点P 在O 内C.点P 在O 外D.无法确定【答案】C【解析】【分析】本题考查了垂径定理,圆周角定理,点与圆的位置关系,锐角三角函数,掌握圆的相关性质是解题关键.由垂径定理可得AD =60AOC ∠=︒,再结合特殊角的正弦值,求出O 的半径,即可得到答案.【详解】解:如图,令OC 与AB 的交点为D ,OC 为半径,AB 为弦,且OC AB ⊥,12A D AB ∴==,30ABC =︒∠ 260AOC ABC ∴∠=∠=︒,在ADO △中,90ADO ∠=︒,60AOD ∠=︒,AD =sin AD AOD OA ∠=,4sin 6032AD OA ∴===︒,即O 的半径为4,54OP => ,∴点P 在O 外,故选:C.10.如图,圆锥的侧面展开图是一个圆心角为72︒的扇形,若扇形的半径l 是5,则该圆锥的体积是()A.π8B.π8C. D.π3【答案】D【解析】【分析】本题考查了弧长公式,圆锥的体积公式,勾股定理,理解 圆锥的底面周长与侧面展开图扇形的弧长相等是解题关键,设圆锥的半径为r ,则圆锥的底面周长为2r π,根据弧长公式得出侧面展开图的弧长为2π=,进而得出1r =,再利用勾股定理,求出圆锥的高,再代入体积公式求解即可.【详解】解:设圆锥的半径为r ,则圆锥的底面周长为2r π,圆锥的侧面展开图是一个圆心角为72︒的扇形,且扇形的半径l 是5,∴扇形的弧长为7252180ππ⨯=, 圆锥的底面周长与侧面展开图扇形的弧长相等,22r ππ∴=,1r ∴=,∴=∴圆锥的体积为2126133π⨯⨯=,故选:D .第二部分非选择题(共90分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为______.【答案】109︒【解析】【分析】本题考查的是平行线的性质,邻补角的含义,先证明1371∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒-∠=︒;故答案为:109︒12.如图,把1R ,2R ,3R 三个电阻串联起来,线路AB 上的电流为I ,电压为U ,则123U IR IR IR =++.当120.3R =,231.9R =,347.8R =, 2.2I =时,U 的值为______.【答案】220【解析】【分析】本题考查了代数式求值,乘法运算律,掌握相关运算法则,正确计算是解题关键.根据123U IR IR IR =++,将数值代入计算即可.【详解】解:123U IR IR IR =++ ,当120.3R =,231.9R =,347.8R =, 2.2I =时,()20.3 2.231.9 2.247.8 2.220.331.947.8 2.2220U =⨯+⨯+⨯=++⨯=,故答案为:220.13.如图,ABCD Y 中,2BC =,点E 在DA 的延长线上,3BE =,若BA 平分EBC ∠,则DE =______.【答案】5【解析】【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,2AD BC ==,BC AD ∥,进而得出BAE EBA ∠=∠,再由等角对等边的性质,得到3BE AE ==,即可求出DE 的长.【详解】解:在ABCD Y 中,2BC =,2AD BC ∴==,BC AD ∥,CBA BAE ∴∠=∠,BA 平分EBC ∠,CBA EBA ∴∠=∠,BAE EBA ∴∠=∠,3BE AE ∴==,235DE AD AE ∴=+=+=,故答案为:5.14.若2250a a --=,则2241a a -+=______.【答案】11【解析】【分析】本题考查了因式分解,提取公因式,得出条件的等价形式是解题关键.由2250a a --=,得225a a -=,根据提公因式法分解因式得()22241221a a a a -+=-+,代入可得答案.【详解】解:2250a a --= ,225a a ∴-=,()2224122125111a a a a ∴-+=-+=⨯+=,故答案为:11.15.定义新运算:()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩例如:224(2)40-⊗=--=,23231⊗=-+=.若314x ⊗=-,则x 的值为______.【答案】12-或74【解析】【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a ⎧-≤⎪⊗=⎨-+>⎪⎩,而314x ⊗=-,∴①当0x ≤时,则有2314x -=-,解得,12x =-;②当0x >时,314x -+=-,解得,74x =综上所述,x 的值是12-或74,故答案为:12-或74.16.如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数(0)k y x x=>的图象上,(1,0)A ,(0,2)C .将线段AB 沿x 轴正方向平移得线段A B ''(点A 平移后的对应点为A '),A B ''交函数(0)k y x x =>的图象于点D ,过点D 作DE y ⊥轴于点E ,则下列结论:①2k =;②OBD 的面积等于四边形ABDA '的面积;③A E '的最小值是2;④B BD BB O ''∠=∠.其中正确的结论有______.(填写所有正确结论的序号)【答案】①②④【解析】【分析】由()1,2B ,可得122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',证明四边形A DEO '为矩形,可得当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,可得A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,可得()1,2B n '+,证明B BD A OB ''' ∽,可得B BD B OA '''∠=∠,再进一步可得答案.【详解】解:∵(1,0)A ,(0,2)C ,四边形OABC 是矩形;∴()1,2B ,∴122k =⨯=,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,∵1212AOB A OD S S '==⨯= ,∴BOK AKDA S S '= 四边形,∴BOK BKD BKD AKDA S S S S '+=+ 四边形,∴OBD 的面积等于四边形ABDA '的面积;故②符合题意;如图,连接A E ',∵DE y ⊥轴,90DA O EOA ''∠=∠=︒,∴四边形A DEO '为矩形,∴A E OD '=,∴当OD 最小,则A E '最小,设()2,0D x x x ⎛⎫> ⎪⎝⎭,∴2224224OD x x x x =+≥⋅⋅=,∴2OD ≥,∴A E '的最小值为2,故③不符合题意;如图,设平移距离为n ,∴()1,2B n '+,∵反比例函数为2y x=,四边形A B CO ''为矩形,∴90BB D OA B '''∠=∠=︒,21,1D n n ⎛⎫+ ⎪+⎝⎭,∴BB n '=,1OA n '=+,22211n B D n n '=-=++,2A B ''=,∴2112n BB n B D n OA n A B ''+==='''+,∴B BD A OB ''' ∽,∴B BD B OA '''∠=∠,∵B C A O ''∥,∴CB O A OB '''∠=∠,∴B BD BB O ''∠=∠,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.解方程:1325x x=-.【答案】3x =【解析】【分析】本题考查的是解分式方程,掌握分式方程的解法是解题关键,注意检验.依次去分母、去括号、移项、合并同类项求解,检验后即可得到答案.【详解】解:1325x x=-,去分母得:()325x x =-,去括号得:615x x =-,移项得:615x x -=-,合并同类项得:515x -=-,解得:3x =,经检验,3x =是原方程的解,∴该分式方程的解为3x =.18.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,3BE =,6EC =,2CF =.求证:ABE ECF △△∽.【答案】见解析【解析】【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出90B C ∠=∠=︒,9AB CB ==,进而得出AB BE EC CF=,根据两边成比例且夹角相等的两个三角形相似即可证明.【详解】解:3BE = ,6EC =,9BC ∴=,四边形ABCD 是正方形,9AB CB ∴==,90B C ∠=∠=︒,9362AB EC == ,32BE CF =,AB BE EC CF∴=又90B C ∠=∠=︒ ,ABE ECF ∴∽ .19.如图,Rt ABC △中,90B Ð=°.(1)尺规作图:作AC 边上的中线BO (保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO 绕点O 逆时针旋转180︒得到DO ,连接AD ,CD .求证:四边形ABCD 是矩形.【答案】(1)作图见解析(2)证明见解析【解析】【分析】本题考查的是作线段的垂直平分线,矩形的判定,平行四边形的判定与性质,旋转的性质;(1)作出线段AC 的垂直平分线EF ,交AC 于点O ,连接BO ,则线段BO 即为所求;(2)先证明四边形ABCD 为平行四边形,再结合矩形的判定可得结论.【小问1详解】解:如图,线段BO 即为所求;【小问2详解】证明:如图,∵由作图可得:AO CO =,由旋转可得:BO DO =,∴四边形ABCD 为平行四边形,∵90ABC ∠=︒,∴四边形ABCD 为矩形.20.关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.【答案】(1)3m >(2)2-【解析】【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可.【小问1详解】解:∵关于x 的方程2240x x m -+-=有两个不等的实数根.∴()()224140m ∆=--⨯⨯->,解得:3m >;【小问2详解】解:∵3m >,∴2113|3|21m m m m m ---÷⋅-+()()1123311m m m m m m -+--=⋅⋅--+2=-;21.善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A ,B 两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A 组75788282848687889395B组75778083858688889296(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.【答案】(1)A组同学得分的中位数为85分,众数为82分;(2)1 3【解析】【分析】本题考查了中位数与众数,列表法或树状图法求概率,掌握相关知识点是解题关键.(1)根据中位数和众数的定义求解即可;(2)由题意可知,A、B两组得分超过90分的同学各有2名,画树状图法求出概率即可.【小问1详解】解:由题意可知,每组学生人数为10人,∴中位数为第5、6名同学得分的平均数,∴A组同学得分的中位数为8486852+=分,82分出现了两次,次数最多,∴众数为82分;【小问2详解】解:由题意可知,A、B两组得分超过90分的同学各有2名,令A组的2名同学为1A、2A,B组的2名同学为1B、2B,画树状图如下:由树状图可知,共有12种等可能的情况,其中这2名同学恰好来自同一组的情况有4种,∴这2名同学恰好来自同一组的概率41123=.22.2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)【答案】(1)CD 的长约为8米;(2)模拟装置从A 点下降到B 点的时间为4.5秒.【解析】【分析】本题考查了解直角三角形的应用——仰俯角问题,灵活运用锐角三角函数求边长是解题关键.(1)过点B 作BE CD ∥交AD 于点E ,根据余弦值求出CD 的长即可;(2)先由勾股定理,求出AC 的长,再利用正弦值求出BC 的长,进而得到AB 的长,然后除以速度,即可求出下降时间.【小问1详解】解:如图,过点B 作BE CD ∥交AD 于点E ,由题意可知,36.87DBE ∠=︒,36.87BDC ∴∠=︒,在BCD △中,90C ∠=︒,10BD =米,cos CD BDC BD∠= ,cos 36.87100.808CD BD ∴=⋅︒≈⨯≈米,即CD 的长约为8米;【小问2详解】解:17AD =Q 米,8CD =米,15AC ∴=米,在BCD △中,90C ∠=︒,10BD =米,sin BC BDC BD∠= ,sin 36.87100.606BC BD ∴=⋅︒≈⨯≈米,1569AB AC BC ∴=-=-=米,模拟装置从A 点以每秒2米的速度匀速下降到B 点,∴模拟装置从A 点下降到B 点的时间为92 4.5÷=秒,即模拟装置从A 点下降到B 点的时间为4.5秒.23.一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y 和脚长x 之间近似存在一个函数关系,部分数据如下表:脚长(cm)x …232425262728…身高(cm)y …156163170177184191…(1)在图1中描出表中数据对应的点(,)x y ;(2)根据表中数据,从(0)y ax b a =+≠和(0)k y k x=≠中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x 的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8cm ,请根据(2)中求出的函数解析式,估计这个人的身高.【答案】(1)见解析(2)75y x =-(3)175.6cm【解析】【分析】本题考查了函数的实际应用,正确理解题意,选择合适的函数模型是解题关键.(1)根据表格数据即可描点;(2)选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入即可求解;(3)将25.8cm 代入75y x =-代入即可求解;【小问1详解】解:如图所示:【小问2详解】解:由图可知:y 随着x 的增大而增大,因此选择函数(0)y ax b a =+≠近似地反映身高和脚长的函数关系,将点()()23,156,24,163代入得:1562316324a b a b =+⎧⎨=+⎩,解得:75a b =⎧⎨=-⎩∴75y x =-【小问3详解】解:将25.8cm 代入75y x =-得:725.85175.6cmy =⨯-=∴估计这个人身高175.6cm24.如图,在菱形ABCD 中,120C ∠=︒.点E 在射线BC 上运动(不与点B ,点C 重合),AEB △关于AE 的轴对称图形为AEF △.(1)当30BAF ∠=︒时,试判断线段AF 和线段AD 的数量和位置关系,并说明理由;(2)若6AB =+,O 为AEF △的外接圆,设O 的半径为r .①求r 的取值范围;②连接FD ,直线FD 能否与O 相切?如果能,求BE 的长度;如果不能,请说明理由.【答案】(1)AF AD =,AF AD⊥(2)①3r ≥+;②12【解析】【分析】(1)由菱形的性质可得120BAD C ∠=∠=︒,AB AD =,再结合轴对称的性质可得结论;(2)①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,证明ABC 为等边三角形,,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,当AE BC ⊥时,AE 最小,则AO 最小,再进一步可得答案;②如图,以A 为圆心,AC 为半径画圆,可得,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,证明18030150CFD ∠=︒-︒=︒,可得60OFC ∠=︒,OCF △为等边三角形,证明1203090BAF ∠=︒-︒=︒,可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,再进一步可得答案.【小问1详解】解:AF AD =,AF AD ⊥;理由如下:∵在菱形ABCD 中,120C ∠=︒,∴120BAD C ∠=∠=︒,AB AD =,∵30BAF ∠=︒,∴1203090FAD ∠=︒-︒=︒,∴AF AD ⊥,由对折可得:AB AF =,∴AF AD =;【小问2详解】解:①如图,设AEF △的外接圆为O ,连接AC 交BD 于H .连接OA ,OE ,OF ,OC ,∵四边形ABCD 为菱形,120BCD ∠=︒,∴AC BD ⊥,60BCA ∠=︒,BA BC =,∵ABC 为等边三角形,∴60ABC AFE ACB ∠=∠=︒=∠,∴,,,A E F C 共圆,2120AOE AFE ∠=∠=︒,O 在BD 上,∵AO OE =,∴30AEO EAO ∠=∠=︒,过O 作OJ AE ⊥于J ,∴AJ EJ =,3AO AJ =,∴3AO AE =,当AE BC ⊥时,AE 最小,则AO 最小,∵6AB =+60ABC ∠=︒,∴(sin 60692AE AB =⋅︒=+⨯=,∴()3933AO =+=+;∴r 的取值范围为3r ≥+;②DF 能为O 的切线,理由如下:如图,以A 为圆心,AC 为半径画圆,∵AB AC AF AD ===,∴,,,B C F D 在A 上,延长CA 与A 交于L ,连接DL ,同理可得ACD 为等边三角形,∴60CAD ∠=︒,∴30CLD ∠=︒,∴18030150CFD ∠=︒-︒=︒,∵DF 为O 的切线,∴90OFD ∠=︒,∴60OFC ∠=︒,∵OC OF =,∴OCF △为等边三角形,∴60COF ∠=︒,∴1302CAF COF ∠=∠=︒,∴603030DAF ︒-︒=︒∠=,∴1203090BAF ∠=︒-︒=︒,由对折可得:45BAE FAE ∠=∠=︒,BE EF =,过E 作EM AF ⊥于M ,∴设AM EM x ==,∵60EFM ∠=︒,∴33FM EM x ==,∴63x x +=+解得:x =∴63FM =⨯=,∴212BE EF FM ===.【点睛】本题考查的是轴对称的性质,菱形的性质,等边三角形的判定与性质,圆周角定理的应用,锐角三角函数的应用,勾股定理的应用,切线的性质,本题难度很大,作出合适的辅助线是解本题的关键.25.已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.【答案】(1)对称轴为直线:3x =;(2)1m =±(3)①15t =,②k的最大值为,抛物线G 为262y x x =-+;【解析】【分析】(1)直接利用对称轴公式可得答案;(2)如图,由122C C =+,可得A 在B 的左边,2AD AC CD CD BC BD ++=+++,证明CA CB =,可得2AD BD =+,设(),2D p ,建立1212232x x p x x p +=⨯⎧⎨-=-+⎩,可得:4p =,()4,2D ,再利用待定系数法求解即可;(3)①如图,当l AB '∥时,与抛物线交于,E F ,由直线y x n =+,可得45DCF ∠=︒,可得345t =,从而可得答案;②计算()1122AEF A E S EF y y EF =⋅-= ,当1y =时,可得22620x x a a --+=,则126x x +=,2122x x a a =-+,可得12EF x x =-==,可得当1a =时,EF 的最小值为,再进一步求解可得答案.【小问1详解】。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学真题试卷G卷新版
一、填空题 (共8题;共16分)
1. (5分) (2019七上·临泽期中) 若a与b互为相反数,c、d互为倒数,则
值是__.
2. (5分)(2019·镇江) 如图,直线,的顶点在直线上,边
与直线相交于点 .若是等边三角形,,则=__°
3. (1分) (2019八上·遵义期末) 分解因式:2m -32m5=________;
4. (1分)(2019·伊春) 中国政府提出的“一带一路”倡议,近两年来为沿线国家创造了约个就业岗位.将数据用科学记数法表示为________.
5. (1分) 2017参加杭州市体育中考的学生需从耐力类(游泳和男生1000米或女生800米)、力量类(实心球和男生引体向上或女生仰卧起坐)、跳跃类(立定跳远和一分钟跳绳)三大类中各选一项作为考试项目,小明已经选了耐力类游泳,则他在力量类和跳跃类中,选“实心球和立定跳远”这两项的概率是________.
6. (1分) (2019八下·江北期中) 使代数式有意义的x的取值范围是________.
7. (1分) (2018九上·松江期中) 如图,线段BD与线段CE相交于点A,ED∥BC,已知2BC=3ED,AC=8,则AE=________.
8. (1分)(2019·北京) 如图所示的网格是正方形网格,则=________°(点A,B,P是网格线交点).
二、选择题(本大题共10小题,每小题4分,共40分) (共10题;共20分)
9. (2分) (2018八上·银海期末) 下列计算正确的是()
A . m3 +m2 =m5
B . m3 m2 =m6
C . (1-m)(1+m)=m2 -1
D .
10. (2分) (2018九上·肇庆期中) 已知点P(3a﹣9,1﹣a)是第三象限的点,且横坐标、纵坐标均为整数,若P、Q关于原点对称,点Q的坐标为()
A . (﹣3,﹣1)
B . (3,1)
C . (1,3)
D . (﹣1,﹣3)
11. (2分)(2019·南关模拟) 图①是由一个完全相同的小正方体组成的立体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()
A . 主视图,俯视较和左视图都改变
B . 左视图
C . 俯视图
D . 主视图
12. (2分) (2019七下·宜兴期中) 若a=0.32 , b=﹣3﹣2 , c=(﹣3)0 ,那么a、b、c三数的大小为()
A . a>c>b
B . a>b>c
C . c>b>a
D . c>a>b
13. (2分)(2019·泉州模拟) 关于x的一元二次方程x2-mx-1=0的根的情况是()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 无实数根
D . 不能确定
14. (2分)式子2+的结果精确到0.01为(可用计算器计算或笔算)()
A . 4.9
B . 4.87
C . 4.88
D . 4.89
15. (2分) (2018九上·武昌期中) 在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()
A . P在⊙O内
B . P在⊙O上
C . P在⊙O外
D . P与A或B重合
16. (2分) (2017八上·湖北期中) 已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()
A . 21
B . 16
C . 27
D . 21或27
17. (2分)(2019·铜仁) 如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()
A .
B .
C .
D .
18. (2分) (2019八上·秀洲期末) 已知下列命题:①若|a|=|b|,则a2=b2;②若am2>bm2 ,则a>b;③对顶角相等;④等腰三角形的两底角相等.其中原命题和逆命题均为真命题的个数是()
A . 1
B . 2
C . 3
D . 4
三、解答题:本大题共8小题,共78分 (共8题;共80分)
19. (5分) (2019九上·象山期末) 计算:
20. (5分) (2019七下·苏州期末) 解不等式组,并写出该不等式组的最大整数解.
21. (10分) (2019八下·新蔡期末) 如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。

(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

22. (15分)(2019·山西模拟) 如图,在平面直角坐标系中,一次函数
的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).
(1)求m的值和点D的坐标.
(2)求的值.
(3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
23. (15分)(2018·余姚模拟) 为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机
抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?
24. (10分) (2019七下·卫辉期末) 为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买10辆全新的混合动力公交车,现有两种型号,它们的价格及年省油量如下表:
型号
价格(万元/辆)
年省油量(万升/辆)2.42
经调查,购买一辆型车比购买一辆型车多20万元,购买2辆型车比购买3辆型车少60万元.
(1)请求出和的值;
(2)若购买这批混合动力公交车(两种车型都要有),每年能节省的油量不低于22.4万升,请问有几种购车方案?(不用一一列出)请求出最省钱的购车方案所需的车款.
25. (10分) (2019八下·江北期中) 在某校组织的“交通安全宣传教育月”活动中,
八年级数学兴趣小组的同学进行了如下的课外实践活动.具体内容如下:在一段笔直的公路上选取两点A、B,在公路另一侧的开阔地带选取一观测点C,在C处测得点A位于C点的南偏西45°方向,且距离为100 米,又测得点B位于C点的南偏东60°方向.已知该路段为乡村公路,限速为60千米/时,兴趣小组在观察中测得一辆小轿车经过该路段用时13秒.
(1)请你帮助他们算一算,这辆小车是否超速?(参考数据:≈1.41,≈1.73,计算结果保留两位小数).
(2)请你以交通警察叔叔的身份对此小轿车的行为作出处理意见,并就乡村公路安全管理提出自己的建议。

(处理意见合情合理,建议尽量全面。


26. (10分)(2018·苏州) 如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.
(1)求线段AD的长;
(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.
参考答案
一、填空题 (共8题;共16分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
二、选择题(本大题共10小题,每小题4分,共40分) (共10题;共20分)
9、答案:略
10、答案:略
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题:本大题共8小题,共78分 (共8题;共80分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。

相关文档
最新文档